Exercise session 1

Fractional Calculus

3

э

・ロト ・日 ・ ・ ヨ ・ ・

Let $\alpha > 0$, $\beta > -1$ and a < b. Calculate:

- 1) the left-hand fractional integral $(I_{a+}^{\alpha}f)(x)$ for x > a, where $f(t) = (t-a)^{\beta};$
- 2) the right-hand fractional integral $(I_{b-}^{\alpha}f)(x)$ for x < b, where $f(t) = (b-t)^{\beta}.$

A (10) < A (10) < A (10) </p>

Let $\alpha, \beta > 0$, a < b and $f \in L^1(a, b)$. Prove that for any $x \in (a, b)$ $(I_{a+}^{\beta}(I_{a+}^{\alpha}f))(x) = (I_{a+}^{\alpha+\beta}f)(x).$

- 34

< □ > < 同 > < 回 > < Ξ > < Ξ

Solve, at least formally, the integral Abel equation

$$f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x \frac{\phi(t)}{(x-t)^{1-\alpha}} dt, \ x \in [a,b], \ 0 < \alpha < 1$$

æ

イロト イヨト イヨト イヨ

Remark

Recall that $f \in AC([a, b])$ if and only if there exists a function $f' \in L^1(a, b)$ such that for any $x \in [a, b]$

$$f(x) = f(a) + \int_a^x f'(t) dt.$$

Exercise 4

Let $\alpha \geq 1$ and $f \in L^1(a, b)$. Show that $I_{a+}^{\alpha} f \in AC([a, b])$.

- 3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $0 < \alpha < 1$ and $f \in AC([a, b])$. Prove that $I_{a+}^{1-\alpha}f \in AC([a, b])$ and

$$(I_{a+}^{1-\alpha}f)(x) = \frac{1}{\Gamma(2-\alpha)} \left[f(a)(x-a)^{1-\alpha} + \int_{a}^{x} f'(t)(x-t)^{1-\alpha} dt \right].$$
(1)

- E

イロト イヨト イヨト イヨ

Let $f \in AC([a, b])$. Show that Abel's equation with $0 < \alpha < 1$ is solvable in $L_1(a, b)$ and its solution can be represented as

$$\phi(x) = \frac{1}{\Gamma(1-\alpha)} \left[\frac{f(a)}{(x-a)^{\alpha}} + \int_a^x \frac{f'(s)}{(x-s)^{\alpha}} \, ds \right]. \tag{2}$$

• • • • • • • • • • • •

Let $(D_{a+}^{\alpha}f)(x) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \left(\int_{a}^{x} \frac{f(t)}{(x-t)^{\alpha}} dt \right)$ be left-hand side fractional derivative (Riemann-Liouville fractional derivative). Observe that, in general,

$$\left(D_{a+}^{\alpha}f\right)(x) = \frac{d}{dx}(I_{a+}^{1-\alpha}f)(x)$$

Prove that for $0 < \alpha < 1$ and $f \in AC([a, b])$ such derivative exists almost everywhere, and

$$\left(D_{a+}^{\alpha}f\right)(x) = \frac{1}{\Gamma(1-\alpha)}\left[\frac{f(a)}{(x-a)^{\alpha}} + \int_{a}^{x}\frac{f'(t)}{(x-t)^{\alpha}}\,dt\right].$$

Let $f(x) = (x - a)^{-\mu}$, $0 < \mu < 1$. Prove that for $\alpha + \mu < 1$

$$\left(D_{\mathsf{a}+}^{lpha}f
ight)(x)=rac{\mathsf{\Gamma}(1-\mu)}{\mathsf{\Gamma}(1-\mu-lpha)}rac{1}{(x-\mathsf{a})^{\mu+lpha}},$$

and that $(D_{a+}^{\alpha}f)(x) = 0$ if $f(x) = (x-a)^{\alpha-1}$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

- a) Let $\phi \in L_1([a, b])$. Prove that for any $0 < \alpha < 1$ $(D^{\alpha}_{a+}l^{\alpha}_{a+}\phi)(x) = \phi(x)$, a.e. with respect to the Lebesgue measure.
- b) Let φ can be represented as the fractional integral of order α of some function from L₁([a, b]). Prove that for any x ∈ [a, b]

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}\phi)(x)=\phi(x).$$

A (10) N (10) N (10)