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Introduction

Fractional calculus is one of the best tools to characterize long-memory
processes and materials, anomalous diffusion, long-range interactions,
long-term behaviors, power laws, allometric scaling laws, as well as the
respective short-memory effects, especially in finance. So the
corresponding mathematical models are, on the one hand, fractional
processes, and on the other hand, fractional differential equations. Of
course, this is a very simplified situation, because the number of fractional
objects is much greater. There can be partial fractional differential
equations etc. The evolutions of fractional processes behave in a much
more complicated way so to study the corresponding dynamics is much
more difficult.
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But the study of such processes and equations is absolutely necessary,
because fractality is inherent in almost all observed phenomena. It
manifests itself in particular in the fact that, for example, the transmission
of cellular signals cannot be described by differential equations with
derivatives of an integer order, they are not smooth enough for this.
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It can be said that the derivatives of the integer order that have been used
to describe classical mechanical systems since Newton’s, have become too
much luxury at the present time, when we observe changes that occur too
quickly in order to be residually smooth. So, derivatives and integrals with
integer indices are irreplaceable in describing sufficiently smooth
phenomena in finance, economics, modern technologies and natural
phenomena (moreover, almost all of the above evolve according to very
similar laws), and they are replaced by fractional order derivatives and
fractional order integrals that describe some quasi-smoothness. Therefore,
it is absolutely necessary to study and apply the elements of fractional
calculus.
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Remark 0.1

During the lectures, the technical details of the proofs and technical proofs
will be omitted. We shall discuss only some principal details.
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Fractional integrals

Let α > 0 (in the most cases later α < 1 but it is not obligatory). Denote
the Riemann–Liouville left- and right- sided fractional integrals on (a, b) of
order α as the operators Iαa+ and Iαb− of the form

(Iαa+f )(x) :=
1

Γ(α)

∫ x

a
f (t)(x − t)α−1dt,

(Iαb−f )(x) :=
1

Γ(α)

∫ b

x
f (t)(t − x)α−1dt.

We say that the function f ∈ D(Iαa+(b−)) (symbol D(·) denotes the domain

of corresponding operator) if the corresponding integrals converge for
almost all (a.a.) x ∈ (a, b) (with respect to (w.r.t.) Lebesgue measure).
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Fractional integrals

The Riemann–Liouville left- and right- sided fractional integrals on R are
defined as

(Iα+f )(x) :=
1

Γ(α)

∫ x

−∞
f (t)(x − t)α−1dt,

(Iα−f )(x) :=
1

Γ(α)

∫ ∞
x

f (t)(t − x)α−1dt.

The function f ∈ D(Iα±) if the corresponding integrals converge for a.a.
x ∈ R. According to [SKM93], Lp(R) ⊂ D(Iα±), 1 ≤ p < 1

α .
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Hardy–Littlewood theorem

Moreover, the following Hardy–Littlewood theorem holds.

Theorem 1.1 ([SKM93])

Let 1 ≤ p, q <∞, 0 < α < 1. Then the operators Iα± are bounded from
Lp(R) to Lq(R) if and only if 1 < p < 1

α and q = p(1− αp)−1. It means,
in particular, that for any 1 < p < 1

α and q = p
1−αp (or 1/p − 1/q = α)

there exists a constant Cp,q,α such that(∫
R

(∫
R
|f (u)||x − u|α−1du

)q
dx

) 1
q

≤ Cp,q,α‖f ‖Lp(R). (1)
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Properties of fractional integration
Fractional integration admits the following composition formula:

Iαa+I
β
a+f = Iα+β

a+ f , Iαb−I
β
b−f = Iα+β

b− f

for f ∈ L1[a, b]. If α + β ≥ 1 we have these equalities at any point
x ∈ (a, b) otherwise they hold for a. a. x . Also,

Iα±I
β
± = Iα+β

± f

for f ∈ Lp(R), α, β > 0 α+ β < 1
p . For f ∈ Lp[a, b], g ∈ Lq[a, b], p, q ≥ 1

and 1
p + 1

q ≤ 1 + α, where p > 1, q > 1 for 1
p + 1

q = 1 + α we have the
following integration-by-parts formula∫ b

a
g(x)(Iαa+f )(x)dx =

∫ b

a
f (x)(Iαb−g)(x)dx .

Let f ∈ Lp(R), g ∈ Lq(R), p > 1, q > 1, 1
p + 1

q = 1 + α. Then∫
R
g(x)(Iα+f )(x)dx =

∫
R
f (x)(Iα−g)(x)dx . (2)
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Hölder continuous functions

Let Cλ(T ) be set of Hölder continuous functions f : T → R of order λ,
i.e.,

Cλ([a, b]) =
{
f : [a, b]→ R

∣∣∣ ‖f ‖[a,b],λ := sup
t∈[a,b]

|f (t)|

+ sup
s,t∈[a,b]

|f (s)− f (t)|(t − s)−λ <∞
}
.

For p ≥ 1 denote Iα±(Lp(R)) the class of functions f that can be presented
as the Riemann–Liouville integrals f = Iα±ϕ for some ϕ ∈ Lp(R), p ≥ 1.

Lemma 1.2

If α > 0, αp > 1, then Iα±(Lp(R)) ⊂ Cλ([a, b]) for any −∞ < a < b <∞
and 0 < λ ≤ α− 1

p .
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The next result is evident.

Lemma 1.3

Let 0 < α < 1, f ∈ Lp(R), 1 ≤ p < 1
α and Iα±f = 0. Then f (x) = 0 for

a.a. x ∈ R.
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Riemann–Liouville fractional derivatives

Lemma 1.3 supplies the uniqueness of such function ϕ that its fractional
integral is some given function f , and for 0 < α < 1 this function ϕ
coincides for a.a. x ∈ R with the left- (right-) sided Riemann–Liouville
fractional derivative of f of order α:

(I−α+ f )(x) = (Dα
+f )(x) :=

1

Γ(1− α)

d

dx

∫ x

−∞
f (t)(x − t)−αdt,

(I−α− f )(x) = (Dα
−f )(x) :=

−1

Γ(1− α)

d

dx

∫ ∞
x

f (t)(t − x)−αdt.
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Riemann–Liouville derivatives on the interval

The Riemann–Liouville fractional derivatives can be considered on any
interval [a, b] ⊂ R in the following way: we introduce the class Iα±(Lp[a, b])
of functions f that can be presented as f = Iαa+ϕ (f = Iαb−ϕ) for
ϕ ∈ Lp[a, b], p ≥ 1, and denote

(I−αa+ f )(x) = (Dα
a+f )(x) =

1

Γ(1− α)

d

dx

∫ x

a
f (t)(x − t)−αdt,

(I−αb− f )(x) = (Dα
b−f )(x) = − 1

Γ(1− α)

d

dx

∫ b

x
f (t)(t − x)−αdt.
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Weyl representation

In this case Riemann–Liouville fractional derivatives Dα
a+f and Dα

b−f admit
the following Weyl representation (we suppose that f = 0 outside (a, b)):

(Dα
a+f )(x) =

1

Γ(1− α)
(f (x)(x − a)−α

+α

∫ x

a
(f (x)− f (t))(x − t)−α−1dt) · 1(a,b)(x),

(Dα
b−f )(x) =

1

Γ(1− α)
(f (x)(b − x)−α

+α

∫ b

x
(f (x)− f (t))(t − x)−α−1dt) · 1(a,b)(x),

where the convergence of the integrals holds pointwise for a.a. x ∈ (a, b)
for p = 1 and in Lp[a, b] for p > 1.
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Properties of fractional derivatives

Composition formula for fractional derivatives has a form

Dα
a+D

β
a+f = Dα+β

a+ f , (3)

for α ≥ 0, β ≥ 0, f ∈ Iα+β
a+ (L1(R)).
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Integration-by-parts

Also, under the assumptions 0 < α < 1, f ∈ Iαa+(Lp[a, b]),
g ∈ Iαb−(Lq[a, b]), 1/p + 1/q ≤ 1 + α we have following
integration-by-parts formula∫ b

a
(Dα

a+f )(x)g(x)dx =

∫ b

a
f (x)(Dα

b−g)(x)dx . (4)
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Caputo derivatives
For 0 < α < 1 and f ∈ C 1[a, b] the derivatives Dα

a+f and Dα
b−f exist,

belong to Lr [a, b] for 1 ≤ r < 1/α and have a form

Dα
a+f =

1

Γ(1− α)

(
f (a)(x − a)−α +

∫ x

a
f ′(t)(x − t)−αdt

)
,

Dα
b−f =

1

Γ(1− α)

(
f (b)(b − x)−α −

∫ b

x
f ′(t)(t − x)−αdt

)
.

Let us consider only the integral in the latter formulas. We get Caputo
derivatives:

Dcap,α
a+ αf =

1

Γ(1− α)

∫ x

a
f ′(t)(x − t)−αdt

= Dα
a+f −

1

Γ(1− α)
f (a)(x − a)−α+,

Dcap,α
b− f =

−1

Γ(1− α)

∫ b

x
f ′(t)(t − x)−αdt

= Dα
b−f −

1

Γ(1− α)
f (b)(b − x)−α.
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Fractional integral of the indicator function

Let the general indicator function be given by

1(a,b)(t) =


1, a ≤ t < b,

−1, b ≤ t < a,

0, otherwise.
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Lemma 1.4

Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1), α = H − 1
2 . Then for all t ∈ R

(Iα−1(0,t))(x) =
1

Γ(1 + α)
((t − x)α+ − (−x)α+).

Proof.

Let H ∈ ( 1
2 , 1), and, for example, x < 0< t (other cases can be considered

similarly). Then

(Iα−1(0,t))(x) =
1

Γ(α)

∫ ∞
x

1(0,t)(u)(u − x)α−1du

=
1

Γ(α)

∫ t

0
(u − x)α−1du =

1

Γ(α + 1)
((t − x)α − (−x)α) . (5)
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Remark 1.5

Obviously, (Iα+1(a,b)(x)) = 1
Γ(1+α) ((b − x)α+ − (a− x)α+),

−∞ < a < b <∞.
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Let (Ω,F ,P) be a complete probability space.

Definition 2.1

(Two-sided, normalized) fractional Brownian motion (fBm) with Hurst
index H ∈ (0, 1) is a stochastic Gaussian process BH = {BH

t , t ∈ R} on
(Ω,F ,P), having the properties

(i) BH
0 = 0;

(ii) EBH
t = 0, t ∈ R,

(iii) EBH
t BH

s = 1
2 (|t|2H + |s|2H − |t − s|2H), s, t ∈ R.
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Remark 2.2

Since E (BH
t − BH

s )2 = |t − s|2H and the process is Gaussian, it has a
continuous modification, according to Kolmogorov theorem, because for all

n ≥ 1 E |BH
t − BH

s |n =
2

n
2

π
1
2

Γ(n+1
2 )|t − s|nH . Moreover, the sufficient

condition of Hölder continuity of order % of the trajectories of X is
E |Xt − Xs |n ≤ C |t − s|1+n% for some n > 0, % > 0. In our case we can put
% = H − 1/n, and to get Hölder property of the trajectories of fractional
Brownian motion up to order H.
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Remark 2.3

For H = 1 we set BH
t = B1

t = tξ, where ξ is standard normal random
variable.

Remark 2.4

It is possible to consider fBm BH
t only on R+ (one-sided fBm) with

evident changes in Definition 2.1.

The characteristic function has a form

ϕλ(t) := E exp{i
n∑

k=1

λkB
H
tk
} = exp

{
−1

2
(Ctλ, λ)

}
,

where the matrix Ct = (EBH
tk
BH
ti

)i ,k=1, (·, ·) is inner product in Rn.
Therefore, from (iii) of Definition 2.1, for any α > 0

ϕλ(αt) = exp

{
−1

2
α2H(Ctλ, λ)

}
. (6)
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Definition 2.5

Stochastic process X = {Xt , t ∈ R} is called β-self-similar if

{Xat , t ∈ R} d
= {aβXt , t ∈ R}

in the sense of finite-dimensional distributions.

It follows from Definition 2.5 and (6) that BH is H-self-similar.
Note that

E (BH
t −BH

s )(BH
u −BH

v ) =
1

2
(|s−u|2H+|t−v |2H−|t−u|2H−|s−v |2H). (7)

It follows from (7) that the process BH has stationary increments
(evidently, it is not stationary itself). Let H = 1

2 . Then the increments of
BH are non-correlated consequently independent, so BH = W is a Wiener
process.
In what follows, α = H − 1/2.
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For H ∈ (0, 1
2 ) ∪ ( 1

2 , 1) and t1 < t2 < t3 < t4, from (7).

E (BH
t4
− BH

t3
)(BH

t2
− BH

t1
) = H(2H − 1)

∫ t2

t1

∫ t4

t3

(u − v)2α−1dudv .

Therefore, the increments are positively correlated for H ∈ ( 1
2 , 1) and

negatively correlated for H ∈ (0, 1
2 ). Further, for any n ∈ Z \ {0} the

autocovariance function

r(n) := EBH
1 (BH

n+1 − BH
n ) = H(2H − 1)

∫ 1

0

∫ n+1

n
(u − v)2α−1 du dv

∼ H(2H − 1)|n|2α−1, |n| → ∞.

If H ∈ (0, 1
2 ), then

∑
n∈Z |r(n)| ∼

∑
n∈Z\{0} |n|2α−1 <∞.

If H ∈ ( 1
2 , 1), then

∑∞
n=1 |r(n)| ∼

∑
n∈Z\{0} |n|2α−1 =∞. In this

connection we say that for H ∈ ( 1
2 , 1) fBm BH has the property of

long-range dependence, while for H ∈ (0, 1
2 ) fBm BH has the property of

short-range dependence.
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Let W = {Wt , t ∈ R} be the two-sided Wiener process, i.e., Gaussian
process with independent increments, EWt = 0, EWtWs = s ∧ t, s, t ∈ R.

Evidently, W = B
1
2 . Denote

kH(t, u) := (t − u)α+ − (−u)α+ = (Iα−1(0,t))(x),

α = H − 1
2 . The following representation belongs to Mandelbrot and van

Ness [MvN68].

Theorem 3.1

The process B
H

= {BH
t , t ∈ R} with

B
H
t := C

(2)
H

∫
R
kH(t, u)dWu, H ∈

(
0,

1

2

)
∪
(

1

2
, 1

)
,

C
(2)
H =

(∫
R+

(
(1 + s)α − sα

)2
ds +

1

2H

)− 1
2

=

(
2H sinπHΓ(2H)

)1/2

Γ(H + 1/2)
,

has a continuous modification that is a normalized two-sided fBm.
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Define the operator

MH
± f :=

{
C

(3)
H Iα±f , H ∈ (0, 1

2 ) ∪ ( 1
2 , 1),

f , H = 1
2 ,

(8)

where C
(3)
H = C

(2)
H Γ(H + 1

2 ).
Consider the space LH2 (R) := {f : MH

− f ∈ L2(R)} equipped with the norm
||f ||LH2 (R) = ||MH

− f ||L2(R).

Definition 4.1

Let f ∈ LH2 (R). Then

IH(f ) :=

∫
R
f (s)dBH

s :=

∫
R

(MH
− f )(s)dWs . (9)

Here BH
s and Ws are connected as in Theorem 3.1. As a particular case,

consider stepwise function f : R→ R that has a form

f (t) =
n∑

k=1

ak1[tk−1,tk )(t),

where t0 < t1 < . . . < tn ∈ R and ak ∈ R, 1 ≤ k ≤ n.Yuliya Mishura Fractional calculus SMOCS 2021 32 / 55



Then, from the linearity of the operator MH
− , the integral IH(f ) equals

IH(f ) =
n∑

k=1

ak

∫
R
MH
−1[tk−1,tk )(s)dWs =

n∑
k=1

ak(BH
tk
− BH

tk−1
) (10)

and it coincides with usual Riemann–Stieltjes sum. So, the question arises:
in what sense can we consider formula (9) as the extension of the sum
(10)? Note that for stepwise function

‖IH(f )‖2
L2(Ω) =

n∑
i ,k=1

aiak

∫
R
MH
−1[tk−1,tk )(x)MH

−1[ti−1,ti )(x)dx

=
∥∥∥MH
− f
∥∥∥2

L2(R)
= H(2H − 1)

∫
R2

f (u)f (v) |u − v |2α−1 du dv ,

(11)

where the last equality holds for H ∈ (1/2, 1). One can see that the
situation is very different for H ∈ (0, 1/2) and H ∈ (1/2, 1).
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Nevertheless, there is a fact that holds for any 0 < H < 1.

Lemma 4.2 ([Ben03a])

For any 0 < H < 1 the linear span of the set {MH
−1(u,v), u, v ∈ R} is

dense in L2(R).

Yuliya Mishura Fractional calculus SMOCS 2021 34 / 55



1 The elements of fractional calculus

2 Fractional Brownian motion: definition and elementary properties

3 Mandelbrot-van-Ness representation of fBm

4 Wiener integration with respect to fBm

5 Representation of fBm via Wiener process on a finite interval.

6 Some related fractional processes
Sub-fractional Brownian motion
Bi-fractional Brownian motion
Mixed fractional Brownian motion

Yuliya Mishura Fractional calculus SMOCS 2021 35 / 55



Sometimes it is convenient to consider “one-sided” fBm
BH = {BH

t , t ≥ 0} and to represent it as a functional of some Wiener
process B = {Bt , t ≥ 0} of the form BH

t = ϕ(Bs , 0 ≤ s ≤ t). For this
purpose, consider the following kernels

lH(t, s) = C
(5)
H s−α(t − s)−αI{0<s<t},

mH(t, s) = C
(6)
H

[( t
s

)α
(t − s)α − αs−α

∫ t

s
uα−1(u − s)αdu

]
,

with α = H − 1
2 ,H ∈ (0, 1) and with the constants

C
(5)
H =

(
Γ(2− 2α)

Γ(1− α)3Γ(α)2Hα

) 1
2

, C
(6)
H =

(
2HΓ(1− α)

Γ(1− 2α)Γ(α + 1)

) 1
2

.
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(i) Let H ∈ ( 1
2 , 1). Then for any t > 0∫ t

0

∫ t

0
(t − u)−α(t − s)−αu−αs−α|u − s|2α−1du ds ∼ t1−2α <∞.

(12)
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Therefore, we can consider the integral

IHt (lH) =

∫ t

0
lH(t, s)dBH

s :=

∫
R
lH(t, s)dBH

s

=

∫
R

(MH
− lH)(t, ·)(x)dWx ,

(13)

where W is the underlying Wiener process {Wx , x ∈ R}. Similarly to (12),
for any 0 < t < t ′ the scalar product equals

EIHt (lH)IHt′ (lH) =
(
lH(t, ·), lH(t ′, ·)

)
|RH |,2

= (C
(5)
H )22Hα

∫ t

0
(t − u)−αu−α

(∫ t′

0
(t ′ − s)−αs−α|u − s|2α−1ds

)
du

= (C
(5)
H )22Hαt1−2αB(α, 1− α)B(1− α, 1− α) = t1−2α.

(14)
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From (13),
{
IHt , t ≥ 0

}
is a centered Gaussian process, and from (14), for

any 0 < s < t ≤ s ′ < t ′

E
(
IHt′ (lH)− IHs′ (lH)

)(
IHt (lH)− IHs (lH)

)
= t1−2α − t1−2α − s1−2α + s1−2α = 0,

i.e., the increments of IHt (lH) are non-correlated, hence, independent.
Therefore, IHt (lH) is a martingale w.r.t. its natural filtration

FH
t := σ

{
IHs (lH), 0 ≤ s ≤ t

}
,

having independent increments and with quadratic characteristic〈
IHt (lH)

〉
= t1−2α, IH0 (lH) = 0.
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By Lévy theorem, there exists some Wiener process B = {Bt , t ≥ 0} such
that

MH
t := IHt (lH) = (1− 2α)1/2

∫ t

0
s−αdBs . (15)

The process MH is called Molchan martingale, since it was considered
originally in the papers [Mol69, MG69], see also [NVV99].
(ii) Now, let H ∈ (0, 1

2 ).
Let the function f belong to BV [0,T ], the class of functions of bounded

variation on [0,T ], and f = 0 outside [0,T ].Then the integral
∫ T

0 f (s)dBH
s

exists for any f ∈ BV [0,T ] if we define it via integration by parts:∫ T

0
f (s)dBH

s = f (t)BH
t −

∫ T

0
BH
s df (s).
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Evidently, for any fixed t > 0 the kernel lH(t, ·) ∈ BV [0, t] ∩ C [0, t], if
H ∈ (0, 1

2 ). Therefore,

IHt (lH) =

∫ t

0
lH(t, s)dBH

s =

∫ t

0
BH
s dlH(t, s) =

∫ t

0
BH
s l ′H(t, s)ds

= αC
(5)
H

∫ t

0
BH
s s−α(t − s)−α−1(t − 2s)ds,

and this integral is obviously a Gaussian random variable. We can easily
calculate EIHt (lH)IHt′ (lH) = t1−2α = t2−2H for any 0 < t < t ′, taking into
the account the fact that lH vanishes at the endpoints:

EIHt (lH)IHt′ (lH)

=
1

2

∫ t

0

∫ t′

0
(u2H + s2H − |u − s|2H)l ′H(t, s)l ′H(t ′, u)du ds

= −1

2

∫ t

0

∫ t′

0
|u − s|2H l ′H(t, s)l ′H(t ′, u)du ds
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= −1

2

∫ t

0
l ′H(t, s)

(∫ s

0
(s − u)2H l ′H(t ′, u)du

)
ds

− 1

2

∫ t

0
l ′H(t, s)

(∫ t′

s
(u − s)2H l ′H(t ′, u)du

)
ds

= −H
∫ t

0
lH(t, s)

(∫ s

0
(s − u)2αl ′H(t ′, u)du

)
ds

+ H

∫ t

0
lH(t, s)

(∫ t′

s
(u − s)2αl ′H(t ′, u)du

)
ds

= HC
(5)
H

∫ t

0
lH(t, s)

×
∫ t′

0
|u − s|2α sign(u − s)u−α−1(t ′ − u)−α−1(t ′ − 2u)du ds (16)
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According to [NVV99, formula (2.5)], the interior integral in the
right-hand side of (16) equals for s < t ′∫ t′

0
|u − s|2α sign(u − s)u−α−1(t ′ − u)−α−1(t ′ − 2u)du

=
(
H(C

(5)
H )2B (1− α, 1− α)

)−1
,

whence EIHt (lH)IHt′ (lH) = t2−2H . We can conclude, similarly to part (i),
that IHt (lH) is a martingale according to its natural filtration, and

IHt (lH) = (1− 2α)1/2

∫ t

0
s−αdBs

for some Wiener process B. Thus, we have proved the following result.
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Theorem 5.1

Let BH be an fBm with H ∈ (0, 1),

MH
t = IHt (lH) =

∫ t

0
lH(t, s)dBH

s . (17)

Then there exists Wiener process B such that
MH

t = (1− 2α)1/2
∫ t

0 s−αdBs . It is clear that
σ
{
BH
s , 0 ≤ s ≤ t

}
= σ {Bs , 0 ≤ s ≤ t}.
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The converse relation can be obtained for any H ∈ (0, 1) by the similar
way and has a form:

BH
t =

∫ t

0
m(t, s)dW (s),

where

mH(t, s) = C
(6)
H

[( t
s

)α
(t − s)α − αs−α

∫ t

s
uα−1(u − s)αdu

]
.

In the case H > 1/2 the kernel mH(t, s) can be simplified to

mH(t, s) = αC
(6)
H s−α

∫ t
s uα(u − s)α−1du.
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Sub-fractional Brownian motion
Consider some related Gaussian processes.
Sub-fractional Brownian motion is a zero-mean Gaussian process
CH = (CH

t )t≥0 with parameter H ∈ (0, 1), such that its covariance
function equals

ECH
t CH

s = t2H + s2H − 1

2
(|t + s|2H + |t − s|2H), t, s ≥ 0.

This process was introduced in [BGT04] in connection with the occupation
time fluctuations of branching particle systems. In the case H = 1/2, it
coincides with the standard Brownian motion: C 1/2 = B1/2. For H 6= 1/2,
CH is, in a sense, a process intermediate between the standard Brownian
motion B1/2 and the fBm BH . Sub-fractional Brownian motion CH has
non-stationary increments, and its incremental covariance satisfies the
inequalities (see [BGT04] for details)

|t − s|2H ≤ E |CH
t − CH

s |2 ≤ (2− 2H−1)|t − s|2H , t, s ≥ 0. (18)
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Bi-fractional Brownian motion

Let BH,K = (BH,K
t )t≥0, where H ∈ (0, 1), K ∈ (0, 1] are parameters, be a

zero-mean Gaussian process with covariance function

EBH,K
t BH,K

s = 2−K
(
(t2H + s2H)K − |t − s|2HK

)
, t, s ≥ 0.

This process can be considered as an extension of the fBm, the latter
being a special case when K = 1 (see [HV03, RT006, LN09]). The process
BH,K satisfies the following version of (18):

2−K |t − s|2HK ≤ E |BH,K
t − BH,K

s |2 ≤ 21−K |t − s|2HK , t, s ≥ 0.
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Mixed fractional Brownian motion

Consider a zero-mean Gaussian process of the form

MH
t = Wt + BH

t , t ≥ 0,

where W and BH are independent stochastic processes, W is a standard
Brownian motion, and BH is a fractional Brownian motion. Such process
is called a mixed fractional Brownian motion. It was considered in detail
by Cheridito in [Cher01].
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