Exercise Session #2

Camilla Calì

Università degli Studi di Napoli Federico II, Italy camilla.cali@unina.it

Stochastic Models and Complex Systems Summer School June 10th-July 7th, 2021

Exercises

- 1. Determine the minimal path and minimal cut sets of a coherent system with four components.
- 2. Compute the reliability of a coherent system with four components in the general case.
- 3. Compute the reliability of a coherent system with four components in the IND case.
- 4. Compute the reliability of a coherent system with four components in the ID case.
- 5. Compute the reliability of a coherent system with four components in the IID case.
- 6. Compute the reliability of a plane with four engines, two in each wing, that can fly if at least one engine works in each wing.
- 7. Compute the minimal and maximal signatures of a system with four components.

Exercises

- 8. Check an arrow in the figures for the ST, HR and LR orders of systems with IID components.
- 9. Check a no arrow in the figures for the ST, HR and LR orders of systems with IID components.
- 10. Check if $X_i \leq_{HR} X_{2:2}$ holds for IND components.
- 11. Check if $X_i \leq_{HR} X_{2:2}$ holds for IND HR-ordered components.
- 12. Check if $X_i \leq_{HR} X_{2:2}$ holds for dependent components with the Clayton copula in the slides.
- 13. Check an arrow in the tables and figure for the ST and HR orders of systems with IND components.
- 14. Check if the IFR class is preserved in a system with four IID components.

$$\phi(x_1, x_2, x_3, x_4) = \max(\min(x_1, x_2), \min(x_3, x_4))$$

$$\phi(x_1, x_2, x_3, x_4) = \max(\min(x_1, x_2), \min(x_3, x_4))$$

$$\phi(x_1, x_2, x_3, x_4) = \max(\min(x_1, x_2), \min(x_3, x_4))$$

Minimal path sets

$$P_1 = \{1, 2\}$$
 $P_2 = \{3, 4\}$

$$\phi(x_1, x_2, x_3, x_4) = \max(\min(x_1, x_2), \min(x_3, x_4))$$

Minimal path sets

$$P_1 = \{1, 2\}$$
 $P_2 = \{3, 4\}$

Minimal cut sets

$$C_1 = \{1,3\}$$
 $C_2 = \{1,4\}$ $C_3 = \{2,3\}$ $C_4 = \{2,4\}$

SMOCS 2021

•
$$T = \max(\min(X_1, X_2), \min(X_3, X_4))$$

• $T = \max(\min(X_1, X_2), \min(X_3, X_4))$

• $T = \min(X_1, X_2), \min(X_3, X_4)$

• $T = \min(X_1, X_2), \min(X_2, X_4)$

•
$$T = max(min(X_1, X_2), min(X_3, X_4))$$

$$\begin{split} \bullet \ \ \bar{F}_T(t)) &= \bar{F}_{P_1}(t) + \bar{F}_{P_2}(t) - \bar{F}_{P_1 \cup P_2}(t) \\ &= \bar{F}_{\{1,2\}}(t) + \bar{F}_{\{3,4\}}(t) - \bar{F}_{\{1,2,3,4\}}(t) \end{split}$$

- $T = max(min(X_1, X_2), min(X_3, X_4))$
- $$\begin{split} \bullet \ \ \bar{F}_T(t)) &= \bar{F}_{P_1}(t) + \bar{F}_{P_2}(t) \bar{F}_{P_1 \cup P_2}(t) \\ &= \bar{F}_{\{1,2\}}(t) + \bar{F}_{\{3,4\}}(t) \bar{F}_{\{1,2,3,4\}}(t) \end{split}$$
- $\bar{F}_T(t) = \hat{C}(\bar{F}_1(t), \bar{F}_2(t), 1, 1) + \hat{C}(1, 1, \bar{F}_3(t), \bar{F}_4(t)) \hat{C}(\bar{F}_1(t), \bar{F}_2(t), \bar{F}_3(t), \bar{F}_4(t))$

- $T = max(min(X_1, X_2), min(X_3, X_4))$
- $$\begin{split} \bullet \ \ \bar{F}_T(t)) &= \bar{F}_{P_1}(t) + \bar{F}_{P_2}(t) \bar{F}_{P_1 \cup P_2}(t) \\ &= \bar{F}_{\{1,2\}}(t) + \bar{F}_{\{3,4\}}(t) \bar{F}_{\{1,2,3,4\}}(t) \end{split}$$
- $\bar{F}_T(t) = \hat{C}(\bar{F}_1(t),\bar{F}_2(t),1,1) + \hat{C}(1,1,\bar{F}_3(t),\bar{F}_4(t)) \hat{C}(\bar{F}_1(t),\bar{F}_2(t),\bar{F}_3(t),\bar{F}_4(t))$
- $ar{F}_{\mathcal{T}}(t) = ar{Q}(ar{F}_1(t),ar{F}_2(t),ar{F}_3(t),ar{F}_4(t)),$ with

$$\bar{Q}(u_1, u_2, u_3, u_4) = \hat{C}(u_1, u_2, 1, 1) + \hat{C}(1, 1, u_3, u_4) - \hat{C}(u_1, u_2, u_3, u_4)$$

イロトイロトイミンイミン 草 わない

C. Cali

• $T = max(min(X_1, X_2), min(X_3, X_4))$

•
$$T = max(min(X_1, X_2), min(X_3, X_4))$$

$$ar{F}_{T}(t) = ar{Q}(ar{F}_{1}(t),ar{F}_{2}(t),ar{F}_{3}(t),ar{F}_{4}(t)),$$
 with

$$\bar{Q}(u_1, u_2, u_3, u_4) = \hat{C}(u_1, u_2, 1, 1) + \hat{C}(1, 1, u_3, u_4) - \hat{C}(u_1, u_2, u_3, u_4)$$

- $T = max(min(X_1, X_2), min(X_3, X_4))$
- $ar{F}_T(t) = ar{Q}(ar{F}_1(t), ar{F}_2(t), ar{F}_3(t), ar{F}_4(t)), ext{with}$

$$\bar{Q}(u_1,u_2,u_3,u_4) = \hat{C}(u_1,u_2,1,1) + \hat{C}(1,1,u_3,u_4) - \hat{C}(u_1,u_2,u_3,u_4)$$

• The component are IND, so

$$C(u_1, ..., u_n) = u_1 \cdot ... \cdot u_n$$

$$\bar{Q}(u_1, u_2, u_3, u_4) = u_1 u_2 + u_3 u_4 - u_1 u_2 u_3 u_4$$

イロトイラトイミトイミト 草 わない

• $T = max(min(X_1, X_2), min(X_3, X_4))$

•
$$T = max(min(X_1, X_2), min(X_3, X_4))$$

•
$$\bar{F}_T(t) = \bar{Q}(\bar{F}(t), \bar{F}(t), \bar{F}(t), \bar{F}(t)) = \bar{q}(\bar{F}(t))$$
, with $\bar{q}(u) = \hat{C}(u, u, 1, 1) + \hat{C}(1, 1, u, u) - \hat{C}(u, u, u, u)$

• $T = max(min(X_1, X_2), min(X_3, X_4))$

•
$$T = max(min(X_1, X_2), min(X_3, X_4))$$

•
$$ar{F}_{\mathcal{T}}(t) = ar{q}(ar{F}(t))$$
, with

$$\bar{q}(u) = \hat{C}(u, u, 1, 1) + \hat{C}(1, 1, u, u) - \hat{C}(u, u, u, u)$$

•
$$T = max(min(X_1, X_2), min(X_3, X_4))$$

 $oldsymbol{ar{F}}_{\mathcal{T}}(t)=ar{q}(ar{F}(t)),$ with

$$\bar{q}(u) = \hat{C}(u, u, 1, 1) + \hat{C}(1, 1, u, u) - \hat{C}(u, u, u, u)$$

The components are IID, so

$$\bar{q}(u) = 2u^2 - u^4$$
 and $a = (0, 2, 0, -1)$

イロンイロンイミンイミン ま もから

• $T = min(max(X_1, X_2), max(X_3, X_4))$

• $T = min(max(X_1, X_2), max(X_3, X_4))$

• $T = min(max(X_1, X_2), max(X_3, X_4))$

Minimal path sets

$$P_1 = \{1,3\} \qquad P_2 = \{1,4\} \qquad P_3 = \{2,3\} \qquad P_4 = \{2,4\}$$

10/10/12/12/ 2 7/50

Pa: {1.3} Pa: {1.4} Pa: {2.3} Pa: {2.4} Hore I write Fr as Pi P1 + P2 + P3 + P4 - P4UP2 - P1UP3 - P1UP4 - P2UP3 - P2UP4 - P3UP4+P3UP3UP3+P3UP3UP4+ 30P20P4 + P20P3 UP4 - BUP2UBUP4 =

SMOCS 2021 10 / 25

In the general case

$$ar{F}_{\mathcal{T}}(t) = ar{F}_{\{1,3\}}(t) + ar{F}_{\{1,4\}}(t) + ar{F}_{\{2,3\}}(t) + ar{F}_{\{2,4\}}(t) - ar{F}_{\{1,2,3\}}(t) - ar{F}_{\{1,3,4\}}(t) - ar{F}_{\{1,2,4\}}(t) - ar{F}_{\{2,3,4\}}(t) + ar{F}_{\{1,2,3,4\}}(t)$$

In the general case

$$\begin{split} \bar{F}_T(t) &= \bar{F}_{\{1,3\}}(t) + \bar{F}_{\{1,4\}}(t) + \bar{F}_{\{2,3\}}(t) + \bar{F}_{\{2,4\}}(t) - \bar{F}_{\{1,2,3\}}(t) - \\ \bar{F}_{\{1,3,4\}}(t) &- \bar{F}_{\{1,2,4\}}(t) - \bar{F}_{\{2,3,4\}}(t) + \bar{F}_{\{1,2,3,4\}}(t) \end{split}$$

In the general case

$$\bar{F}_T(t) = \bar{Q}(\bar{F}_1(t), \bar{F}_2(t), \bar{F}_3(t), \bar{F}_4(t)),$$
with $\bar{Q}(u_1, u_2, u_3, u_4) = \hat{C}(u_1, 1, u_3, 1) + \hat{C}(u_1, 1, 1, u_4) + \hat{C}(1, u_2, u_3, 1) + \hat{C}(1, u_2, 1, u_4) - \hat{C}(u_1, u_2, u_3, 1) - \hat{C}(u_1, 1, u_3, u_4) - \hat{C}(u_1, u_2, 1, u_4) - \hat{C}(1, u_2, u_3, u_4) + \hat{C}(u_1, u_2, u_3, u_4)$

In the general case

$$ar{F}_{\mathcal{T}}(t) = ar{F}_{\{1,3\}}(t) + ar{F}_{\{1,4\}}(t) + ar{F}_{\{2,3\}}(t) + ar{F}_{\{2,4\}}(t) - ar{F}_{\{1,2,3\}}(t) - ar{F}_{\{1,3,4\}}(t) - ar{F}_{\{1,2,4\}}(t) - ar{F}_{\{2,3,4\}}(t) + ar{F}_{\{1,2,3,4\}}(t)$$

In the general case

$$\bar{F}_T(t) = \bar{Q}(\bar{F}_1(t), \bar{F}_2(t), \bar{F}_3(t), \bar{F}_4(t)),$$

with
$$\bar{Q}(u_1, u_2, u_3, u_4) = \hat{C}(u_1, 1, u_3, 1) + \hat{C}(u_1, 1, 1, u_4) + \hat{C}(1, u_2, u_3, 1) + \hat{C}(1, u_2, 1, u_4) - \hat{C}(u_1, u_2, u_3, 1) - \hat{C}(u_1, 1, u_3, u_4) - \hat{C}(u_1, u_2, 1, u_4) - \hat{C}(1, u_2, u_3, u_4) + \hat{C}(u_1, u_2, u_3, u_4)$$

IND case

$$\bar{F}_T(t) = \bar{Q}(\bar{F}_1(t), \bar{F}_2(t), \bar{F}_3(t), \bar{F}_4(t)),$$

with
$$\bar{Q}(u_1, u_2, u_3, u_4) = u_1 u_3 + u_1 u_4 + u_2 u_3 + u_2 u_4 - u_1 u_2 u_3 - u_1 u_3 u_4 - u_1 u_2 u_4 - u_2 u_3 u_4 + u_1 u_2 u_3 u_4$$

C. Cali Exercise Session #2 SMOCS 2021 11 / 25

ID case

$$\bar{F}_T(t) = \bar{q}(\bar{F}(t)),$$

with
$$\bar{q}(u) = \hat{C}(u,1,u,1) + \hat{C}(u,1,1,u) + \hat{C}(1,u,u,1) + \hat{C}(1,u,1,u) - \hat{C}(u,u,u,1) - \hat{C}(u,1,u,u) - \hat{C}(u,u,1,u) - \hat{C}(1,u,u,u) + \hat{C}(u,u,u,u)$$

ID case

$$\bar{F}_T(t) = \bar{q}(\bar{F}(t)),$$

with
$$\bar{q}(u) = \hat{C}(u, 1, u, 1) + \hat{C}(u, 1, 1, u) + \hat{C}(1, u, u, 1) + \hat{C}(1, u, 1, u) - \hat{C}(u, u, u, 1) - \hat{C}(u, 1, u, u) - \hat{C}(u, u, 1, u) - \hat{C}(1, u, u, u) + \hat{C}(u, u, u, u)$$

IID case

$$\bar{F}_T(t) = \bar{q}(\bar{F}(t)),$$

with
$$\bar{q}(u) = 4u^2 - 4u^3 + u^4$$

C. Cali

Exercise 7. Compute the minimal and maximal signatures of a system with four components.

• $T = min(max(X_1, X_2), max(X_3, X_4))$

Exercise 7. Compute the minimal and maximal signatures of a system with four components.

- $T = min(max(X_1, X_2), max(X_3, X_4))$
- IID case

$$\bar{F}_{T}(t) = \bar{q}(\bar{F}(t)),$$
with $\bar{q}(u) = 4u^{2} - 4u^{3} + u^{4}$

$$\qquad \qquad \bigcirc = \left\{ \bigcirc, , , , \right\}$$

Exercise 7. Compute the minimal and maximal signatures of a system with four components.

bual system

•
$$T = min(max(X_1, X_2), max(X_3, X_4))$$

IID case

$$\bar{F}_T(t) = \bar{q}(\bar{F}(t)),$$

with
$$\bar{q}(u) = 4u^2 - 4u^3 + u^4$$

• Minimal signature a = (0, 4, -4, 1)

Exercise 7. Compute the minimal and maximal signatures of a system with four components.

- $T = min(max(X_1, X_2), max(X_3, X_4))$
- IID case

$$\bar{F}_T(t) = \bar{q}(\bar{F}(t)),$$

with
$$\bar{q}(u) = 4u^2 - 4u^3 + u^4$$

- Minimal signature a = (0, 4, -4, 1)
- Maximal signature is the minimal signature of dual sistem $T = max(min(X_1, X_2), min(X_3, X_4))$ (cfr. Exercise 5), that is b = (0, 2, 0 1).

イロトイラトイミトイミト 草 わない

ullet We check, for example the arrow 16 o 6, for ST, HR and LR orders

- ullet We check, for example the arrow 16 o 6, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_6 = X_{2:3}$

- We check, for example the arrow $16 \rightarrow 6$, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_6 = X_{2:3}$
- IID case (cfr Ex.5 and the first lesson) $\overline{Q}_{6}(u,u,u,u)$ $\overline{Q}_{16}(u,u,u,u)$ = $\overline{q}_{16}(u) = 2u^2 u^4$ and $\overline{q}_{6}(u) = \overline{q}_{2:3}(u) = 3u^2 2u^3$

- ullet We check, for example the arrow 16 o 6, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_6 = X_{2:3}$
- IID case (cfr Ex.5 and the first lesson) $\bar{q}_{16}(u)=2u^2-u^4\quad\text{and}\quad \bar{q}_6(u)=\bar{q}_{2:3}(u)=3u^2-2u^3$

•
$$T_{16} \leq_{ST} T_6 \iff \bar{q}_{16}(u) \leq \bar{q}_6(u) \text{ in } (0,1)$$

$$2u^2 - u^4 \leq 3u^2 - 2u^3 \text{ in } (0,1)$$

$$2 - \mathcal{U}^2 \leq 3 - 2\mathcal{U} \iff 1 \geq 2\mathcal{U} - \mathcal{U}^2 \iff 1 \leq \mathcal{U}(2,\mathcal{U})$$

$$\forall \mathcal{U} \in (0,1) \quad \forall \quad \epsilon(0,1) \geq 1$$

40 10 10 12 12 12 2 100

- ullet We check, for example the arrow 16 o 6, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_6 = X_{2:3}$
- IID case (cfr Ex.5 and the first lesson)

$$\bar{q}_{16}(u) = 2u^2 - u^4$$
 and $\bar{q}_{6}(u) = \bar{q}_{2:3}(u) = 3u^2 - 2u^3$

- $T_{16} \leq_{ST} T_6 \iff \bar{q}_{16}(u) \leq \bar{q}_6(u) \text{ in } (0,1)$ $2u^2 - u^4 \leq 3u^2 - 2u^3 \text{ in } (0,1)$
- $T_{16} \leq_{HR} T_6 \iff \bar{q}_6(u)/\bar{q}_{16}(u)$ decreases in (0,1) $\frac{\bar{q}_6(u)}{\bar{q}_{16}(u)} = \frac{3-2u}{2-u^2} \text{ decreases in } (0,1)$

イロト・西・・さ・・草・ 章 わなの

$$\overline{q}_{16}(M) = 2M^{2} - M^{4} \Rightarrow \overline{q}_{16}(M) = 4M - 4M^{3}$$

$$\overline{q}_{6}(M) = 3M^{3} - 2M^{3} \Rightarrow \overline{q}_{6}(M) = 6M - 6M^{2}$$

•
$$T_{16} \leq_{LR} T_6 \iff \bar{q}_6'(u)/\bar{q}_{16}'(u)$$
 decreases in $(0,1)$
$$\frac{\bar{q}_6'(u)}{\bar{q}_{16}'(u)} = \frac{6-6u}{4-4u^2} \text{ decreases in } (0,1)$$

ullet We check, for example the no arrow 16 $ot\to$ 5, for ST, HR and LR orders

- We check, for example the no arrow 16 \rightarrow 5, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_5 = min(X_1, max(X_2, X_3))$

$$|| \begin{array}{c} || & \text{unimal} \\ & \text{signature} \\ a = (0.2, -1) \\ \hline q(u) = 0.01 + 2u^2 - 1.03$$

- ullet We check, for example the no arrow 16 $ot\to$ 5, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_5 = min(X_1, max(X_2, X_3))$
- IID case

$$\bar{q}_{16}(u) = 2u^2 - u^4$$
 and $\bar{q}_5(u) = 2u^2 - u^3$

- \bullet We check, for example the no arrow 16 o 5, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_5 = min(X_1, max(X_2, X_3))$
- IID case

$$\bar{q}_{16}(u) = 2u^2 - u^4$$
 and $\bar{q}_5(u) = 2u^2 - u^3$

• $T_{16} \not\leq_{ST} T_5$ because $2u^2 - u^4 \geq 2u^2 - u^3 \quad \text{in} \quad (0,1) \qquad \overline{q}_{16}(u) \geq \overline{q}_6(u)$ $\downarrow \Rightarrow 2 - u^2 \geq 2 - u \quad \not= \Rightarrow \quad u^2 \leq u \quad , \quad \forall \quad u \in (0,1)$

C. Cali

- ullet We check, for example the no arrow 16 $ot\to$ 5, for ST, HR and LR orders
- $T_{16} = max(min(X_1, X_2), min(X_3, X_4))$ and $T_5 = min(X_1, max(X_2, X_3))$
- IID case

$$\bar{q}_{16}(u) = 2u^2 - u^4$$
 and $\bar{q}_5(u) = 2u^2 - u^3$

• $T_{16} \not\leq_{ST} T_5$ because

$$2u^2 - u^4 \ge 2u^2 - u^3$$
 in $(0,1)$

T₁₆ ≤_{HR} T₅ because

$$= \frac{\bar{q}_5(u)}{\bar{q}_{16}(u)} = \frac{2-u}{2-u^2} \text{ is not monotone in } (0,1)$$

イロト・グ・・ミ・・ミ・ で かくで

• $T_{16} \not\leq_{LR} T_6$ because

$$\frac{ar{q}_5'(u)}{ar{q}_{16}'(u)} = \frac{4-3u}{4-4u^3}$$
 is not monotone in $(0,1)$

C. Cali

Exercise 10. Check if $X_i \leq_{HR} X_{2:2}$ holds for IND components.

Exercise 10. Check if $X_i <_{HR} X_{2\cdot 2}$ holds for IND components.

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- IND case

$$ar{Q}_{2:2}(u_1,u_2) = u_1 + u_2 - u_1 u_2$$
 and $ar{Q}_i(u_1,u_2) = u_i$ is $\lambda.2$

Exercise 10. Check if $X_i <_{HR} X_{2/2}$ holds for IND components.

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- IND case

$$\bar{Q}_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$$
 and $\bar{Q}_i(u_1, u_2) = u_i$

• $\frac{Q_{2:2}}{\bar{Q}_1} = \frac{u_1 + u_2 - u_1 u_2}{u_1}$ is decreasing in u_1 and increasing in u_2 .

Exercise 10. Check if $X_i <_{HR} X_{2/2}$ holds for IND components.

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- IND case

$$\bar{Q}_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$$
 and $\bar{Q}_i(u_1, u_2) = u_i$

- $\frac{Q_{2:2}}{\bar{Q}_1} = \frac{u_1 + u_2 u_1 u_2}{u_1}$ is decreasing in u_1 and increasing in u_2 .
- $\frac{Q_{2:2}}{Q_2} = \frac{u_1 + u_2 u_1 u_2}{u_2}$ is increasing in u_1 and decreasing in u_2 .

Exercise 10. Check if $X_i <_{HR} X_{2/2}$ holds for IND components.

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- IND case

$$\bar{Q}_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$$
 and $\bar{Q}_i(u_1, u_2) = u_i$

- $\frac{Q_{2:2}}{\bar{Q}_1} = \frac{u_1 + u_2 u_1 u_2}{u_1}$ is decreasing in u_1 and increasing in u_2 .
- $\frac{Q_{2,2}}{Q_{2,2}} = \frac{u_1 + u_2 u_1 u_2}{u_2}$ is increasing in u_1 and decreasing in u_2 .
- X_i <_{HR} X_{2:2} NOT hold for IND components.

Exercise 11. Check if $X_i \leq_{HR} X_{2:2}$ holds for IND HR-ordered components.

• $F_1 \geq_{HR} F_2$

Exercise 11. Check if $X_i \leq_{HR} X_{2:2}$ holds for IND HR-ordered components.

• $F_1 \geq_{HR} F_2$

Exercise 11. Check if $X_i <_{HR} X_{2\cdot 2}$ holds for IND HR-ordered components.

•
$$F_1 \ge_{HR} F_2$$

• $X_i \le_{HR} X_{2:2} \iff \bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_i(v_1, v_1 v_2)}$ is decreasing in $(0, 1)^2$
 \bar{Q}
 $\chi: \chi$
 $\chi: \chi$

Exercise 11. Check if $X_i <_{HR} X_{2\cdot 2}$ holds for IND HR-ordered components.

- $F_1 >_{HR} F_2$
- $X_i \leq_{HR} X_{2:2} \iff \bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_{1}(v_1, v_2 v_2)}$ is decreasing in $(0, 1)^2$
- IND case

$$ar{Q}_{2:2}(v_1,v_1v_2)=v_1+v_1v_2-v_1^2v_2$$
 and $ar{Q}_1(v_1,v_1v_2)=v_1,$ $ar{Q}_2(v_1,v_1v_2)=v_1v_2$

Exercise 11. Check if $X_i <_{HR} X_{2\cdot 2}$ holds for IND HR-ordered components.

- $F_1 >_{HR} F_2$
- $X_i \leq_{HR} X_{2:2} \iff \bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_{1}(v_2, v_2 v_3)}$ is decreasing in $(0, 1)^2$
- IND case

is decreasing in v_1 and is increasing in v_2 in $(0,1)^2$, so $X_1 \leq_{HR} X_{2:2}$ NOT holds for IND HR-ordered components.

Exercise 11. Check if $X_i \leq_{HR} X_{2:2}$ holds for IND HR-ordered components.

$$\bullet$$
 $F_1 \ge_{HR} F_2$

•
$$X_i \leq_{HR} X_{2:2} \iff \bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_i(v_1, v_1 v_2)}$$
 is decreasing in $(0, 1)^2$

IND case

$$\bar{Q}_{2:2}(v_1,v_1v_2)=v_1+v_1v_2-v_1^2v_2 \text{ and } \bar{Q}_1(v_1,v_1v_2)=v_1, \bar{Q}_2(v_1,v_1v_2)=v_1v_2$$

$$\frac{Q_{2:2}(v_1,v_1v_2)}{\bar{Q}_1(v_1,v_1v_2)} = 1 + v_2 - v_1v_2$$

is decreasing in v_1 and is increasing in v_2 in $(0,1)^2$, so $X_1 \leq_{HR} X_{2:2}$ NOT holds for IND HR-ordered components.

is decreasing in $(0,1)^2$ so $X_2 \leq_{HR} X_{2:2}$ holds for IND HR-ordered components.

C. Cali Exercise Session #2 SMOCS 2021 19 / 25

•
$$X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$$
 is decreasing in $(0,1)^2$
Clayton copular $\hat{C}(u_1, u_2) = \frac{U_3 U_2}{u_1 u_2 - u_1 u_2}$

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- Dependent case with Clayton copula 1-1.2

$$ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-\hat{C}(u_1,u_2)$$
 and $ar{Q}_i(u_1,u_2)=u_i,$ that is $ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-rac{u_1u_2}{u_1+u_2-u_1u_2}.$

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- Dependent case with Clayton copula

$$ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-\hat{C}(u_1,u_2)$$
 and $ar{Q}_i(u_1,u_2)=u_i,$ that is $ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-rac{u_1\,u_2}{u_1+u_2-u_1\,u_2}.$

- $\frac{\bar{Q}_{2,2}}{\bar{Q}_1} = \frac{u_1^2 + u_2^2 u_1^2 u_2 u_1 u_2^2 + u_1 u_2}{u_1(u_1 + u_2 u_1 u_2)}$ is decreasing in u_1 and increasing in u_2 .
- $\frac{\bar{Q}_{2:2}}{\bar{Q}_{0}} = \frac{u_1^2 + u_2^2 u_1^2 u_2 u_1 u_2^2 + u_1 u_2}{u_2(u_1 + u_2 u_1 u_2)}$ is increasing in u_1 and decreasing in u_2 .

イロト イラト イミン イミト 草 わない

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- Dependent case with Clayton copula

$$ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-\hat{C}(u_1,u_2)$$
 and $ar{Q}_i(u_1,u_2)=u_i,$ that is $ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-rac{u_1\,u_2}{u_1+u_2-u_1\,u_2}.$

- $\frac{\bar{Q}_{2,2}}{\bar{Q}_1} = \frac{u_1^2 + u_2^2 u_1^2 u_2 u_1 u_2^2 + u_1 u_2}{u_1(u_1 + u_2 u_1 u_2)}$ is decreasing in u_1 and increasing in u_2 .
- $\frac{\bar{Q}_{2:2}}{\bar{Q}_{1}} = \frac{u_1^2 + u_2^2 u_1^2 u_2 u_1 u_2^2 + u_1 u_2}{u_2(u_1 + u_2 u_1 u_2)}$ is increasing in u_1 and decreasing in u_2 .

イロト イラト イミン イミト 草 わない

- $X_i \leq_{HR} X_{2:2} \iff \bar{Q}_{2:2}/\bar{Q}_i$ is decreasing in $(0,1)^2$
- Dependent case with Clayton copula

$$ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-\hat{C}(u_1,u_2)$$
 and $ar{Q}_i(u_1,u_2)=u_i,$ that is $ar{Q}_{2:2}(u_1,u_2)=u_1+u_2-rac{u_1\,u_2}{u_1+u_2-u_1\,u_2}.$

- $\frac{\bar{Q}_{2,2}}{\bar{Q}_1} = \frac{u_1^2 + u_2^2 u_1^2 u_2 u_1 u_2^2 + u_1 u_2}{u_1(u_1 + u_2 u_1 u_2)}$ is decreasing in u_1 and increasing in u_2 .
- $\frac{\bar{Q}_{2:2}}{\bar{Q}_{1}} = \frac{u_1^2 + u_2^2 u_1^2 u_2 u_1 u_2^2 + u_1 u_2}{u_2(u_1 + u_2 u_1 u_2)}$ is increasing in u_1 and decreasing in u_2 .
- $X_i \leq_{HR} X_{2:2}$ NOT hold for dependent components with the Clayton copula.

イロト イラト イミン イミト 草 わない SMOCS 2021 20 / 25

• We check, for example the arrow 5 \rightarrow 9, for ST order.

• We check, for example the arrow 5 \rightarrow 9, for ST order.

ST	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	1	1	2	2	1	2	2	1	2	2	2	2	2	2	2	2
3	0	2	1	2	1	2	2	1	2	2	2	2	2	2	2	2	2
4	0	0	2	0	2	2	0	2	2	2	2	2	2	2	2	2	2
5	0	0	0	2	1	1	2		1	2	2	2	2	2	2	2	2
6					2						2		2		2		
7	0	0	0	0	0	2	0	0	2	2	2	2	2	2	2	2	_ 2

• We check, for example the arrow $5 \rightarrow 9$, for ST order.

ST	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	1	1	2	2	1	2	2	1	2	2	2	2	2	2	2	2
3	0	2	1	2	1	2	2	1	2	2	2	2	2	2	2	2	2
4	0	0		0	2	2	0	2	2	2	2	2	2	2	2	2	2
5	0	0	0	2	1	1	2	①	1	2	2	2	2	2	2	2	2
6	0	0				1			1	2	2	2	2	2	2	2	2
7	0	0	0	0	0	2	0	0	2	2	2	2	2	2	2	2	_ 2

• The value 1 indicates that $T_5 \leq_{ST} T_j$ holds for all ST ordered components (*i* denotes the row and *j* the column).

•
$$T_5 = min(X_3, max(X_1, X_2))$$
 and $T_9 = X_2$

•
$$T_5 = min(X_3, max(X_1, X_2))$$
 and $T_9 = X_2$

$$\bar{Q}_5(u_1,u_2,u_3)=u_1u_3+u_2u_3-u_1u_2u_3$$
 and $\bar{Q}_9(u_1,u_2,u_3)=u_2$

•
$$T_5 = min(X_3, max(X_1, X_2))$$
 and $T_9 = X_2$

$$ar{Q}_5(u_1,u_2,u_3) = u_1u_3 + u_2u_3 - u_1u_2u_3$$
 and $ar{Q}_9(u_1,u_2,u_3) = u_2$

• $\bar{Q}_5 < \bar{Q}_9$ if $u_1 \ge u_2 \ge u_3$, so

- $T_5 = min(X_3, max(X_1, X_2))$ and $T_9 = X_2$
- IND case

$$\bar{Q}_5(u_1,u_2,u_3)=u_1u_3+u_2u_3-u_1u_2u_3$$
 and $\bar{Q}_9(u_1,u_2,u_3)=u_2$

• $\bar{Q}_5 < \bar{Q}_9$ if $u_1 \ge u_2 \ge u_3$, so

 $T_5 \leq_{ST} T_9$ for ST ordered component.

ullet We check, for example the arrow 1
ightarrow 9, for HR order.

ullet We check, for example the arrow 1
ightarrow 9, for HR order.

HR	2	3	4	5	6	7	8	2	10	11	12	13	14	15	16	
1	2	2	2	2	2	2	2	(2)	2	2	2	2	2	2	2	_
2	2	1	1	1	1	1	2	2	1	1	1	1	1	2	1	
3	0	2	1	0	0	1	2	1	2	0	1	1	1	1	2	
4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	
5	0	0	0	2	0	0	2	1	1	0	0	1	1	1	1	
6	0	0	0	0	2	0	0	2	1	0	0	0	1	0	2	
7	0	0	0	0	0	2	0	0	2	0	0	0	1	2	1	

ullet We check, for example the arrow 1 o 9, for HR order.

HR	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
1	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	
2	2	1	1	1	1	1	2	2	1	1	1	1	1	2	1	
3	0	2	1	0	0	1	2	1	2	0	1	1	1	1	2	
4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	
5	0	0	0	2	0	0	2	1	1	0	0	1	1	1	1	
6	0	0	0	0	2	0	0	2	1	0	0	0	1	0	2	
7	0	0	0	0	0	2	0	0	2	0	0	.0	1	2	1	

• The value 2 indicates that $T_i \leq_{HR} T_j$ holds for any F_1, F_2, F_3 (*i* denotes the row and *j* the column).

•
$$T_1 = X_{1:3} = min(X_1, X_2, X_3)$$
 and $T_9 = X_2$

•
$$T_1 = X_{1:3} = min(X_1, X_2, X_3)$$
 and $T_9 = X_2$

$$\bar{Q}_1(u_1, u_2, u_3) = u_1 u_2 u_3$$
 and $\bar{Q}_9(u_1, u_2, u_3) = u_2$

•
$$T_1 = X_{1:3} = min(X_1, X_2, X_3)$$
 and $T_9 = X_2$

$$ar{Q}_1(u_1,u_2,u_3) = u_1u_2u_3$$
 and $ar{Q}_9(u_1,u_2,u_3) = u_2$

• $T_1 \leq_{HR} T_9$ for all F_1, F_2, F_3 because

•
$$T_1 = X_{1:3} = min(X_1, X_2, X_3)$$
 and $T_9 = X_2$

$$\bar{Q}_1(u_1, u_2, u_3) = u_1 u_2 u_3$$
 and $\bar{Q}_9(u_1, u_2, u_3) = u_2$

• $T_1 \leq_{HR} T_9$ for all F_1, F_2, F_3 because

$$rac{ar{Q}_9}{ar{Q}_1} = rac{1}{u_1 u_3}$$
 is decreasing in $(0,1)^3$.

• $T = max(min(x_1, x_2), min(x_3, x_4))$

- $T = max(min(x_1, x_2), min(x_3, x_4))$
- IID case (Cfr. Ex. 5)

$$\bar{q}(u) = 2u^2 - u^4$$

- $T = max(min(x_1, x_2), min(x_3, x_4))$
- IID case (Cfr. Ex. 5)

$$\bar{q}(u) = 2u^2 - u^4$$

Compute

$$\alpha(u) = u \frac{\bar{q}'(u)}{\bar{q}(u)} = \frac{4 - 4u^2}{2 - u^2}$$

- $T = max(min(x_1, x_2), min(x_3, x_4))$
- IID case (Cfr. Ex. 5)

$$\bar{q}(u) = 2u^2 - u^4$$

Compute

$$\alpha(u) = u \frac{\bar{q}'(u)}{\bar{q}(u)} = \frac{4 - 4u^2}{2 - u^2}$$

• $\alpha(u)$ decreases for $u \in (0,1) \to IFR$ class is preserved in system T.

Surveyed; DIFRA class is preserved;

C. Cali Exercise Session #2 SMOCS 2021 25 / 25