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Pathwise stochastic integration in the fractional Sobolev
type spaces

Let us construct pathwise integrals
∫ T

0 f (t)dBH
t for stochastic process f

belnging a.s. to the fractional Sobolev type spaces Iα0+(Lp) with some
p > 1. This approach was developed by Zähle [Zah98a], [Zah99], [Zah01].
Consider two non-random functions f and g defined on some interval
[a, b] ⊂ R, suppose that the limits f (u+) := limδ↓0 f (u + δ),
g(u−) := limδ↓0 g(u − δ), a ≤ u ≤ b, exist, and put
fa+(x) := (f (x)− f (a+))1(a,b)(x), gb−(x) := (g(b−)− g(x))1(a,b)(x).

Suppose that fa+ ∈ Iαa+(Lp[a, b]), gb− ∈ I 1−α
b− (Lq[a, b]) for some

p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1, 0 ≤ α ≤ 1. Then, evidently,
Dα
a+fa+ ∈ Lp[a, b], D1−α

b− gb− ∈ Lq[a, b] and it is possible to give the
following definition.
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Definition 1

The generalized (fractional) Lebesgue-Stieltjes integral
∫ b
a f (x)dg(x) is

defined as∫ b

a
f (x)dg(x) :=

∫ b

a
(Dα

a+fa+)(x)(D1−α
b− gb−)(x)dx+f (a+)(g(b−)−g(a+)).

Lemma 2

Definition 1 does not depend on the possible choice of α.
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Let αp < 1. Then fa+ ∈ Iαa+(Lp[a, b]) if and only if f ∈ Iαa+(Lp[a, b]) and
in this case∫ b

a f (x)dg(x) =
∫ b
a

(
(Dα

a+f )(x)− 1
Γ(1−α) ·

f (a+)
(x−a)α

)
(D1−α

b− gb−)(x)dx

+f (a+)(g(b−)− g(a+)) =
∫ b
a (Dα

a+f )(x)(D1−α
b− gb−)(x)dx

−f (a+)I 1−α
b− (D1−α

b− g)(a) + f (a+)(g(b−)− g(a+))

=
∫ b
a (Dα

a+f )(x)(D1−α
b− gb−)(x)dx .

(1)

Lemma 3

Let gb− ∈ I 1−α
b− (Lp[a, b]) ∩ C [a, b] for some p > 1

1−α , 0 < α < 1. Then for
any a < c < d < b∫ b

a
(Dα

a+1[c,d))(x)(D1−α
b− gb−)(x)dx = g(d)− g(c). (2)
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Corollary 4

Let the function g is Hölder continuous with some exponent 0 < λ ≤ 1,
then gb− ∈ I 1−α

b− (Lp[a, b]) for any p ≥ 1 and 1− α < λ. So, we can take
p > 2/λ, α = 1− λ/2 and obtain (2).

Corollary 5

For any step function fπ(x) =
n−1∑
k=0

ck1[ xk ,xk+1 )(x) with

a = x0 < . . . < xn = b and g satisfying the conditions of Lemma 3, we

have that
∫ b
a f (x)dg(x) =

n−1∑
k=0

ck(g(xk+1)− g(xk)).
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Further we suppose that g(b−) = g(b) and g(a+) = g(a).
Denote BV [a, b] the class of functions of bounded variation on [a, b].

Lemma 6

Let the functions fa+ ∈ Iαa+(Lp[a, b]), gb− ∈ I 1−α
b− (Lq[a, b]) ∩ BV [a, b] with

p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 and∫ b

a
Iαa+(|(Dα

a+f )|)(x)|g |(dx) <∞. (3)

Then ∫ b

a
f (x)dg(x) = (L-S)

∫ b

a
f (x)dg(x).
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Now we consider the case of Hölder functions f and g . The existence of
(R-S)

∫ b
a fdg for f ∈ Cλ[a, b], g ∈ Cµ[a, b] with λ+ µ > 1 was established

by Kondurar [Kon37]. Moreover, this integral coincides with
∫ b
a fdg , as

the next theorem states.
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Let f ∈ Cλ[a, b] for some 0 < λ ≤ 1, |f (x)− f (y)| ≤ c(λ)|x − y |λ,
x , y ∈ [a, b]. Consider the following step function

fπ(x) =
n−1∑
k=0

f (xk)1[ xk ,xk+1 )(x),

where the partition π = {a = x0 < x1 < . . . < xn = b}.
Evidently, lim|π|→0 supπ‖fπ − f ‖L∞[a,b] = 0.

Theorem 7

1) For any 0 < α < λ

lim
|π|→0

sup
π
‖(Dα

a+fπ)− (Dα
a+f )‖L1[a,b] = 0.

2) Let f ∈ Cλ([a, b]), g ∈ Cµ[a, b] with λ+ µ > 1 then (R-S)
∫ b
a fdg

exists and ∫ b

a
fdg = (R-S)

∫ b

a
fdg .
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Now we establish the properties of generalized integral
∫ t
s fdg as the

function of upper and lower boundaries.

Lemma 8 ([Zah98a])

1) Let a ≤ s < t ≤ b and the functions f and g satisfy the assumptions
(i) (f · 1(s,t)) ∈ Iα+(Lp[a, b]), gb− ∈ I 1−α

− (Lq[a, b]) for some
0 < α < 1, p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1,
(ii) fs+ ∈ Iα

′
+ (Lp′ [s, t]), gt− ∈ I 1−α′

− (Lq′ [s, t]) for some
0 < α′ < 1, p′ ≥ 1, q′ ≥ 1, 1/p′ + 1/q′ ≤ 1. Then∫ b

a
1(s,t)fdg =

∫ t

s
fdg .

2) The equality ∫ t

s
fdg +

∫ u

t
fdg =

∫ u

s
fdg

holds for a ≤ s < t < u ≤ b, if all the integrals exist as generalized
Lebesgue–Stieltjes integrals.
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Pathwise stochastic integration in fractional Besov type
spaces
Consider the approach to pathwise stochastic integration in fractional
Besov type spaces, introduced by Nualart and Rǎşcanu [NR00] (see also
the paper of Cieselski[CKR93]).
Consider the following functional spaces. Let for 0 < α < 1
ϕαf (t) := |f (t)|+

∫ t
0 |f (t)− f (s)|(t − s)−α−1ds, W α

0 = W α
0 [0T ] be the

space of real-valued measurable functions f : [0,T ]→ R such that

‖f ‖0,α := sup
t∈[0,T ]

ϕαf (t) <∞;

W α
1 = W α

1 [0,T ] be the space of real-valued measurable functions
f : [0,T ]→ R such that

‖f ‖1,α := sup
0≤s<t≤T

(
|f (t)− f (s)|

(t − s)α
+

∫ t

s

|f (u)− f (s)|
(u − s)1+α

du

)
<∞,

and
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W α
2 = W α

2 [0,T ] be the space of real-valued measurable functions
f : [0,T ]→ R such that

‖f ‖2,α :=

∫ T

0

|f (s)|
sα

ds +

∫ T

0

∫ s

0

|f (s)− f (u)|
(s − u)α+1

duds <∞.

The spaces W α
i , i = 0, 1, 2 are Banach spaces with respect to

corresponding norms.
Also, for any 0 < ε < α ∧ (1− α)

Cα+ε[0,T ] ⊂W α
i [0,T ] ⊂ Cα−ε[0,T ], i = 0, 1,

Cα+ε[0,T ] ⊂W α
2 [0,T ].

Therefore the trajectories of fBm BH with Hurst index H for a.a. ω ∈ Ω
belong to W α

1 [0,T ] for any T > 0, 0 < α < H and ‖BH‖1,α <∞ for any
0 < α < H.
Moreover, for g ∈W α

1 [0,T ] its restriction to [0, t] ⊂ [0,T ] belongs to
Iα−(L∞[0, t]) and

Λα(g) := sup
0≤s<t≤T

|(Dα
t−g)t−(s)| ≤ 1

Γ(1− α)
‖g‖1,α <∞.

The restriction of f ∈W α
2 [0,T ] to [0, t] ⊂ [0,T ] belongs to Iα+(L1[0, t]).
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Now, let f ∈W α
2 [0,T ], g ∈W 1−α

1 [0,T ]. Then for any 0 < t ≤ T there
exists Lebesgue integral

∫ t
0 (Dα

0+f )(x)(D1−α
t− gt−)(x)dx , so we can define∫ t

0 fdg according to Definition 1 and formula (2).Moreover, for any

0 < t ≤ T
∫ t

0 fdg =
∫ T

0 1(0,t)fdg , and the integral
∫ t

0 fdg admits an
estimate

|
∫ t

0 fdg | ≤
∫ t

0 |(D
α
0+f )(x)||(D1−α

t− gt−)(x)|dx
≤ Λ1−α(g)‖f ‖2,α ≤ (Γ(1− α))−1‖g‖1,1−α‖f ‖2,α.
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Stochastic differential equations driven by fractional
Brownian motion with pathwise integrals
Consider the function σ = σ(t, x) : [0,T ]× R→ R satisfying the
assumptions: σ is differentiable in x , there exist M > 0, 0 < β, κ ≤ 1 and
for any R > 0 there exists MR > 0 such that
(i) σ is Lipschitz continuous in x :

|σ(t, x)− σ(t, y)| ≤ M|x − y |, ∀t ∈ [0,T ], x , y ∈ R,

and is of sublinear growth: there exist γ ∈ [0, 1] and K0 > 0 such that

|σ(t, x)| ≤ K0(1 + |x |γ)

for all t, x ; (ii) x-derivative of σ is local Hölder continuous in x :

|σx(t, x)− σx(t, y)| ≤ MR |x − y |κ, ∀|x |, |y | ≤ R, t ∈ [0,T ];

(iii) σ and x-derivative of σ are Hölder continuous in time:

|σ(t, x)−σ(s, x)|+|σx(t, x)−σx(s, x)| ≤ M|t−s|β, ∀x ∈ R, t, s ∈ [0,T ].
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Let the function b = b(t, x) : [0,T ]× R→ R satisfy the assumptions
(iv) for any R ≥ 0 there exists LR > 0 such that

|b(t, x)− b(t, y)| ≤ LR |x − y |, ∀|x |, |y | ≤ R, ∀t ∈ [0,T ];

(v) there exists the function b0 ∈ Lρ[0,T ] and L > 0 such that

|b(t, x)| ≤ L|x |+ b0(t), ∀(t, x) ∈ [0,T ]× R.
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Now, consider SDE with fBm BH
t , H ∈ (1/2, 1) on a complete probability

space (Ω,F ,P):

Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dBH

s , t ∈ [0,T ]. (4)

We can now state the following result.

Theorem 9

Let the coefficients b and σ satisfy (i)–(v) with ρ = (1− H)−1,
β > 1− H, κ > H−1 − 1 (the constants M,MR ,R, LR and the function b0

can depend on ω).
Then there exists the unique solution {Xt , t ∈ [0,T ]} of equation (4),
X ∈ L0(Ω,F ,P,W 1−H

0 [0,T ]) with a.a.trajectories from CH−ε[0,T ] for
any 0 < ε < H.
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Remark 1

Theorem 9 admits evident generalization to multidimensional case.
Consider the equation on Rd

X i
t = X i

0 +

∫ t

0
bi (s,Xs)ds +

m∑
j=1

∫ t

0
σji (s,Xs)dB

Hj
s , 1 ≤ i ≤ d , t ∈ [0,T ],

(5)
where the processes BHj are fBm’s with Hurst index
Hj ∈ (1/2, 1), 1 ≤ j ≤ m. Denote σ = (σji )

d ,m
i ,j=1 the matrix of ”diffusions”

and b = (bi )
d
i=1 the ”drift” vector, |σ| := (

∑
i ,j |σj ,i |2)1/2,

|b| := (
∑

i (bi )
2)1/2, and suppose that assumptions (i)–(v) hold with these

notations, H = min1≤i≤m Hi , ρ = (1− H)−1, β > 1− H, κ > H−1 − 1.
Then there exists the unique vector solution Xt of equation (5) on [0,T ]
in L0(Ω,F ,P,W 1−H

0 [0,T ]) with a.a. trajectories from CH−ε[0,T ] for any
0 < ε < H.
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Theorem 9 and other similar results are establish by the standard fixed
point theorem. What is the specific moment here? To establish that the
respective map is a contraction, it is necessary to consider the difference of
generalized Lebesgue-Stieltjes integrals of two functions, and so the
difference of two fractional derivatives that in turn includes the difference
of the function in two points s and t, say, appears. We get the value of
the form

σ(t, x)− σ(t, y)− σ(s, x) + σ(s, y).

To deal with such double-difference, there is no another methods except to
increase the smoothness of the diffusion.
Consider one example where this condition evidently holds and no
additional assumption is necessary.
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Some properties of OU process involving fBm

Consider the process that is a unique solution of the Langevin stochastic
differential equation

dXt = θXtdt + σdBH
t , t ≥ 0, X

∣∣
t=0

= X0, (6)

where θ ∈ R, σ > 0. This process is called the fractional Ornstein
-Uhlenbeck process and for any H ∈ (0, 1) it admits an explicit
representation

Xt = eθt
(
X0 + σ

∫ t

0
e−θsdBH

s

)
.

If H ∈ (0, 1/2), then integral
∫ t

0 e−θsdBH
s we understand as the result of

the integration by parts:∫ t

0
e−θsdBH

s = e−θtdBH
t + θ

∫ t

0
e−θsBH

s ds,

since the exponent has a bounded variation.
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It is ergodic if θ < 0 and non-ergodic if θ > 0. Therefore a question
appears: how to test the hypothesis concerning the sign of θ?The interest
to this problem is also connected with the stability properties of the
solution of the equation (6), which also depend on the sign of θ.
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Simple test for the testing the hypothesis H0 : θ ≤ 0
against the alternative H1 : θ > 0

Let us propose comparatively simple test for the testing the hypothesis
H0 : θ ≤ 0 against the alternative H1 : θ > 0. The main advantage of our
approach is that it can be used for any H ∈ (0, 1). Moreover, the test is
based on the observation of the process X at one point, therefore it is
applicable for both continuous and discrete cases. The distribution of the
test statistics is computed explicitly, and the power of test can be found
numerically for any given simple alternative. Also we consider the
hypothesis testing H0 : θ ≥ θ0 against H1 : θ ≤ 0, where θ0 ∈ (0, 1) is some
fixed number. Unfortunately, our approach does not enable to test the
hypothesis H0 : θ = 0 against the two-sided alternative H1 : θ 6= 0.

Yuliya Mishura Stochastic integration and SDEs involving fBm SMOCS 2021 21 / 60



For the hypothesis testing of the sign of the parameter θ we construct a
test based on the asymptotic behavior of the random variable

Z (t) =
ln+ ln |Xt |

ln t
, t > 1. (7)

The following result explains the main idea. It is based on the different
asymptotic behavior of Ornstein–Uhlenbeck process with positive and
negative drift parameter. But we need in some auxiliary results.
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One-dimensional distributions of the Ornstein–Uhlenbeck
process

Lemma 10

The random variable Xt has a normal distribution N
(
X0e

θt , v(θ, t)
)
,

where

v(θ, t) = H

∫ t

0
s2H−1

(
eθs + eθ(2t−s)

)
ds. (8)
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The asymptotical behavior of the function v(θ, t) as t →∞ is as follows.

Lemma 11

(i) If θ > 0, then v(θ, t) ∼ HΓ(2H)
θ2H e2θt , t →∞.

(ii) If θ < 0, then v(θ, t)→ HΓ(2H)
(−θ)2H , t →∞.

(iii) v(0, t) = t2H , t ≥ 0.
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Almost sure limits and bounds for the Ornstein–Uhlenbeck
process

Lemma 12

For θ > 0
e−θtXt → ξθ a. s. as t →∞,

where ξθ = X0 + θ
∫∞

0 e−θsBH
s ds ' N

(
X0,

HΓ(2H)
θ2H

)
.
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Lemma 13 ([11])

There exists a nonnegative random variable ζ such that for all t > 0 the
following inequalities hold true:

sup
0≤s≤t

∣∣∣BH
s

∣∣∣ ≤ (1 + tH ln2 t
)
ζ, (9)

for θ > 0

sup
0≤s≤t

|Xs | ≤
(
eθt + tH ln2 t

)
ζ, (10)

while for θ ≤ 0

sup
0≤s≤t

|Xs | ≤
(

1 + tH ln2 t
)
ζ. (11)

Moreover, ζ has the following property: there exists C > 0 such that
E exp{xζ2} <∞ for any 0 < x < C .
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Lemma 14

The value of Z (t) converges a. s. to 1 for θ > 0, and to 0 for θ ≤ 0.
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Proof.

For θ > 0 Lemma 12 implies the convergence

ln |Xt | − θt → ln |ξθ| a. s. as t →∞,

where ξθ is a Gaussian random variable, hence, 0 < |ξθ| <∞ a. s.
Therefore,

ln |Xt |
t
→ θ a. s. as t →∞,

whence the a. s. convergence Z (t)→ 1 follows.
For θ ≤ 0 it follows from (11) that

|Xt |
t
→ 0 a. s. as t →∞.

Then Z (t)→ 0 a. s. as t →∞.
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Lemma 15

For t > 1 the probability g(θ, x0, t, c) = P(Z (t) < c) is given by

g(θ,X0, t, c) = Φ

(
et

c − X0e
θt√

v(θ, t)

)
+ Φ

(
et

c
+ X0e

θt√
v(θ, t)

)
− 1, (12)

where v(θ, t) is a variance of Xt , and g is a decreasing function of θ ∈ R.
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Lemma 16

Let α ∈ (0, 1). Then there exists t0 > 1 such that for all t > t0 there
exists a unique ct ∈ (0, 1) such that g(0,X0, t, ct) = 1− α, and ct → 0 as
t →∞.
The constant t0 can be chosen as the largest t > 1 that satisfies at least
one of the following two equalities

g(0,X0, t, 0) = 1− α or g(0,X0, t, 1) = 1− α.
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Testing the hypothesis H0 : θ ≤ 0 against H1 : θ > 0

We consider the test with the following procedure of testing the hypothesis
H0 : θ ≤ 0 against the alternative H1 : θ > 0. For a given significance level
α, and for sufficiently large value of t we choose a threshold
c = ct ∈ (0, 1), see Lemma 16. Further, when Z (t) ≤ c the hypothesis H0

is accepted, and when Z (t) > c it is rejected. Below we will propose a
technically simpler version of this test, without the computation of the
threshold c , see Algorithm 1.
By Lemma 15 for a threshold c ∈ (0, 1) and t > 1 the probability of a type
I error equals

sup
θ≤0

P(Z (t) ≥ c) = 1− g(0,X0, t, c).

Therefore, for a significance level α we determine ct as a solution of the
equation

g(0,X0, t, ct) = 1− α. (13)

Lemma 16 shows that for any α ∈ (0, 1) it is possible to choose a
sufficiently large t, such that ct ∈ (0, 1).
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Since the function g(0,X0, t, c) is strictly increasing with respect to c for
t > 1, we see that the inequality Z (t) ≤ ct is equivalent to the inequality
g(0,X0, t,Z (t)) ≤ g(0,X0, t, ct) = 1− α. Therefore, we do not need to
compute the value of ct . It is sufficient to compare g(0,X0, t,Z (t)) with
the level 1− α.
Algorithm 1 The hypothesis H0 : θ ≤ 0 against the alternative H1 : θ > 0
can be tested as follows.

1 Find t0 defined in Lemma 16. The algorithm can be applied only in
the case t > t0.

2 Evaluate the statistics Z (t) defined by (7).

3 Compute the value of g(0,X0, t,Z (t))

4 Accept the hypothesis H0 if g(0,X0, t,Z (t)) ≤ 1− α, and the
hypothesis H1 otherwise.

Remark 2

Practically, the condition t > t0 is not too restrictive, since for reasonable
values of α values of t0 are quite small.
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Let us summarize the properties of the test in the following theorem.

Theorem 17

The test described in Algorithm 1 is unbiased and consistent as t →∞.
For the simple alternative θ1 > 0 and time t > t0 the power of the test
equals 1− g(θ1,X0, t, ct), where ct can be found from (13).
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Proof.

It follows from the monotonicity of g with respect to θ (see Lemma 15)
that for any θ1 > 0

P(Z (t) ≥ ct) = 1− g(θ1,X0, t, ct) > 1− g(0,X0, t, ct) = α.

This means that the test is unbiased. Evidently, for the simple alternative
θ1 > 0 the power of the test equals 1− g(θ1,X0, t, ct).
It follows from the convergence ct → 0, t →∞ (see Lemma 16) that
ct < c for sufficiently large t and some constant c ∈ (0, 1). Taking into
account the formula (12) and Lemma 11 (i), we get as t →∞

1 ≥ 1− g(θ1,X0, t, ct) ≥ 1− g(θ1,X0, t, c)

= 2− Φ

(
et

c − X0e
θ1t√

v(θ1, t)

)
− Φ

(
et

c
+ X0e

θ1t√
v(θ1, t)

)

→ 2− Φ

(
− X0θ

H
1√

HΓ(2H)

)
− Φ

(
X0θ

H
1√

HΓ(2H)

)
= 1.
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Testing the hypothesis H0 : θ ≥ θ0 against H1 : θ ≤ 0

Let θ0 ∈ (0, 1). Let us consider the problem of testing the hypothesis
H0 : θ ≥ θ0 against alternative H1 : θ ≤ 0.
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The next algorithm is based on the following results. They can be proved
similarly to the previous subsection.

Lemma 18

Let α ∈ (0, 1). There exists t̃0 > 1 such that for all t > t̃0 there exists a
unique c̃t ∈ (0, 1) such that

g(θ0,X0, t, c̃t) = α. (14)

In this case c̃t → 1 as t →∞.
The constant t̃0 can be chosen as the largest t > 1 that satisfies at least
one of the following two equalities

g(θ0,X0, t, 0) = α or g(θ0,X0, t, 1) = α.
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Algorithm 2 The hypothesis H0 : θ ≥ θ0 against the alternative H1 : θ ≤ 0
can be tested as follows.

1 Find t̃0 defined in Lemma 18. The algorithm can be applied only in
the case t > t̃0.

2 Evaluate the statistics Z (t) defined by (7).

3 Compute the value of g(θ0,X0, t,Z (t)), see (12).

4 Accept the hypothesis H0 if g(θ0,X0, t,Z (t)) ≥ α, and the
hypothesis H1 otherwise.
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Theorem 19

The test described in Algorithm 2 is unbiased and consistent as t →∞.
For the simple alternative θ1 ≤ 0 and time t > t̃0 the power of the test
equals g(θ1,X0, t, c̃t), where c̃t can be found from (14).

Remark 3

It is possible to see from the numerics that if θ0 is too close to zero, then
for small H the condition t > t̃0 does not hold for reasonable values of t.

Remark 4

If we have a confidence interval for θ, then the value of θ0 can be chosen
as a lower confidence bound (in the case when it is positive).
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Continuous observations

Now we propose drift parameter estimators that work for any H ∈ (0, 1).
We consider continuous and discrete observations. Assume that a
trajectory of X = X (t) is observed over a finite time interval t ∈ [0,T ].
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Lemma 20

Let θ < 0. Then for any p ≥ 1 there exist positive constants cp and Cp

such that

E |Xt |p ≤ cp for t ≥ 0, (15)

E |Xt − Xs |p ≤ Cp |t − s|pH for |t − s| ≤ 1. (16)

Proof.

By Lemmas 10 and 11 (ii), Xt is a Gaussian random variable,

|EXt | = |X0| eθt ≤ |x0| <∞,

varXt →
HΓ(2H)

(−θ)2H
<∞,

whence (15) follows.
Assume that t ≥ s ≥ 0 and t − s ≤ 1. Let us show that

E |Xt − Xs | ≤ C1 |t − s|H , and E |Xt − Xs |2 ≤ C2 |t − s|2H , (17)

where C1 and C2 are some positive constants.
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Proof.

By (6),

|Xt − Xs | ≤ |θ|
∫ t

s
|Xu| du +

∣∣∣BH
t − BH

s

∣∣∣ .
Therefore, using (15), we get

E |Xt − Xs | ≤ |θ|
∫ t

s
E |Xu| du + E

∣∣∣BH
t − BH

s

∣∣∣
≤ c1 |θ| (t − s) + (t − s)H ≤ (c1 |θ|+ 1)(t − s)H ,

and

E (Xt − Xs)2 ≤ 2 |θ|2 E
(∫ t

s
|Xu| du

)2

+ 2E
(
BH
t − BH

s

)2

≤ 2 |θ|2 (t − s)

∫ t

s
E |Xu|2 du + 2 (t − s)2H

≤ 2 |θ|2 c2
2 (t − s)2 + 2(t − s)2H ≤ 2

(
|θ|2 c2

2 + 1
)

(t − s)2H .
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Proof.

Thus, (17) is proved. Since Xt − Xs has a Gaussian distribution, (16)
follows from (17) in the standard way.
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Lemma 21

For θ < 0
1

T

∫ T

0
X 2
t dt → HΓ(2H)

(−θ)2H
.

as T →∞ a. s. and in L2.

Proof.

It was proved in [4] that in this case the process Yt =
∫ t
−∞ eθ(t−s) dBH

s is
Gaussian, stationary and ergodic. The integral with respect to the
fractional Brownian motion here exists as a path-wise Riemann-Stieltjes
integral, and can be calculated using integration by parts, see [4,
Prop. A.1]. It follows from the ergodic theorem that

1

T

∫ T

0
Y 2
t dt → EY 2

0

as T →∞ a. s. and in L2.

Yuliya Mishura Stochastic integration and SDEs involving fBm SMOCS 2021 43 / 60



Proof.

The process Xt can be expressed as Xt = Yt − eθtηθ, where

ηθ = θ

∫ 0

−∞
e−θsBH

s ds − x0

is a Gaussian random variable.
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Proof.

Using this representation, it is not hard to show that

lim
T→∞

1

T

∫ T

0
X 2
t dt = lim

T→∞

1

T

∫ T

0
Y 2
t dt = EY 2

0 .

The value of the limit can be calculated applying Lemmas 10 and 11.
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Proof.

Indeed,

EY 2
0 = E

(∫ 0

−∞
e−θs dBH

s

)2

= lim
t→−∞

E

(
−e−θtBH

t + θ

∫ 0

t
e−θsBH

s ds

)2

= lim
t→∞

E

(
−eθtBH

−t + θ

∫ t

0
eθsBH

−s ds

)2

= lim
t→∞

e2θt

(
E
(
BH
−t

)2
− 2θe−θt

∫ t

0
eθsEBH

−tB
H
−s ds

+ θ2e−2θt

∫ t

0

∫ t

0
eθ(s+u)EBH

−sB
H
−u ds du

)
= lim

t→∞
e2θtv(−θ, t) =

HΓ(2H)

(−θ)2H
.
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Theorem 22

Let H ∈ (0, 1).

(i) For θ < 0 the estimator

θ̂
(1)
T = −

(
1

HΓ(2H)T

∫ T

0
X 2
t dt

)− 1
2H

is strongly consistent as T →∞.

(ii) For θ > 0 the estimator

θ̂
(2)
T =

X 2
T

2
∫ T

0 X 2
t dt

is strongly consistent as T →∞.
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Proof.

(i) For θ < 0 the result follows from Lemma 21.
(ii) If θ > 0, then Lemma 12 implies the a. s. convergence

X 2
T

e2θT
→ ξ2

θ as T →∞. (18)

Then, by L’Hôpital’s rule,

lim
T→∞

∫ T
0 X 2

t dt

e2θT
= lim

T→∞

X 2
T

2θe2θT
=
ξ2
θ

2θ
. (19)

Note that 0 < ξ2
θ <∞ with probability 1, since ξθ is a Gaussian random

variable. Combining (18) and (19), we get the convergence θ̂
(2)
T → θ a. s.

as T →∞.

Remark 5

In the case H ∈ [1/2, 1) the strong consistency of the estimators θ̂
(1)
T , θ̂

(2)
T

was proved in [7] and [1] respectively.
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Discrete observations
Assume that a trajectory of X = X (t) is observed at the points tk,n = k

n ,
0 ≤ k ≤ nm, n ≥ 1 where m > 1 is some fixed number.

Theorem 23

Let H ∈ (0, 1), m > 1.

(i) For θ < 0 the estimator

θ̂
(3)
n (m) = −

(
1

HΓ(2H)nm

nm−1∑
k=0

X 2
k/n

)− 1
2H

is strongly consistent as n→∞.

(ii) For θ > 0 the estimator

θ̂
(4)
n (m) =

nX 2
nm−1

2
∑nm−1

k=0 X 2
k/n

is strongly consistent as n→∞.
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Proof.

(i) Taking into account Theorem 22 (i), it suffices to prove the
convergence

ζn :=
1

nm−1

∫ nm−1

0
X 2
t dt − 1

nm

nm−1∑
k=0

X 2
k/n → 0 a. s. as n→∞. (20)

Denote

Zn(t) :=
nm−1∑
k=0

(
X 2
t − X 2

k/n

)
1[ kn ,

k+1
n )(t).

Then

ζn =
1

nm−1

∫ nm−1

0
Zn(t) dt.

Using Lemma 20, one can show that

E |Zn(t)|p ≤ K (p)n−pH

for some constant K (p) > 0. Then by Hölder’s inequality,
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Proof.

E |ζn|p ≤ K (p)n−pH .

Therefore by [10, Lemma 2.1], for all ε > 0 there exists a random variable
ηε such that

|ζn| ≤ ηεn−H+ε a. s.

for all n ∈ N. Moreover, E |ηε|p <∞ for all p ≥ 1. This implies the
convergence ζn → 0 a. s. as n→∞.
(ii) It follows from [11, Cor. 5.2(i)] that for θ > 0

1

n

nm−1∑
k=0

X 2
k/n =

∫ nm−1

0
X 2
t dt + ϑn,

where
ϑn

e2θnm−1 → 0 a. s. as n→∞.
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Proof.

Combining this with Theorem 22 (ii) and (18), we get

θ̂
(4)
n (m) =

X 2
nm−1

2
∫ nm−1

0 X 2
t dt + 2ϑn

=

(
1

θ̂
(2)
nm−1

+ 2 · e
2θnm−1

X 2
nm−1

· ϑn

e2θnm−1

)−1

→ θ

a. s. as n→∞.
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