
INTODUCTION TO R

This is only an introduction to the program R, in order to write and understand Monte Carlo

simulations, in support to the studied theory. We recall the basic concepts of the language.

The easiest way to use R is in an interactive manner via the command line.

Under the opening message in the R Console is the

> (“greater than”)

prompt. For the most part, statements in R are typed directly into the R Console window.

At the > prompt, you tell R what you want it to do. You give R a command and R does the

work and gives the answer. If your command is too long to fit on a line or if you submit an

incomplete command, a “+” is used for the continuation prompt.

One of the simplest (but very useful) ways to use R is to perform standard mathematical

calculations. The R language includes the usual arithmetic operations: +,-,*,/,^. Some

examples:
> 2+3

[1] 5

> 3/2

[1] 1.5

> 2^3 # this also can be written as 2**3

[1] 8

> 4^2-3*2 # this is simply 16 - 6

[1] 10

> (56-14)/6 – 4*7*10/(5^2-5) # this is more complicated

[1] -7

Other standard functions, that we will use, are for example: log(), gamma() Euler’s gamma

function, factorial() factorial function.

The assignment operator is “<-”; to be specific, this is composed of a < (“less than”) and a –

(“minus” or “dash”) typed together. It is usually read as “gets. Alternatively, as of R version 1.4.0,

you can use “=” as the assignment operator.

For example, in the following, the variable dieroll gets the value c(2,5,1,6,5,5,4,1). Indeed,

a useful command in R for entering small data sets is the c() function. This function

combines terms together. For example, suppose the following represents eight tosses of a fair die:

2 5 1 6 5 5 4 1. To enter this into an R session, we type

> dieroll <- c(2,5,1,6,5,5,4,1)

> dieroll

[1] 2 5 1 6 5 5 4 1

>

Notice that we assigned the values to a variable called dieroll. R is case sensitive, so you could

have another variable called DiEroLL and it would be distinct. The name of a variable can contain

most combination of letters, numbers, and periods (.).

Each command you submit is stored in the History and the uparrow will navigate backwards along

this history and the down arrow forwards. The left and right arrow keys move backwards and

forwards along the command line.

You can add a comment to a command line by beginning it with the # character.

R ignores everything on an input line after a #.

All variables or “objects” created in R are stored in what’s called the workspace. To remove

objects from the workspace (you’ll want to do this occasionally when your workspace gets too

cluttered), use the rm() function. When exiting R, the software asks if you would like to save your

workspace image. If you click yes, all objects (both new ones created in the current session and

others from earlier sessions) will be available during your next session. If you click no, all new

objects will be lost and the workspace will be restored to the last time the image was saved.

SCRIPT If you have a long series of commands that you would like to save for future use, you can

write all of the lines of code in the script (text editor) and you can save the code in a file and

execute them together selecting them and click on “Run” or using the source() function.

For example, we could type the following statements in a text editor (you don’t precede a line with

a “>” in the editor):
x1 <- rnorm(500) # Simulate 500 standard normals

x2 <- rnorm(500) # ""

x3 <- rnorm(500) # ""

y1 <- x1 + x2

y2 <- x2 + x3

r <- cor(y1,y2)

If we save the file as corsim.R on the C: drive, we execute the script by typing
> source("C:/corsim.R")

> r

[1] 0.5085203

>

Note that not only was the object r was created, but so was x1, x2, x3, y1, and y2.

HELP There is text help available from within R using the function help() or the ? character

typed before a command. For example, suppose you would like to learn more about the function

log() in R. The following two commands result in the same thing:
> help(log)

> ?log

Help can also be accessed from the menu on the R Console. This includes both the text help and

help that you can access via a web browser. You can also perform a keyword search with the

function apropos(). As an example, to find all functions in R that contain the string norm, type:
> apropos("norm")

[1] "dlnorm" "dnorm" "plnorm" "pnorm" "qlnorm"

[6] "qnorm" "qqnorm" "qqnorm.default" "rlnorm" "rnorm"

>

Note that we put the keyword in double quotes, but single quotes ('') will also work.

MATRICES In order to understand how to generally use functions in R, let’s consider the function

matrix(). This is a function that takes vectors and turns them into matrix objects. There

are 4 arguments for this function, and they specify the entries and the size of the matrix

object to be created. The argument byrow is set to be either TRUE or FALSE (or T or F – either

are allowed for logicals) to specify how the values are filled in the matrix.

Often arguments for functions will have default values, and we see that all of the arguments

in the matrix() function do. So, the call
> matrix()

will return a matrix that has one row, one column, with the single entry NA (missing or “not

available”). However, the following is more interesting:
> a <- c(1,2,3,4,5,6,7,8)

> A <- matrix(a,nrow=2,ncol=4, byrow=FALSE) # a is different from A

> A

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

>

Note that we could have left off the byrow=FALSE argument, since this is the default value.

In addition, since there is a specified ordering to the arguments in the function, we also could

have typed
> A <- matrix(a,2,4)

to get the same result. For the most part, however, it is best to include the argument names in

a function call (especially when you aren’t using the default values) so that you don’t confuse

yourself.

Vector Arithmetic

Vectors can be manipulated in a similar manner to scalars by using the same functions (however,

one must be careful when adding or subtracting vectors of different lengths or some unexpected

results may occur). Note that, by using these functions, the operations are done component by

component. Some examples of such operations are:
> x <- c(1,2,3,4)

> y <- c(5,6,7,8)

> x*y

[1] 5 12 21 32

> y/x

[1] 5.000000 3.000000 2.333333 2.000000

> y-x

[1] 4 4 4 4

> x^y

[1] 1 64 2187 65536

Other useful functions that pertain to vectors include:

length() returns the number of entries in a vector

sum() calculates the arithmetic sum of all values in the vector

prod() calculates the product of all values in the vector

cumsum(), cumprod() cumulative sums and products

Some examples using these functions:
> s <- c(1,1,3,4,7,11)

> length(s)

[1] 6

> sum(s) # 1+1+3+4+7+11

[1] 27

> prod(s) # 1*1*3*4*7*11

[1] 924

> cumsum(s)

[1] 1 2 5 9 16 27

Matrix Operations

Among the many powerful features of R is its ability to perform matrix operations. As we

have seen, you can create matrix objects from vectors of numbers using the

matrix() command:
> a <- c(1,2,3,4,5,6,7,8,9,10)

> A <- matrix(a, nrow = 5, ncol = 2) # fill in by column

> A

[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

> B <- matrix(a, nrow = 5, ncol = 2, byrow = TRUE) # fill in by row

> B

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

[5,] 9 10

> C <- matrix(a, nrow = 2, ncol = 5, byrow = TRUE)

> C

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

>

Matrix operations (multiplication, transpose, etc.) can easily be performed in R using a few simple

functions like:

dim() dimension of the matrix (number of rows and columns)

%*% matrix multiplication

t() matrix transpose

det() determinant of a square matrix

solve() matrix inverse; also solves a system of linear equations

eigen() computes eigenvalues and eigenvectors

Moreover, there is the possibility to select components of vectors and matrices in the following

way.
x<-c(2,5,9.5,-3)

> x[2] #select the second element of x

[1] 5

> x[c(2,4)] #select the elements in the positions 2 and 4

[1] 5 -3

> x[-c(1,3)] #exclude the elements in the positions 1 and 3

[1] 5 -3

> x[x>0] #select the positive elements

[1] 2.0 5.0 9.5

> x[!(x<=0)] #exclude the elements less or equal than 0

[1] 2.0 5.0 9.5

The parenthesis [] after the vector define which are the components to select.

For a matrix:
x<-matrix(1:10,ncol=5)

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> x[,1]#select the first column

[1] 1 2

> x[2,]#select the second row

[1] 2 4 6 8 10

> x[2,3]#select the element in the position [2,3]

[1] 6

> x[,4:5]#selecl the columns 4 and 5

[,1] [,2]

[1,] 7 9

[2,] 8 10

> x[,-c(2,4)]#select the columns 1, 3 and 5

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

Indexing of vectors and matrices

c() already seen

Sequences

Sometimes we will need to create a string of numerical values that have a regular pattern.

Instead of typing the sequence out, we can define the pattern using some special operators and

functions.

• The colon operator :

The colon operator creates a vector of numbers (between two specified numbers) that

are one unit apart:
> 1:9

[1] 1 2 3 4 5 6 7 8 9

> 1.5:10 # you won’t get to 10 here

[1] 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

> c(1.5:10,10) # we can attach it to the end this way

[1] 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.0

> prod(1:8) # same as factorial(8)

[1] 40320

• The sequence function seq()

The sequence function can create a string of values with any increment you wish.

You can either specify the incremental value or the desired length of the sequence:
> seq(1,5) # same as 1:5

[1] 1 2 3 4 5

> seq(1,5,by=.5) # increment by 0.5

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

> seq(1,5,length=7) # figure out the increment for this length

[1] 1.00000 1.66667 2.33333 3.00000 3.66667 4.33333 5.00000

• The replicate function rep()

The replicate function can repeat a value or a sequence of values a specified number

of times:
> rep(10,10) # repeat the value 10 ten times

[1] 10 10 10 10 10 10 10 10 10 10

> rep(c("A","B","C","D"),2) # repeat the string A,B,C,D twice

[1] "A" "B" "C" "D" "A" "B" "C" "D"

> matrix(rep(0,16),nrow=4) # a 4x4 matrix of zeroes

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0

>

Numerical Summaries

R includes a host of built in functions for computing sample statistics for both numerical (both

continuous and discrete) and categorical data. For numerical data, these include, for example,

mean() arithmetic mean

median() sample median

min(), max() smallest/largest values

Distribution Functions in R

R allows for the calculation of probabilities (including cumulative), the evaluation of probability

density/mass functions, percentiles, and the generation of pseudo-random variables following a

number of common distributions. For examples, we will use:

Distribution R name Additional arguments Argument defaults

binomial binom size, prob

uniform unif size, min, max min=0, max=1

Prefix each R name given above with ‘d’ for the density or mass function, ‘p’ for the CDF,

‘q’ for the percentile function (also called the quantile), and ‘r’ for the generation of pseudorandom

variables. The syntax has the following form – we use the wildcard rname to denote

a distribution above:
> drname(x, ...) # the pdf/pmf at x (possibly a vector)

> prname(q, ...) # the CDF at q (possibly a vector)

> qrname(p, ...) # the pth (possibly a vector) percentile/quantile

> rrname(n, ...) # simulate n observations from this distribution

For example, with

> dbinom(3,size=10,prob=.25) # P(X=3) for X ~ Bin(n=10, p=.25)

we compute the probability to have 3 successes in 10 Bernoulli trials, with parameter of success

equal to 0.25.

CONTROL-FLOW

The software R includes the usual control-flow statements, found in most programming languages.

The principles are if, if else and while. They require the evaluation of a logical statement that

can be expressed using logical operators, listed below:

Operator Meaning
== Equal to
!= Not equal to

<, <= Less than, less than or equal to
>, >= Greater than, greater than or equal to
& Logical AND
| Logical OR

if, if else instructions

if (or if else) instruction performs a computation or an action (or different computations or

actions) depending on whether a programmer-specified Boolean condition evaluates to TRUE or

FALSE.

The usage in R is the following
if (cond) expr

if (cond) cons expr else alt expr

In cond, the conditions can be added, expressed in terms of a logical statement, which is of the type

of length-one logical vector (it has not to be NA).

expr and cons expr are the resulting expression if the condition is TRUE, whereas alt expr

is the alternative expression, used when the if-condition is not satisfied. Usually, they are expressions

in a formal sense, and they can be either a simple expression or a compound expression, usually of

the form {expr1; expr2}.

Example 1

Example 2

for instruction

for instruction repeats a loop a certain number of times, counted by an index which increases its

value of one unit at any iteration.

The usage in R is the following:

for (var in seq) expr

var is the syntactical name for a variable, the index of the for-loop.

seq is an expression evaluating to a vector, it contains the values of the index.

For example, if we write for (j in 1:5) expr, it means “do expr for the different values of

the index from 1 to 5”. Note that it is not necessary to define previously the index-variable j.

As in for, if and if else, expr can be either a simple or a compound expression.

Example

while loop

while loop is used to execute repeatedly a computation or an action until a programmer-specified

Boolean condition is true.

The usage in R is the following:

while (cond) expr

The example computes the factorial of a number i.

Example

OTHER USEFUL COMMANDS

which command

which(x == a) instruction returns a vector of the indices of x for which the comparison operation

is TRUE, in this example the values of i for which x[i] = a.

Note that the argument of the function which must be a variable of logical type.

Example 1

Example 2

plot command

The most common function used to graph anything in R is the plot() function. This is a generic

function that can be used for scatterplots, time-series plots, function graphs, etc.

If a single vector object is given to plot(), the values are plotted on the 𝑦-axis against the row

numbers or index.

Example 1

If two vector objects (of the same length) are given, a bivariate scatterplot is produced.

Example 2

The default type for the plot is given by circular points and black in color. It is possible to change

the plot type with the argument type, by using the following strigs.

“p” – for points

“l” – for lines

“b” – for both points and lines

“c” – for empty points joined by lines

“o” – for overplotted points and lines

“s” and “S” – for stair steps

“h” – histogram-like vertical lines

“n” – does not produce any points or lines

Similarly, it is possible to define the color by using the argument col. The arguments lty and lwd

allow the users to modify the lines type and the thickness.

The command lines() adds lines between coordinates, whereas points() adds points at

specified coordinates.

Example 3

Different plotting symbols are available in R. The graphical argument used to specify point shapes is

pch. The different points symbols commonly used in R are shown in the figure below

It is also possible to add personalized labels to the axes with xlab(“...”)and ylab(“...”).

Moreover, by means of the argument main(“...”)it is possible to insert a title on the top of the

plot.

legend command

The legend function allows us to add a legend to a plot in base R. The syntax of the function is

summarized below.

Legend(x, y # Coordinates (x also accepts keywords, such as

 “topright”, “topleft”, etc.)

 legend, # Vector with the name of each group

 fill, # Creates boxes in the legend with the specified colors

 col = par(“col”), # Color of lines or symbols

 border = “black”, # Fill box border color

 lty, lwd, # Line type and width

 pch, # Add pch symbols to legend lines or boxes

 bty = “o”, # Box type (bty= “n” removes box)

 bg = par (“bg”), # Background color of the legend

 box.lwd = par(“lwd”), # Legend box line width

 box.lty = par(“lty”), # Legend box line type

 box.col = par(“fg”), # Legend box line color

 cex = 1, # Legend size

 horiz = FALSE # Horizontal (TRUE) or vertical (FALSE) legend

 title = NULL # Legend title

)

Example

References:

- Paradis, E. (2005), R for beginners. https://cran.r-project.org/doc/contrib/Paradis-

rdebuts_en.pdf

https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

- Owen, W. J. (2010), The R guide (version 2.5). https://cran.r-project.org/doc/contrib/Owen-

TheRGuide.pdf

- R documentation

https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf

