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Discrete stochastic processes

Consider a finite sequence of discrete random variables X1, . . . ,Xn
assuming values in g categories; the label n can be any positive
integer such that n ≥ 1 and the index has usually but not neces-
sarily the meaning of time or time ordering (consider tossing n
coins simultaneously vs tossing a single coin n times). The event
{X1 = x1, . . . ,Xn = xn} is a realisation of the discrete stochastic
process (Xn)n≥1.

Remark
Note that it is possible to start n from 0, etc..

Remark
{X1 = x1, . . . ,Xn = xn} := {X1 = x1} ∩ · · · ∩ {Xn = xn}.
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Finite dimensional distributions

The process is fully characterised if, for any n, we know the so-
called finite dimensional distributions

p(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn). (1)

An important case are processes built with dichotomous random
variables (g = 2). It is customary to choose one of the outcomes
as a success and use the label 1 and the other outcome as a
failure and use the label 0. In other words, if the outcome T
denotes a success and its complement (say H) a failure, Xi =
1T . For example, for the toss of 3 coins with P({T}) = p, one
has

p(1,0,1) = P(X1 = 1,X2 = 0,X3 = 1) = p·(1−p)·p = p2(1−p).
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Compatibility conditions

The functions p(x1, . . . , xn) obey the following compatibility con-
ditions

1 symmetry: p(xi1 , . . . , xin ) = p(x1, . . . , xn), where i1, . . . , in
denotes any of the n! permutations of the indices 1, . . . ,n.

2 marginalisation:
p(x1, . . . , xn−1) =

∑
xn∈{1,...,g} p(x1, . . . , xn).

The first property is a consequence of the symmetry of the in-
tersection of sets/events, the second is a consequence of the
finite additivity axiom of Kolmogorov (or of infinite additivity, if
you prefer).
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Predictive probabilities I

By repeated application of the definition of conditional probability
one finds this relation

p(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn) =

P(X1 = x1)P(X2 = x2|X1 = x1) . . .

P(Xn = xn|X1 = x1, . . . ,Xn−1 = xn−1). (2)

Hence, often a stochastic process is characterized in terms of
the predictive law P(Xm = xm|X1 = x1, . . . ,Xm−1 = xm−1) for any
m > 0 and of the “initial” distribution P(X1 = x1). This character-
isation automatically obeys the above compatibility conditions.
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Predictive probabilities II

The predictive probability has only to fullfill the probability ax-
ioms: P(Xm = xm|X(m−1) = x(m−1)) ≥ 0, and

∑
xm∈{1,...,g} P(Xm =

xm|X(m−1) = x(m−1)) = 1. In other words, one has to fix the
probability of the “next” observation as a function of all the pre-
vious results (the history of the process). Predictive probability
laws that are simple functions of xm and x(m−1) are particularly
interesting.
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Exchangeability I

If the finite dimensional probabilities are such that, for any inte-
ger m = 2, . . . ,n, one has

P(X1 = x1, . . . ,Xm = xm) = P(Xi1 = x1, . . . ,Xim = xm) (3)

for any of the m! possible permutation of the indices, then the
stochastic process is called exchangeable (or, more precisely,
n-exchangeable). Note that this condition differs from the sym-
metry compatibility condition. The meaning of exchangeability
is that all the individual sequences corresponding to the same
occupation vector m have the same probability.

Enrico Scalas Exchangeable processes



Discrete stochastic processes
Exchangeable processes

Exercises

Exchangeability II

Consider an exchangeable process X1, . . . ,Xn whose range is
the label set {1, . . . ,g}. We know that there are gn possible se-
quences X1 = x1, . . . ,Xn = xn, whereas the number of possible
occupation vectors n = (n1, . . . ,ng) is given by(

n + g − 1
n

)
. (4)

Moreover, given a particular occupation vector Y = n, the num-
ber of corresponding individual sequences X(n) is

n!

n1! · · · ng!
. (5)
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Exchangeability III

A consequence of definition (3) and of finite additivity is that

P(X(m) = x(m)) = P(Y = m)

(
m!

m1! · · ·mg!

)−1

(6)

where a shortcut notations has been used Y = m is the fre-
quency vector of the particular random vector X(m) = x(m).
Equation (6) is compatible with any probability distribution on
m, {P(m) :

∑
P(m) = 1,

∑g
i=1 mi = m}. It turns out that (n +

g − 1)!/(n!(g − 1)!) − 1 parameters are needed to completely
define the probability space. They represent the probability of
all possible compositions of the population with respect to the g
labels (categories).
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The hypergeometric process I

The physical process of drawing balls without replacement at
random and from an urn of given composition n = (n1, . . . ,ng)
can be described by the following stochastic process. Note that
the state space {1, . . . ,g} denotes the g different colours present
in the urn. Incidentally, this urn model gives a stylised, but gen-
eral, representation of random sampling. Consider a sequence
of individual random variables X1, . . . ,Xn whose range is the la-
bel set {1, . . . ,g} and characterized by the following predictive
probability (for m ≤ n, the process stops at m = n)

P(Xm+1 = j |X1 = x1, . . . ,Xm = xm; n) =

P(Xm+1 = j |m; n) =
nj −mj

n −m
. (7)
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The hypergeometric process II

Based on the rule (7), one can find the probability of the fundamental sequence X(m)
f =

(X1 = 1, . . . ,Xm1 = 1,Xm1+1 = 2, . . .Xm1+m2 = 2, . . . ,Xm−mg+1 = g, . . . ,Xm = g)
with m ≤ n balls drawn, of which the first m1 of colour 1, the following m2 of colour 2,
and so on, until the last set of mg balls of colour g, with

∑g
i=1 mi = m. By repeated

applications of (7), one gets

P(X(m)
f |m;n) =

n1

n
n1 − 1
n − 1

· · ·
n1 −m1 − 1
n −m1 − 1

n2

n −m1

n2 − 1
n −m1 − 2

· · ·
n2 −m2 − 1

n2 −m1 −m2 − 1
×

ng

n −m + mg

ng − 1
n −m + mg − 1

· · ·
ng −mg − 1
n −m − 1

(8)

a result that can be written in a more compact form as follows

P(X(m)
f |m;n) =

(n −m)!

n!

g∏
i=1

ni !

(ni −mi )!
. (9)
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The hypergeometric process III
Due to exchangeability, the nice point about the probability given by
equation (9) is that it is the same for any individual sequence with the
sampling vector m, and the number of these sequences is given by
the multinomial factor; therefore one has

P(m; n) =
m!∏g

i=1 mi !
P(X(m)

f |m; n) (10)

leading to the hypergeometric sampling distribution

P(m; n) =
m!∏g

i=1 mi !

(n −m)!

n!

g∏
i=1

ni !

(ni −mi )!
=

∏g
i=1

(
ni

mi

)
(

n
m

) . (11)

The hypergeometric process is the simplest case of n-exchangeable
process. The shortcut notation has the following meaning P(m; n) =
P({Y(m) = m}|Y(n) = n) and Y(n) = n is the exact composition of the
urn appearing as a parameter in the distribution.
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Finite version(s) of de Finetti’s theorem

It turns out that the hypergeometric process has an important
role, due to the finite version of de Finetti representation theo-
rem.
Theorem
Any n-exchangeable stochastic process can be written as a
mixture of hypergeometric processes.

A good discussion on this result is in P. Diaconis, Finite Forms of
de Finetti’s Theorem on Exchangeability, Synthese 36 271-281,
1977.

Remark
For processes that do not terminate and can be extended for
n→∞, the usual de Finetti representation theorem can be
derived from results on finite processes.
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The Pólya process I

The sequence X1,X2, . . . ,Xn, with Xi ∈ {1, . . . ,g} is a generalized
Pólya process if the predictive probability of the process is given by

P(Xm+1 = j |X1 = x1, . . . ,Xm = xm) =
αj + mj

α + m
(12)

where mj = #{Xi = j , i = 1, . . . ,m}, the number of occurrences of
the j-th category in the evidence (X1 = x1, . . . ,Xm = xm), and m is the
number of observations or trials. As for the parameters α and αj , in
the usual Pólya urn process, αj is a positive integer, representing the
number of balls of type (colour) j in the auxiliary Pólya urn; α is the
total number of balls in the urn and it is given by α =

∑g
j=1 αj .
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The Pólya process II

If αj is positive but real, it can be interpreted as the initial weight
of the j-th category. The meaning of αj becomes clearer if one
defines pj = αj/α, then equation (12) can be written as

P(Xm+1 = j |X1 = x1, . . . ,Xm = xm) =
αpj + mj

α + m
(13)

and pj has a natural interpretation as prior (or initial) probability
for the j-th category: pj = αj/α = P(X1 = j).
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Sampling with replacement

Remark
The limit α→∞ has an immediate intepretation as (13)
becomes

P(Xm+1 = j |X1 = x1, . . . ,Xm = xm) = pj , (14)

leading to the i.i.d. multinomial distribution. In other words, the
distribution of the generalized Pólya process converges to the
distribution of the multinomial process when the parameter α
diverges.
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Sampling without replacement

Remark

When αj is a negative integer and mj ≤ |αj | = |α|pj , equation (12) still
represents a probability and it can be written as

P(Xm+1 = j|X1 = x1, . . . ,Xm = xm) =
|α|pj −mj

|α| −m
, (15)

but here, the number of variables (observations or trials) is limited by |α|.
Equation (15) leads to the hypergeometric distribution. Therefore, in the
following, the general case (12) will be studied, with the total weight α
belonging to the set

α ∈ (0,∞) ∪ {−n,−n − 1,−n − 2, . . . ,−∞}

which is the union of the generalized Pólya and the hypergeometric domain,
with the multinomial case appearing both as α→ −∞ and α→ +∞.

Enrico Scalas Exchangeable processes



Discrete stochastic processes
Exchangeable processes

Exercises

Finite dimensional distributions for the Pólya process I

The Pólya process is exchangeable. The fundamental sequence X(m)
f

= (1, . . . ,1, . . . ,g, . . . ,g), consisting of m1 labels 1 followed by m2 la-
bels 2, and so on, ending with mg occurrences of label g, has proba-
bility

α1

α

α1 + 1
α + 1

. . .
α1 + m1 − 1
α + m1 − 1

α2

α + m1

α2 + 1
α + m1 + 1

. . .
α2 + m2 − 1

α + m1 + m2 − 1
. . .

. . .
αg

α + m1 + m2 + . . .+ mg−1

αg + 1
α + m1 + m2 + . . .+ mg−1 + 1

. . .

. . .
αg + mg − 1

α + m1 + m2 + . . .+ mg − 1
=
α
[m1]
1 · · ·α[mg ]

g

α[m]
, (16)

as a direct consequence of equations (2) and (12) and using the Pochham-
mer symbol x [n] to denote the rising factorial x(x + 1) · · · (x + n − 1)
(recall that

∑g
i=1 mi = m).
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Finite dimensional distributions for the Pólya process II

In summary, the finite dimensional distributions only depend on
the frequency vector m. They are

P(x(m)) =
1
α[m]

g∏
i=1

α
[mi ]
i (17)

So the predictive probability (12) yields the law (17); it turns out
that the converse is also true, as from the definition of conditional
probability

P(Xm+1 = j |x(m)) :=
P(x(m),Xm+1 = j)

P(x(m))
=
αj + mj

α + m
(18)

where, x(m) is an evidence with frequency vector m = (m1, . . . ,mg),
both the numerator and the denominator follow (17).
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Finite dimensional distributions for frequency
descriptions

Remark
The sampling distribution is the probability of the frequency
vector m. In order to get it as a function of the size m, it is
sufficient to multiply (17) by the number of distinct equiprobable
sequences leading to

P(m) = Polya(m;α) =
m!∏g

i=1 mi !

∏g
i=1 α

[mi ]
i

α[m]
=

m!

α[m]

g∏
i=1

α
[mi ]
i

mi !
;

(19)
this equation defines the generalised Pólya distribution of
parameters m and α.
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Example: The dichotomous Pólya distribution

The dichotomous (or bivariate) case, g = 2, is sufficient to il-
lustrate all the essential properties of the Pólya process. Let
Xi = 0,1, and define (m1 = h,m0 = m − h) as the frequency
vector of X1, . . . ,Xm. Then h = #{Xi = 1} is the number of
observed successes and Sm = h is a random variable whose
values h vary according to h ∈ {0,1, . . . ,m}. Moreover, one can
write Sm =

∑m
i=1 Xi . In this simple case the multivariate equa-

tion (19) simplifies to

P(Sm = h|α0, α1) =
m!

m0!m1!

α
[m0]
0 α

[m1]
1

α[m]
=

(
m
h

)
α
[h]
1 α

[m−h]
0

α[m]
. (20)
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Uniform distribution

One has 1[n] = n! and 2[n] = (n + 1)!; if α0 = α1 = 1, then
α = α0 + α1 = 2, and it turns out that

P(Sm = h|1,1) =
m!

h!(m − h)!

h!(m − h)!

(m + 1)!
=

1
m + 1

, (21)

this is the uniform distribution on all frequency vectors of m ele-
ments and g = 2 categories.
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Binomial distribution

For x � n, one has x [n] = x(x +1) . . . (x +n−1) ' xn; moreover,
one can set α0 = αp0, and α1 = αp1. Therefore, one obtains
that

lim
α→∞

P(Sm = h|αp0, αp1) =

lim
α→∞

(
m
h

)
αh

1α
m−h
0

αm =

(
m
h

)
ph

1(1− p1)m−h, (22)

this is the binomial distribution. In the urn interpretation, if the
initial urn has a very large number of balls, the Pólya prize is
inessential to calculate the predictive probability, they are all
equal for each category and the Pólya process cannot be dis-
tinguished from repeated Bernoulli trials, as already discussed
above.
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Hypergeometric distribution
Given that x [n] = x(x + 1) . . . (x + n − 1), if x is negative, and n ≤ |x |, one
gets x [n] = (−1)n|x |(|x | − 1) . . . (|x | − n + 1), meaning that x [n] = (−1)n |x |[n],
where x[n] = x(x − 1) . . . (x − n + 1) is the so-called falling (or lower) factorial,
and setting α1 = −N1 = −Np1, α0 = −N0 = −Np0, with p1 + p0 = 1, one
gets:

P(Sm = h| − N0,−N1) =
m!

h!(m − h)!
×

× (−1)hN1 · · · (N1 − h + 1)(−1)m−hN0 · · · (N1 − n + h + 1)

(−1)mN · · · (N −m + 1)
, (23)

leading to the hypergeometric distribution

P(Sm = h| − N0,−N1) =

(
N1

h

)(
N0

m − h

)
(

N
m

) =

(
m
h

)(N −m
N1 − h

)
(

N
N1

) (24)

which is the usual sampling distribution from a hypergeometric urn with N0,N1

balls of two types and N = N1 + N0.
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Limit of the hypergeometric distribution

Also for the falling factorial x � n yields x[n] ' xn. Therefore,
one gets

lim
α→−∞

P(Sm = h|αp0, αp1) =

(
m
h

)
ph

1(1− p1)m−h; (25)

in other words, sampling without replacement from a very large
urn cannot be distinguished from sampling with replacement.
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The continuous limit of the Pólya distribution I
Consider the multivariate generalized Pólya sampling distribution given by
equation (19). Using the fact that

α[m] =
Γ(m + α)

Γ(α)
(26)

equation (19) can be re-written as follows

Polya(m;α) =
Γ(α)∏g

i=1 Γ(αi )

m!

Γ(m + α)

g∏
i=1

Γ(mi + αi )

mi !
. (27)

The variables ui = mi/m are such that one has
g∑

i=1

ui =

g∑
i=1

mi

m
= 1; (28)

moreover, ∀i ∈ {1, . . . , g}, one further has that 0 ≤ ui ≤ 1. If one considers
the continuous limit in which m→∞, mi →∞ with constant ui = mi/m for all
the categories i , one gets that

Γ(mi + αi )

mi !
=

Γ(mi + αi )

Γ(mi + 1)
' mαi−1

i . (29)
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The continuous limit of the Pólya distribution II

Replacing (29) for any mi and for m in (27) leads to

Polya(m;α) ' Γ(α)∏g
i=1 Γ(αi)

∏g
i=1 mαi−1

i
mα−1 =

Γ
(∑g

i=1 αi
)∏g

i=1 Γ(αi)

g∏
i=1

uαi−1
i · 1

mg−1 . (30)
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The continuous limit of the Pólya distribution III
Equation (30) can be intepreted as follows; based on the exchangeability of
the variables Yi = mi , the probability of the variables Ui = Yi/m of assuming
values U1 = u1, . . .Un = un with ui = mi/m is

P(U1 = u1, . . . ,Un = un) '
Γ
(∑g

i=1 αi
)∏g

i=1 Γ(αi )

g∏
i=1

uαi−1
i · 1

mg−1 '

Γ
(∑g

i=1 αi
)∏g

i=1 Γ(αi )

g∏
i=1

uαi−1
i du1 · · · dug−1, (31)

where the relationship becomes exact in the continuous limit. The function

fU(u1, . . . , ug ;α1, . . . αg) = fU(u;α) =
Γ
(∑g

i=1 αi
)∏g

i=1 Γ(αi )

g∏
i=1

uαi−1
i (32)

defined on the simplex
∑g

i=1 ui = 1 and 0 ≤ ui ≤ 1 for all the i ∈ {1, . . . g} is
the probability density function of the Dirichlet distribution. Let U ∼ Dir(u;α)
denote the fact that the random vector U is distributed according to the Dirich-
let distribution.
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Aggregation property of the Pólya distribution I

The g-variate generalized Pólya distribution has a nice aggregation property
which is useful for the so-called label mixing by R. von Mises. Starting from
(12), how can P(Xm+1 ∈ A|X1 = x1, . . . ,Xm = xm) be obtained, where the set
A is a set of categories A = {j1, . . . , jr}? The answer to this question is not
difficult: it turns out that

P(Xm+1 ∈ A|x(m)) =
r∑

i=1

P(Xm+1 = ji |x(m)), (33)

where, as usual, x(m) = (X1 = x1, . . . ,Xm = xm) summarizes the evidence. In
the Pólya case, P(Xm+1 = j|x(m)) is a linear function of both the weights and
the occupation numbers; therefore one gets

P(Xm+1 ∈ A|x(m)) =

∑
j∈A αj +

∑
j∈A mj

α + m
=
αA + mA

α + m
, (34)

where αA =
∑

j∈A αj and mA =
∑

j∈A mj .
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Aggregation property of the Pólya distribution II

As a direct consequence of (34), the marginal distributions of the
g-variate generalized Pólya distribution are given by the dichoto-
mous Pólya distribution of weights αi and α − αi , where i is the
category with respect to which the marginalization is performed.
In other words, one gets that∑

mj , j 6=i

Polya(m;α) = Polya(mi ,m −mi ;αi , α− αi). (35)
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Aggregation property of the Dirichlet distribution

The aggregation property is inherited by the Dirichlet distribu-
tion. In particular, the probability density function for the one-
point marginal is nothing else than the Beta distribution. In par-
ticular, if U1, . . . ,Ug ∼ Dir(u1, . . . ,ug ;α1, . . . , αg) then

Ui ∼ Beta(ui ;αi , α− αi) (36)

corresponding to the probability density function

fUi (xi) =
Γ(α)

Γ(αi)Γ(α− αi)
uαi−1

i (1− ui)
α−αi−1. (37)
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Johnson’s representation theorem I

Consider an n-step stochastic process defined by the sequence of n
random variables X1, . . . ,Xn with values in g categories.

Definition
The coefficient of heterorelevance is defined as

Q j
i (X1 = x1, . . . ,Xm = xm) =

P(Xm+2 = i |X1 = x1, . . . ,Xm = xm,Xm+1 = j)
P(Xm+1 = i |X1 = x1, . . . ,Xm = xm)

. (38)

The meaning of this coefficient is the ratio between the probability of
observing category i at step m + 2 given the history known up to m
observations and knowing that at the m + 1-th step category j 6= i
was observed and the probability of observing category i at step
m + 1 given the history known up to m observations.
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Johnson’s representation theorem II

Theorem

Assume that Qj
i (X1 = x1, . . . ,Xm = xm) = Qm, meaning that the

coefficient of heterorelevance only depends on the number of
observations m. Then

P(Xm+1 = j |X1 = x1, . . . ,Xm = xm) = p(j |mj ,m) =
λpj + mj

λ+ m
,

(39)
where

λ =
Q0

1−Q0
(40)

and
pj = P(X1 = j). (41)
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Proofs of the theorem

A proof of Johnson’s theorem can be found in U. Garibaldi, E.
Scalas, Finitary Probabilistic Methods in Econophysics, Cam-
bridge University Press, 2010. A discussion of its meaning and
history together is in S. Zabell, The Continuum of Inductive Meth-
ods Revisited in Symmetry and its Discontents, Cambridge Uni-
versity Press, 2012. An alternative proof is in S. Zabell, Confirm-
ing Universal Generalizations, Erkentniss, 45 (2/3), 1996.
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Johnson’s representation theorem II

Theorem

Assume that Qj
i (X1 = x1, . . . ,Xm = xm) = Qm, meaning that the

coefficient of heterorelevance only depends on the number of
observations m. Then

P(Xm+1 = j |X1 = x1, . . . ,Xm = xm) = p(j |mj ,m) =
λpj + mj

λ+ m
,

(42)
where

λ =
Q0

1−Q0
(43)

and
pj = P(X1 = j). (44)
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Sampling and quantum statistics

Let me conclude with a remark on quantum statistics

Remark
There is a correspondence between sampling procedures and
quantum statistics.

1 Pólya sampling “corresponds” to Bose-Einstein statistic.
2 Sampling without replacement “corresponds” to

Fermi-Dirac statistic.
3 Sampling with replacement “corresponds” to

Maxwell-Boltzmann statistic.

Do you understand why?
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Exercise 1: Pólya random walk

Consider a dichotomous polya process with parameters α0 and
α1 and define the random variable Y (m) = +1 if X (m) = 1 and
Y (m) = −1 if X (m) = 0. In other words, one has

Y = 2X − 1. (45)

Then define the random variable S(m) (Pólya random walk) as

S(m) =
m∑

i=1

Y (i). (46)

Write a program that simulates the Pólya random walk and dis-
cuss some interesting cases.
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Exercise 2: Binomial limit

We have seen the the dichotomous Pólya distribution converges
to the binomial distribution for α → ∞. But how close is the
symmetric dichotomous Pólya to the binomial distribution when
α0 = α1 = 100? Try to answer this question by means of a
Monte Carlo simulation.
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Exercise 3: Birthday problem

A classical problem in probability theory is often stated as fol-
lows. Imagine there are n persons in a room, with n < 365.
What is the probability that at least two of them have a common
birthday? This problem and indeed other problems related to
the birthday distribution can be solved using the concepts we
have introduced so far. How? Usually, it is assumed that people
born on February 29th in leap years are not taken into account.
For the sake of simplicity, you can make this assumption in your
solution.

Enrico Scalas Exchangeable processes


	Discrete stochastic processes
	Exchangeable processes
	Exercises

