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Simple Itô formula for fBm with H > 1/2

Let H > 1/2, F : R → R is continuously differentiable. Then, taking into
account that a quadratic variation of fBm equals zero,

F (BH
t ) = F (0) +

∫ t

0
F ′(BH

s )dBH
s .
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Linear stochastic differential equation involving fractional
Brownian motion

Consider an equation

dZt = aZtdt + σZtdB
H
t , t ≥ 0, a ∈ R, σ > 0,H > 1/2. (1)

Its solution exists, is unique and has an explicit form

Zt = Z0 exp{at + σBH
t }, t ≥ 0.
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Cox-Ingersoll-Ross process with standard Brownian motion

It is the unique solution of standard SDE

drt = (a− brt)dt + σ
√
rtdWt , t ≥ 0.

Existence-uniqueness follows from results of Yamada-Kunita-Watanabe: if
the drift and diffusion coefficients are of linear growth, drift coefficient is
Lipschitz and diffusion coefficient is Hölder of order 1/2 or bigger, then
the solution exists and is unique.
It is a nonnegative stochastic process, and if 2a ≥ σ2, it is strictly positive
(again Kunita-Watanabe concerning nonnegativity, and Gikhman,
Skorokhod concerning positivity.) Why to consider CIR? Two reasons:
1) To get the process for which the diffusion coefficient is proportional to
the process itself, but not with power 1, a bit less.
2) To get the non-negative and even positive process in order to model
interest rate, for example.
Since Ornstein-Uhlenbeck process is Gaussian, it can not serve for the 2nd
goal (the 1st also not).
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Fractional CIR process with k = 0 and H > 2/3

Potentially, our goal is to consider the stochastic differential equation of
the following form:

dXt = (k + aXt)dt + σ
√
XtdB

H
t , t ≥ 0, a, k ∈ R, X0, σ > 0. (2)

To start with, consider the particular case of stochastic differential
equation (2) where k = 0:

dXt = ãXtdt + σ̃
√
XtdB

H
t , t ≥ 0, ã ∈ R, X0, σ̃ > 0, (3)

BH = {BH , t ≥ 0} is a fractional Brownian motion with H > 2/3.
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Existence and uniqueness of the solution in case
H ∈ (2/3, 1)

Consider the integral
∫ T
0 σ
√
XtdB

H
t . If H > 2/3 and X is non-negative,

then
√
Xt is Hölder up to 1/3, 1/3 + 2/3 > 1, and the integral exists as

the Riemann-Stieltjes integral.
If H > 2/3, the equation (3) has a unique solution until the first moment
of reaching zero, and the integral

∫ t
0

√
XsdB

H
s exists as a pathwise

Riemann-Stieltjes sums limit.
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Connection with the fractional Ornstein-Uhlenbeck process

Denote τ0 := inf{t > 0 : Xt = 0} and consider the trajectories of the
process {Xt , t ≥ 0} on [0, τ0). After substitution Yt =

√
Xt and using the

Itô formula for integrals with respect to fractional Brownian motion, we
obtain:

dYt =
dXt

2
√
Xt

=
ãXtdt

2
√
Xt

+
σ̃

2
dBH

t . (4)
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Denoting a = ã/2, σ = σ̃/2, we get

dYt = aYtdt + σdBH
t (5)

with the initial condition Y0 =
√
X0.

So, in the case of H > 2/3, the solution {Xt , t ∈ [0, τ0)} of the equation
(3) is the square of the fractional Ornstein–Uhlenbeck process until it
reaches zero.
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Definition of the fractional Cox–Ingersoll–Ross process for
an arbitrary H ∈ (0, 1) and zero “mean” parameter

Let H ∈ (0, 1) be an arbitrary Hurst index, {Yt , t ≥ 0} be a fractional
Ornstein-Uhlenbeck process, and τ be the first moment of reaching zero
by the latter.

Definition 1.1

The fractional Cox-Ingersoll-Ross process (with zero “mean” parameter) is
the process {Xt , t ≥ 0} such that for all t ≥ 0, ω ∈ Ω:

Xt(ω) = Y 2
t (ω)1{t<τ(ω)}. (6)
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The definition of the fractional CIR process is “natural”

Let us show that such definition is natural, i.e. the fractional CIR process
satisfies the equation similar (in some way) to the “standard” equation (3).
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Stratonovich integral

Definition 1.2

Let {Xt , t ≥ 0}, {Yt , t ≥ 0} be random processes.

The pathwise Stratonovich integral
∫ T
0 Xs ◦ dYs is a pathwise limit of the

following sums:
n∑

i=1

Xtk + Xtk−1

2
(Ytk − Ytk−1

), (7)

as the mesh of the partition 0 = t0 < t1 < ... < tn = T tends to zero, in
case if this limit exists.
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Equation for the fractional CIR process

Theorem 1.3

Let τ be the first moment of zero hitting by the fractional
Ornstein-Uhlenbeck process with parameters a ∈ R, σ > 0 and H > 1/2.

Then, for 0 ≤ t ≤ τ , the corresponding fractional CIR process satisfies the
following SDE:

dXt = 2aXtdt + 2σ
√
Xt ◦ dBH

t , (8)

where X0 = Y 2
0 > 0 and the integral with respect to the fractional

Brownian motion is defined as the pathwise Stratonovich integral.
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Zero hitting time finiteness

The next natural question regarding the fractional CIR process is finiteness
of its zero hitting time moment.

It is obvious that it coincides with the respective moment of the
corresponding fractional Ornstein-Uhlenbeck process {Yt , t ≥ 0}.
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Preliminary remarks

Now, let {Yt , t ≥ 0} be a fractional Ornstein-Uhlenbeck process. Recall
that it is the solution of the SDE

dYt = aYtdt + σdBH
t , t ≥ 0, a ∈ R, σ > 0. (9)

Let τ be the first moment of reaching zero by the latter.
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Preliminary remarks

Recall again that Y can be written explicitly as

Yt = eat
(
Y0 + σ

∫ t

0
e−asdBH

s

)
. (10)
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Preliminary remarks

From the formula (10), we see that the first zero hitting moment of the
process Y coincides with the first time the integral Jt reaches the level
−Y0/σ.
This integral is a normally distributed random variable with zero mean.
Therefore, due to the symmetry of the normal distribution, the probability
that the integral Jt hits the negative level −Y0/σ coincides with the
probability of reaching the positive level Y0/σ.
Thus, the problem of studying the probability that integral Jt hits the level
x > 0 in a finite time arises.
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Main theorem

Let τ be the first moment of zero hitting by the fractional
Ornstein-Uhlenbeck process (and consequently by the corresponding
fractional CIR process with zero “mean” parameter).

Theorem 1.4

(1) If a ≤ 0, then P(τ <∞) = 1.

(2) If a > 0, then P(τ <∞) ∈ (0, 1), and we have the upper bound

P(τ <∞) ≤ C1

(
Y0

σ

) 1
H
−2

exp

(
− a2HY 2

0

σ2Γ(2H + 1)

)
, (11)

where C1 > 0 is a constant.
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Definition of the fractional CIR process

Consider the process Y = {Yt , t ≥ 0} that satisfies the following SDE
until its first zero hitting:

dYt =
1

2

(
k

Yt
− aYt

)
dt +

σ

2
dBH

t , Y0 > 0, (12)

where a, k ∈ R, σ > 0 and {BH
t , t ≥ 0} is a fractional Brownian motion

with the Hurst parameter H ∈ (0, 1).
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Definition of the fractional CIR process

Definition 1.5

Let H ∈ (0, 1) be an arbitrary Hurst index, {Yt , t ≥ 0} be the process that
satisfies the equation (12) and τ be the first moment of reaching zero by
the latter.
The fractional Cox-Ingersoll-Ross process is the process {Xt , t ≥ 0} such
that for all t ≥ 0, ω ∈ Ω:

Xt(ω) = Y 2
t (ω)1{t<τ(ω)}. (13)
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Definition of the fractional CIR process

Remark 1.6

If k = 0, then Y is a fractional Ornstein-Uhlenbeck process and this
definition coincides with the definition of the fractional CIR process with
zero “mean” parameter given before.
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Equation for the fractional CIR process

Similarly to the case k = 0, the definition of the fractional CIR process is
natural as the following theorem holds:

Theorem 1.7

Let τ be the first moment of hitting zero by Y .
For 0 ≤ t ≤ τ the fractional CIR process satisfies the following SDE:

dXt = (k − aXt)dt + σ
√

Xt ◦ dBH
t , (14)

where X0 = Y 2
0 > 0 and the integral with respect to the fractional

Brownian motion is defined as the pathwise Stratonovich integral.
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Proof.

Denote τ = inf{s > 0 : Ys = 0} and for a fixed ω ∈ Ω consider an
arbitrary t = t(ω) < τ .
According to Definition 1.5,

Xt = Y 2
t =

(√
X0 +

1

2

∫ t

0

(
k

Ys
− aYs

)
ds +

σ

2
BH
t

)2

. (15)

Consider an arbitrary partition of the interval [0, t]:

0 = t0 < t1 < t2 < . . . < tn−1 < tn = t.

Using (15), we get
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Xt =
n∑

i=1

(
Xti − Xti−1

)
+ X0 =

=
n∑

i=1

([√
X0 +

1

2

∫ ti

0
(
k

Ys
− aYs)ds +

σ

2
BH
ti

]2
−

−
[√

X0 +
1

2

∫ ti−1

0

(
k

Ys
− aYs

)
ds +

σ

2
BH
ti−1

]2)
+ X0 =

= X0 +
n∑

i=1

[
2
√
X0 +

1

2

(∫ ti

0

(
k

Ys
− aYs

)
ds +

∫ ti−1

0

(
k

Ys
− aYs

)
ds

)
+

+
σ

2

(
BH
ti

+ BH
ti−1

)][1

2

∫ ti

ti−1

(
k

Ys
− aYs

)
ds +

σ

2

(
BH
ti
− BH

ti−1

)]
.
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Expanding the brackets in the last expression, we obtain:

Xt =
n∑

i=1

√
X0

∫ ti

ti−1

(
k

Ys
− aYs

)
ds+

+
1

4

n∑
i=1

(∫ ti

0

(
k

Ys
− aYs

)
ds +

∫ ti−1

0

(
k

Ys
− aYs

)
ds

)
×

×
∫ ti

ti−1

(
k

Ys
− aYs

)
ds +

σ

4

n∑
i=1

(
BH
ti

+ BH
ti−1

)∫ ti

ti−1

(
k

Ys
− aYs

)
ds+

+σ
√
X0

n∑
i=1

(
BH
ti
− BH

ti−1

)
+
σ2

4

n∑
i=1

(
BH
ti
− BH

ti−1

)(
BH
ti

+ BH
ti−1

)
+

+
σ

4

n∑
i=1

(∫ ti

0

(
k

Ys
− aYs

)
ds +

∫ ti−1

0

(
k

Ys
− aYs

)
ds

)(
BH
ti
− BH

ti−1

)
.

(16)
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Let the mesh ∆t of the partition tend to zero. The first three summands

n∑
i=1

√
X0

∫ ti

ti−1

(
k

Ys
− aYs

)
ds+

+
1

4

n∑
i=1

(∫ ti

0

(
k

Ys
− aYs

)
ds +

∫ ti−1

0

(
k

Ys
− aYs

)
ds

)
×

×
∫ ti

ti−1

(
k

Ys
− aYs

)
ds +

σ

4

n∑
i=1

(
BH
ti

+ BH
ti−1

)∫ ti

ti−1

(
k

Ys
− aYs

)
ds →

→
∫ t

0

(
k

Ys
− aYs

)(√
X0 +

1

2

∫ s

0

(
k

Yu
− aYu

)
du +

σ

2
BH
s

)
ds =

=

∫ t

0

(
k − aY 2

s

)
ds =

∫ t

0
(k − aXs) ds, ∆t → 0,

(17)
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and the last three summands

σ
√

X0

n∑
i=1

(
BH
ti
− BH

ti−1

)
+
σ2

4

n∑
i=1

(
BH
ti
− BH

ti−1

)(
BH
ti

+ BH
ti−1

)
+

+
σ

4

n∑
i=1

(∫ ti

0

(
k

Ys
− aYs

)
ds +

∫ ti−1

0

(
k

Ys
− aYs

)
ds

)(
BH
ti
− BH

ti−1

)
→

→ σ

∫ t

0

(√
X0 +

1

2

∫ s

0

(
k

Yu
− aYu

)
du +

σ

2
BH
s

)
◦ dBH

s =

= σ

∫ t

0
Ys ◦ dBH

s = σ

∫ t

0

√
Xs ◦ dBH

s , ∆t → 0.

(18)

Yuliya Mishura SDE involving fBm 2021 28 / 40



Thus, the fractional Cox – Ingersoll – Ross process, introduced in Definition
1.5, satisfies the SDE of the form

Xt = X0 +

∫ t

0
(k − aXs) ds + σ

∫ t

0

√
Xs ◦ dBH

s , (19)

where
∫ t
0

√
Xs ◦ dBH

s is a pathwise Stratonovich integral.
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Remark 1.8

The passage to the limit in (18) is correct since the left-hand side of the
equation (16) does not depend on the partition and the limit in formula
(17) exists as the pathwise Riemann integral, therefore the corresponding
pathwise Stratonovich integral also exists.
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Hitting zero by the fractional CIR process (case k > 0)

Just as in the case k = 0, let us consider the question of finiteness of the
zero hitting time moment by the fractional CIR process.
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Theorem 1.9

Let {BH
t , t ≥ 0} be a fractional Brownian motion with the Hurst index H.

Then, ∀ω ∈ Ω,∀T > 0,∀δ > 0,∀0 ≤ s ≤ t ≤ T ∃C = C (T , ω, δ) ∈ R :

|BH
t − BH

s | ≤ C |t − s|H−δ.

Moreover, for any p > 0 E (C (T , ω, δ))p <∞.
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Zero hitting: k > 0, H > 1/2

Theorem 1.10

Let k > 0,H > 1/2. Then the process {Yt , t ≥ 0}, defined by the
equation (12) (and consequently the corresponding fractional CIR
process), is strictly positive a.s.

Compare with H = 1/2! Only for 2k ≥ σ2 we have such result, otherwise
CIR process approaches zero.
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Proof.

By contradiction. Assume that a > 0 and let for some ω ∈ Ω
τ = inf{t > 0 : Xt = 0} = inf{t > 0 : Yt = 0} <∞. For all ε ∈ (0,Y0)
let us also introduce the last moment of hitting the level of ε before the
first zero reaching:

τε := sup{t ∈ (0, τ) : Yt = ε}.

Consider δ such that both inequalities H − δ > 1/2 and 1 + δ − H < 1/2
hold. According to the definition of τ, τε and Y , the following equality is
true:

−ε = Yτ − Yτε =
1

2

∫ τ

τε

(
k

Ys
− aYs

)
ds +

σ

2

(
BH
τ − BH

τε

)
.
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Note that on the interval (τε, τ) the process Ys ∈ (0, ε), hence
∀s ∈ (τε, τ):

k

Ys
− aYs ≥

k

ε
− aε. (20)

From this and Theorem 1.9, it follows that

σ

2
C |τ − τε|H−δ ≥

σ

2

∣∣∣BH
τ − BH

τε

∣∣∣ ≥ 1

2

(
k

ε
− aε

)
(τ − τε) + ε.

Yuliya Mishura SDE involving fBm 2021 35 / 40



It is clear that there exists ε̃ > 0 such that ∀ε < ε̃ : k
ε − aε > k

2ε . Then, by
choosing an arbitrary ε < ε̃, we have:

σ

2
C |τ − τε|H−δ ≥

k

4ε
(τ − τε) + ε. (21)

For x ≥ 0 consider the function

Fε(x) =
k

4ε
x − σ

2
CxH−δ + ε.
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Let us show that there exists ε∗ ∈ (0, ε̃) such that for all ε < ε∗ and for all
x > 0 : Fε(x) > 0. It is easy to check that Fε(0) = ε > 0 and Fε is convex
on R+\{0} (its second derivative is strictly positive on this set), so it is
enough to examine the sign of the function in its critical points.

F ′(x̃) =
k

4ε
− σ (H − δ)

2
CxH−δ−1 = 0 =⇒

=⇒ x̃ =

(
k

2σεC (H − δ)

)1/(H−δ−1)
=

=

(
2σC (H − δ)

k

)1/(1+δ−H)

ε1/(1+δ−H).

After some calculations we get

F (x̃) =
1

2

(
2(H − δ)

k

) H−δ
1+δ−H

(σC )
1

1+δ−H (H − δ − 1)ε
H−δ

1+δ−H + ε.
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From the choice of δ it follows that H−δ
1+δ−H > 1, hence ∀K ∈ R ∃ε∗ > 0 :

ε− Kε
H−δ

1+δ−H > 0, ∀ε < ε∗.

Choosing the corresponding ε∗ for

K := −1

2

(
2(H − δ)

k

) H−δ
1+δ−H

(σC )
1

1+δ−H (H − δ − 1)

and choosing an arbitrary ε < min{ε̃, ε∗} we obtain that

Fε(x) > 0 ∀x > 0.

However, from (21) it follows that

Fε(τ − τε) ≤ 0.

Yuliya Mishura SDE involving fBm 2021 38 / 40



The contradiction obtained proves the theorem for a > 0. If a ≤ 0, instead
of (20) the following bound can be used:

k

Ys
− aYs ≥

k

ε
. (22)
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