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Lecture 6

Parameter estimation in the fractional models
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Now we develop parameter estimation for the models that, while being
simple enough, already depart from the canons of self-similarity. They can
take into account both the independence of process increments over short
time intervals and the availability of memory at longer intervals. In fact,
this is the simplest version of the multi-fractional Brownian motion. More
precisely, we consider so called mixed fractional Brownian motion

MH
t = aBH

t + bWt , t ≥ 0.

This process was introduced by P. Cheridito and studied from the
probabilistic point of view, e.g., in [Cheridito(2001)]. As we understand,
process MH was introduced with the aim to consider models of financial
markets that are simultaneously arbitrage-free and have a memory. The
applications of mixed fBm to finance and network traffic as well as the
existence-uniqueness problems for the SDE involving mixed fBm, were
considered in many papers, see [Androshchuk and Mishura(2006),
Filatova(2008), Mishura and Shevchenko(2012), Mishura(2008)]
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It turned out that in these models, in a sense, the Wiener process
predominates. For example, for H > 3/4 the mixed fBm is equivalent in
measure to the Wiener process and is a semimartingale with respect to the
natural filtration. However, the presence of fBm calls for the necessity of
estimating the Hurst parameter and scaling parameters a and b. Taking
into account numerous articles in which statistical inference for the Wiener
process and fBm, considered separately, is based on the asymptotic
behavior of power variations (see, e.g., [Nourdin(2012)] and
[Nourdin et al.(2010)]), we obtained and present now the results
concerning both the weak and the almost sure asymptotic behavior of
power variations of a linear combination of independent Wiener process
and fBm. Theorems on weak convergence are based on the method of
conditioning. Despite incomparably more complex calculations and
estimates for variances and covariances, we succeeded not only in obtaining
limit theorems, but also in calculating the exact values of numerical
characteristics, using the fact that the processes are independent and
Gaussian. These results are of independent interest. Then they are used to
construct strongly consistent parameter estimators in mixed models.
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Note that the results concerning the mixed fractional models are common
with G.Shevchenko. We consider the following stochastic process, that is
called a mixed fractional Brownian motion,

MH
t = aBH

t + bWt , t ≥ 0, (1)

where a and b are some non-zero coefficients, W is a Wiener process, and
BH is a fBm with Hurst index H ∈ (0, 1). Processes W and BH are
assumed to be independent.

The advantage of the model is that it combines the properties of both the
memoryless process and process with memory. Moreover, due to its simple
linear structure, we can investigate its properties for any H ∈ (0, 1).

We consider statistical identification of model (1), i. e. the statistical
estimation of the model parameters. The principal attention will be given
to the estimation of H, though we will also present estimators for a and b.
The estimators are partially based on both weak and almost sure
asymptotic behavior of mixed power variations that are related to the
components of the model.
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Note that asymptotic behavior of power variations and, more generally, of
non-linear transformations of stationary Gaussian sequences was studied in
[Breuer and Major(1983), Dobrushin and Major(1979),
Giraitis and Surgailis(1985), Taqqu(1975)], and statistical estimation for
fBm and multifractional processes with the help of power variations, in
[Benassi et al.(1998), Coeurjolly(2001), Coeurjolly(2005),
Giraitis et al.(1999), Istas and Lang(1997), Kent and Wood(1997)].
Weighted power variations serving similar purposes for stochastic
differential equations driven by fBm, were studied in [Nourdin(2008),
Nourdin et al.(2010), Kubilius, Mishura and Ralchenko(2017)].
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Concerning the parameter estimation in the mixed model, in particular,
[Cai et al.(2016)] addresses the estimation of drift parameter in a model
with mixed fBm. The article [Filatova(2008)] proposes an estimation
procedure for a, b and H, which is based on the empirical moments of
MH ; the consistency properties are not investigated, only empirical studies
for H = 0.25 and H = 0.75 are presented. The article [Xiao et al.(2011)]
proposes maximum likelihood estimators of parameters in the mixed model
based on the observations of the process at integer points, this is so called
low-frequency data. In [Achard and Coeurjolly(2010)], the authors
construct several estimators based on discrete variation. They also work in
the low-frequency setting, which is essentially different from the
high-frequency setting we consider. In both settings, the first order
difference of the observed series is a stationary sequence. However, in the
low-frequency setting the covariance does not depend on the number of
observations, while in the high-frequency one, the covariance structure is
very different.
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Mention that for H > 1/2, in a small scale a mixed fBm behaves like the
Wiener process. Thus, the increments of Wiener process become more and
more dominating as the partition becomes finer, which makes estimation
of the Hurst parameter much harder in the case where H > 1/2.

Our main aim is the estimation of the parameters of the process (1) based
on its single observation on a uniform partition of a fixed interval. As it
was mentioned above, we use power variations of this process. We remark
that, in contrast to the pure fractional case, there is no self-similarity
property in the mixed model (1), so we cannot directly apply the results of
[Breuer and Major(1983), Dobrushin and Major(1979),
Giraitis and Surgailis(1985), Taqqu(1975)] on the asymptotic behavior of
sums of transformed stationary Gaussian sequences.
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For this reason we need to study the asymptotic behavior as n→∞ of
“mixed” power variations of the form

n−1∑
i=0

(
W(i+1)/n −Wi/n

)p (
BH

(i+1)/n − BH
i/n

)r
,

involving increments of independent fBm BH and Wiener process W ,
where p ≥ 0, r ≥ 0 are fixed integer parameters. For statistical purposes,
in order to construct strongly consistent estimators, we mainly need the
almost sure behavior of the power variations. However, we also study their
weak behavior, which is of independent interest. In particular, the
calculation of the numerical characteristics of the limit Gaussian
distribution and distribution involving standard Rosenblatt random
variable, is provided.
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Let W = {Wt , t ≥ 0} be a standard Wiener process and
BH = {BH

t , t ≥ 0} be an independent of W fBm with Hurst parameter
H ∈ (0, 1), that is, a Gaussian centered process with covariance function

EBH
s BH

t = 1/2
(
s2H + t2H − |t − s|2H

)
,

both of them are defined on a complete probability space (Ω,F ,P).

For a function X : [0, 1]→ R and integers n ≥ 1, we denote
∆n

i X = X(i+1)/n − Xi/n, i = 0, 1, . . . , n − 1. In this section we will study
the asymptotic behavior as n→∞ of the following mixed power variations

n−1∑
i=0

(∆n
i W )p

(
∆n

i B
H
)r
,

where p ≥ 0, r ≥ 0 are fixed integer numbers.
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Since ∆n
i W and ∆n

i B
H are centered Gaussian random variables with

variances n−1 and n−2H respectively, we get that

E
[

(∆n
i W )p

(
∆n

i B
H
)r ]

= n−rH−p/2µpµr ,

where for an integer m ≥ 1

µm = E [N (0, 1)m ] = (m − 1)!! 1m is even

is the mth moment of the standard Gaussian law;
(m − 1)!! = (m − 1)(m − 3) . . . is the double factorial.

In view of this, we will study centered sums of the form

SH,p,r
n =

n−1∑
i=0

(
nrH+p/2 (∆n

i W )p
(

∆n
i B

H
)r
− µpµr

)
.

Denote

ρH(m) = E
[
BH

1

(
BH
m+1 − BH

m

) ]
=

1

2

(
|m + 1|2H + |m − 1|2H − 2 |m|2H

)
(2)

the covariance of the so-called fractional Gaussian noise
{
BH
k+1 − BH

k

}
.
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The following lemma contains an auxiliary result for calculating the
characteristics of limit distributions.

Lemma 1.1

If ξ, η are centered and jointly Gaussian with unit variance and covariance
ρ, then for any r ≥ 1,

E [ ξrηr ] =

r/2∑
l=0

(r !)2

(2l)!((r − 2l)!!)2
ρ2l ,

if r is even, and

E [ ξrηr ] =

(r−1)/2∑
l=0

(r !)2

(2l + 1)!((r − 2l − 1)!!)2
ρ2l+1,

if r is odd.

Now we can control the limit behavior of the variance of SH,p,r
n for

different values of H.
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Proposition 1

1 If p and r are even, r ≥ 2, then
(i) for H ∈ (0, 3/4)

E
[ (

SH,p,r
n

)2
]
∼
(
σ2
H,rµ

2
p + σ2

p,r

)
n, n→∞,

where σ2
H,r =

∑r/2
l=1

(r !)2

(2l)!((r−2l)!!)2

∑∞
m=−∞ ρH(m)2l ,

σ2
p,r = µ2r

(
µ2p − µ2

p

)
;

(ii) for H = 3/4

E
[ (

S3/4,p,r
n

)2
]
∼ σ2

3/4,rµ
2
p n log n, n→∞,

where σ3/4,r = 3r(r − 1)!!/8;
(iii) for H ∈ (3/4, 1)

E
[ (

SH,p,r
n

)2
]
∼ σ2

H,rµ
2
p n

4H−2, n→∞,

where σ2
H,r = H2(2H−1)r2((r−1)!!)2

2(4H−3) .
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Proposition 2

2 If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1)

E
[ (

SH,p,r
n

)2
]

= nµ2pµ2r .

3 If p is even and r is odd, then
(i) for H ∈ (0, 1/2]

E
[ (

SH,p,r
n

)2
]
∼ n

(
σ2
H,rµ

2
p + σ2

p,r

)
, n→∞,

where σH,1 = 1H=1/2,

σ2
H,r =

(r−1)/2∑
l=1

(r !)2

(2l + 1)!((r − 2l − 1)!!)2

∞∑
m=−∞

ρH(m)2l+1+(r !!)21H= 1
2
, r ≥ 3;

(ii) for H ∈ (1/2, 1),

E
[ (

SH,p,r
n

)2
]
∼ n2Hµ2

pµ
2
r+1, n→∞.
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The following theorem summarizes the weak limit behavior of SH,p,r
n .

Theorem 1.2

We have the following weak convergence, with the variances defined in
Proposition 1.

1 If p and r are even, r ≥ 2, then
(i) for H ∈ (0, 3/4)

n−1/2SH,p,r
n

d−−→ N (0, σ2
H,rµ

2
p + σ2

p,r ), n→∞; (3)

(ii) for H = 3/4

S
3/4,p,r
n√
n log n

d−−→ N (0, σ2
3/4,rµ

2
p), n→∞; (4)

(iii) for H ∈ (3/4, 1)

n1−2HSH,p,r
n

d−−→ σH,rµpζ2H−1, n→∞, (5)

where ζ2H−1 is the standard Rosenblatt random variable with Hurst
parameter 2H − 1.
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Theorem 1.3
2 If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1)

n−1/2SH,p,r
n

d−−→ N (0, µ2pµ2r ). (6)

3 If p is even and r is odd, then
(i) for H ∈ (0, 1/2]

n−1/2SH,p,r
n

d−−→ N
(
0, σ2

H,rµ
2
p + σ2

p,r

)
, n→∞; (7)

(ii) for H ∈ (1/2, 1)

n−HSH,p,r
n

d−−→ N
(
0, µ2

pµ
2
r+1

)
, n→∞. (8)
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Remark 1

For r = 0 we have the pure Wiener case, so for any H ∈ (0, 1)

n−1/2SH,p,r
n

d−−→ N
(
0, µ2p − µ2

p

)
, n→∞.

Also note that in the case p = 0, r = 1 the limit variance in (7) vanishes.
Obviously, in this case

n−HSH,0,1
n = BH

1 ,

so it has the standard normal distribution.
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The next result explains the almost sure behavior of SH,p,r
n .

Theorem 1.4

Let ε > 0 be arbitrary. Then a. s.:

1 If r = 0, then SH,p,r
n = o(n1/2+ε), n→∞.

2 If p and r ≥ 2 are even, then
(i) for H ∈ (0, 3/4] SH,p,r

n = o(n1/2+ε), n→∞.
(ii) for H ∈ (3/4, 1) SH,p,r

n = o(n2H−1+ε), n→∞.

3 If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1)

SH,p,r
n = o(n1/2+ε), n→∞.

4 If p is even and r is odd, then
(i) for H ∈ (0, 1/2] SH,p,r

n = o(n1/2+ε), n→∞.
(ii) for H ∈ (1/2, 1) SH,p,r

n = o(nH+ε), n→∞.

In particular, for any H ∈ (0, 1) the following version of the ergodic

theorem takes place: n−1SH,p,r
n → 0 a. s., n→∞.
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Now we turn to the question of parametric estimation in the mixed model

MH
t = aBH

t + bWt , t ∈ [0,T ], (9)

where a, b are non-zero numbers, which we assume to be positive, without
loss of generality. Our primary goal is to construct a strongly consistent
estimator for the Hurst parameter H, given a single observation of MH .

Basing on the method of relative entropies, it was established in
[Cheridito(2001)] that for H ∈ (3/4, 1) the measure induced by MH in
C [0,T ] is equivalent to that of bW . Therefore, the property of almost
sure convergence in this case is independent of H. Consequently, no
strongly consistent estimator for H ∈ (3/4, 1) based on a single
observation of MH exists. Denote ∆n

i X = XT (i+1)/n − XTi/n and

VH,p,r
n =

n−1∑
i=0

(∆n
i W )p

(
∆n

i B
H
)r
.
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Consider the quadratic variation of MH , i. e.

VH,2
n :=

n−1∑
i=0

(
∆n

i M
H
)2

= a2VH,0,2
n + 2abVH,1,1

n + b2VH,2,0
n .

Note that VH,2
n depends only on the observed process but not on H. We

use this notation to specify the distribution. Namely, we will use it to refer
to the limit behavior of the quadratic variation for a specified value of the
Hurst parameter H.

By Theorem on strong convergence, we have that

VH,0,2
n ∼ T 2Hn1−2H , VH,2,0

n → T , VH,1,1
n = o(n1/2−H), n→∞.

Therefore, the asymptotic behavior of VH,2
n depends on whether H < 1/2

or not.
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Precisely, for H ∈ (0, 1/2),

VH,2
n ∼ a2T 2Hn1−2H , n→∞, (10)

so the quadratic variation behaves similarly to that of a scaled fBm.

For H ∈ (1/2, 1),
VH,2
n → b2T , n→∞, (11)

so the quadratic variation behaves similarly to that of a scaled Wiener
process.

Let us consider the cases H < 1/2 and H > 1/2 individually in more detail.
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We have seen above that this case is similar to the pure fBm case.
Unsurprisingly, the same estimators work, which is precisely stated below.

Theorem 1.5

For H ∈ (0, 1/2), the following statistics

Ĥk =
1

2

(
1− 1

k
log2 V

H,2
2k

)
and

H̃k =
1

2

(
log2

VH,2
2k−1

VH,2
2k

+ 1

)
are strongly consistent estimators of the Hurst parameter H.
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Remark 2

At first sight, there is no clear advantage of Ĥk or H̃k . But a careful
analysis shows that H̃k is better. Indeed,

Ĥk = H − log2 a + H log2 T

k
+ o

(
k−1

)
, k →∞, (12)

while
H̃k = H + O

(
2k(2H−1)

)
+ o

(
2k(−1/2+ε)

)
, k →∞. (13)

Now it is absolutely clear that H̃k performs much better (unless one hits
the jackpot by having aTH = 1).
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Now we turn to the question of asymptotic normality of the estimators.
Note that in the purely fractional case, the estimator H̃k is asymptotically
normal for all H ∈ (0, 3/4). In the mixed case, the asymptotic normality
ends at H = 1/4.

Proposition 3

For H ∈ (0, 1/4),

2k/2
(
H̃k − H

)
d−−→ N

(
0, (σ′H)2

)
, k →∞,

where σ′H = 1√
2 log 2

(
ρ′H,0 + 2

∑∞
m=1 ρ

′
H,m

)1/2
,

ρ′H,m = E

[((
BH

1

)2
− 22H−1

(
BH

1
2

)2
− 22H−1

(
BH

1 − BH
1
2

)2
)

×
((

BH
m+1 − BH

m

)2
− 22H−1

(
BH
m+ 1

2
− BH

m

)2
− 22H−1

(
BH
m+1 − BH

m+ 1
2

)2
)]
.
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Now let H ∈ (1/4, 1/2). (We omit H = 1/4 for two reasons: first, it is
hard to distinguish this case statistically from H 6= 1/4; second, in this
case it is shown exactly as in Proposition above that 2k/2(H̃k − H)
converges to a non-central limit law.) In this case neither Ĥk nor H̃k is
asymptotically normal. In fact, a careful analysis of the proof of
Proposition above shows that 2(1−2H)k(H̃k − H) converges to some
constant. Nevertheless, it is possible to construct an asymptotically normal
estimator by canceling this constant out. To this end, one has to consider

UH,2
k = VH,2

2k−1 − VH,2
2k

instead of VH,2
2k

. For well-definiteness we introduce the notation

log2+ x =

{
log2 x , x > 0,

0, x ≤ 0.
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Theorem 1.6

For H ∈ (0, 1/2), the statistic

H̃
(2)
k =

1

2

(
log2+

UH,2
k−1

UH,2
k

+ 1

)

is a strongly consistent estimator of H, moreover, for any ε > 0,

H̃
(2)
k = H + o

(
2k(−1/2+ε)

)
, k →∞. (14)

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 27 / 84



Theorem 1.7

The estimator H̃
(2)
k is asymptotically normal:

2k/2
(
H̃

(2)
k − H

)
d−−→ N

(
0, (σ′′H)2

)
, k →∞,

with

σ′′H =
1

(1− 22H−1) log 2

(
ρ′′H,0 + 2

∞∑
m=1

ρ′′H,m

)1/2

,

ρ′′H,m = E

[(
s1

0 − (cH + 1)
(
s

1/2
0 + cH(s

1/2
1/2

)
+ cH

(
s

1/4
0 + s

1/4
1/4 + s

1/4
1/2 + s

1/4
3/4

))
×
(
s1
m − (cH + 1)

(
s

1/2
m + s

1/2
m+1/2

)
+ cH

(
s

1/4
m + s

1/4
m+1/4 + s

1/4
m+1/2 + s

1/4
m+3/4

))]
;

here sht =
(
BH
t+h − BH

t

)2
, cH = 22H−1.
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Remark 3

Despite H̃
(2)
k has asymptotically a better rate of approximation than H̃k for

H ∈ (1/4, 1/2), its the asymptotic variance is high; it is practically useless
for k ≤ 10.

Now we turn to estimation of the scale coefficients a and b. As it is known
from [van Zanten(2007)], for H ∈ (0, 1/4) the measure induced by MH in
C [0,T ] is equivalent to that of aBH . This not only gives another
explanation why the results for H ∈ (0, 1/4) are essentially the same as for
fBm alone, but also has another important consequence: for H ∈ (0, 1/4)
it is not possible to estimate b consistently.
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Proposition 4

For H ∈ (0, 1/2), the statistic

ã2
k = 2k(2H̃k−1)T−2H̃kVH,2

2k

is a strongly consistent estimator of a2.
For H ∈ (1/4, 1/2) the statistic

b̃2
k =

21−2H̃
(2)
k VH,2

2k−1 − VH,2
2k(

21−2H̃
(2)
k − 1

)
T

is a strongly consistent estimator of b2.

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 30 / 84



Now we move to the case H ∈ (1/2, 1). In view of (11), both Ĥk and H̃k

converge to 1/2 for H ∈ (1/2, 1), so they are not suitable for estimating

H. The solution is to use UH,2
k = VH,2

2k−1 − VH,2
2k

, rather than VH,2
2k

, for the
construction of estimators. The resulting estimators work also for
H ∈ (0, 1/2).

Theorem 1.8

For H ∈ (0, 1/2) ∪ (1/2, 3/4), the statistics

Ĥ
(2)
k =

1

2

(
1− 1

k
log2+ UH,2

k

)
and

H̃
(2)
k =

1

2

(
log2+

UH,2
k−1

UH,2
k

+ 1

)
are strongly consistent estimators of the Hurst parameter H.
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Remark 4

We will see in Simulations that H̃
(2)
k performs very poorly, and Ĥ

(2)
k

performs somewhat better, despite having worse asymptotic rate of
convergence.

As in the case H ∈ (0, 1/2), the estimator H̃
(2)
k is asymptotically normal

for H ∈ (1/2, 3/4); however, the limit Gaussian law comes out of the
quadratic variation of the Wiener process, so the convergence rate is
different, and the expression for the asymptotic variance is much simpler.
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Theorem 1.9

For H ∈ (1/2, 3/4) and any ε > 0, the statistic

H̃
(2)
k =

1

2

(
log2+

UH,2
k−1

UH,2
k

+ 1

)

is a strongly consistent estimator of H, moreover, it satisfies

H̃
(2)
k = H + o

(
2k(2H−3/2+ε)

)
, k →∞. (15)

It is asymptotically normal:

2k(3/2−2H)
(
H̃

(2)
k − H

)
d−−→ N

(
0, (σ′′H)2

)
, k →∞,

with

σ′′2H =
b2T 1−2H

√
24H−3 + 1

a222H−1(22H−1 − 1) log 2
.
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The estimation of the scale coefficient a is similar to the case
H ∈ (0, 1/2), but we have to use UH,2

k and H̃
(2)
k instead of VH,2

2k
and H̃k ;

the resulting estimator works also for H ∈ (0, 1/2). Estimating b2 is a lot
easier, thanks to (11).

Proposition 5

For H ∈ (0, 1/2) ∪ (1/2, 3/4), the statistics

â2
k = 2

k
(

2H̃
(2)
k −1

)
T−2H̃

(2)
k

(
22H̃

(2)
k −1 − 1

)−1

UH,2
k

is a strongly consistent estimator of a2.
For H ∈ (1/2, 1), the statistics

b̂2
k =

VH,2
2k

T

is a strongly consistent estimator of b2.
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As we have already mentioned in the beginning of this section, it is
impossible to make conclusions about the value of H in this case. In fact,
we have

n1/2(VH,2
n − b2T )

d−−→ b2T N (0, 2), n→∞.

Indeed, n1/2(VH,2,0
n − T )

d−−→ N (0, 2T 2), n→∞, by the classical CLT;

VH,0,2
n ∼ T 2Hn1−2H = o

(
n−1/2

)
, n→∞, and for any ε > 0

VH,1,1
n = o

(
n−H+ε

)
, n→∞, due to Theorem on strong convergence.

This means that the behavior of VH,2
n is essentially the same as that of the

quadratic power variation of Wiener process, in particular, it says nothing
about H.

Nevertheless, we will study the behavior of quadratic variation in more
detail in order to be able to distinguish between the cases H < 3/4,
considered above, and H > 3/4 statistically.

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 35 / 84



Define

Zk =
2(k−1)/2

b2T
UH,2
k .

Proposition 6

For H ∈ (3/4, 1), the sequence (Zk ,Zk+1, . . . ) converges in distribution as
k →∞ to a sequence (ζ1, ζ2, . . . ) of independent standard Gaussian
variables.

Remark 5

We emphasize a sharp contrast with the case H ∈ (1/2, 3/4), where the
sequence {Zk , k ≥ 1} diverges to +∞, hence, it eventually becomes
positive. This clearly gives a possibility to distinguish statistically between
cases H ∈ (1/2, 3/4) and H ∈ (3/4, 1). (See simulations.)
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Remark 6

For H = 3/4, an analogue of recent Proposition can be proved, that is,
(Zk ,Zk+1, . . . ) converges in distribution as k →∞ to a sequence
(ζ1, ζ2, . . . ) of independent Gaussian variables with unit variance.
However, it can be checked that the limiting distribution now has a

positive mean, namely, E [ ζ1 ] = a2b−2T
1
2

(
1− 2−

1
2

)
. As long as this

value depends on how big is a compared to b, we might be unable to
distinguish this case from H > 3/4. On the other hand, if b is small
relative to a, it might be hard to distinguish this case from H < 3/4.
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It was mentioned in the previous section that the performance of quadratic
variation estimators in the case H ∈ (1/2, 3/4) is not very satisfactory.
One could try to improve it by considering quartic variation of MH

VH,4
n :=

n−1∑
k=0

(
∆n

kM
H
)4

=
4∑

i=0

(
4

i

)
aib4−iVH,4−i ,i

n .

As for the quadratic variation, we have to cancel out the leading term,
considering

UH,4
k = VH,4

2k−1 − 2VH,4
2k

.

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 38 / 84



Theorem 1.10

The statistics

Ĥ
(4)
k = − 1

2k
log2+ UH,4

k

and

H̃
(4)
k =

1

2
log2+

UH,4
k−1

UH,4
k

are strongly consistent estimators of the Hurst parameter H ∈ (1/2, 3/4)
in the mixed model (9).

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 39 / 84



When the scale coefficients a and b are known, the estimation procedure
significantly simplifies, and the quality of estimators is improved. It may
seem unnatural at first glance that the scale coefficients are known while
H is not. However, the case where b is known is quite natural, as we can
have known white noise amplitude with unknown long-range perturbation
of this white noise. The cases of known a or known both coefficients are
less natural, but there is no reason to omit these cases considering only
the case of known b.
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Theorem 1.11

If a is known, then the statistic

Ĥk(a) =
k + 2 log2 a− log2 V

H,2
2k

2(k − log2 T )

is a strongly consistent estimator of H ∈ (0, 1/2), moreover, for any ε > 0,

Ĥk(a) = H + O
(

2k(2H−1)
)

+ o
(

2k(−1/2+ε)
)
, k →∞.

If b is known, then the statistic

H̃k(b) =
1

2

(
log2+

VH,2
2k−1 − b2T

VH,2
2k
− b2T

+ 1

)

is a strongly consistent estimator of H ∈ (0, 3/4), moreover, for any ε > 0,

H̃k(b) = H + o
(

2k(−1/2+ε)
)

+ o
(

2k(2H−3/2+ε)
)
, k →∞.

If a and b are known, then the statistic

Ĥk(a, b) =
k + 2 log2 a− log2+

(
VH,2

2k
− b2T

)
2(k − log2 T )

is a strongly consistent estimator of H ∈ (0, 3/4), moreover, for any ε > 0,

Ĥk(a, b) = H + o
(

2k(−1/2+ε)
)

+ o
(

2k(2H−3/2+ε)
)
, k →∞.
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Remark 7

It can be shown that Ĥk(a) is asymptotically normal for H ∈ (0, 1/4),
H̃k(b), for H ∈ (1/2, 3/4), Ĥk(a, b), for H ∈ (0, 3/4). This is not our
main concern here, so we skip the asymptotic normality results.
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Simulations

In each procedure we take T = 3, a = b = 1, n = 220 and use the
circulant method to simulate values of BH on the uniform partition
{iT/n, i = 0, 1, . . . , n} of [0,T ]. For each value of the Hurst parameter,
we simulate 1000 trajectories of the fBm. Then for each estimator Ȟ we
compute the average µȞ of 1000 obtained values and the mean square
error σȞ, i. e. the square root of the average of values (Ȟ − H)2, and
compare it to the theoretical standard deviation σtȞ, if the latter is
available. Where possible, we make similar procedure for a and/or b.

Each simulation takes about 300 milliseconds on Intel Core i5-3210M
processor, computing all estimators takes about 20 milliseconds.
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In Table 1, we compare the estimators Ĥ20, H̃20, H̃
(2)
20 (observe that all

these estimators are based on the values of fBm on the chosen partition).
We also give values of the estimator ã20; the estimator b̃20 is quite bad:
2–5 values of b̃2

20 out of 10 are negative, others are quite away from the
true value, so we do not give its values.

Table: Values of the quadratic variation based estimators for H ∈ (0, 1/2)

H 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

µĤ20 .0460 .0921 .1381 .1841 .2301 .2760 .3215 .3656 .4055

σĤ20 .0040 .0079 .0119 .0159 .0199 .0240 .0285 .0344 .0445

µH̃20 .0500 .1000 .1500 .2002 .2504 .3013 .3535 .4077 .4612

σH̃20 .0016 .0015 .0014 .0014 .0014 .0019 .0037 .0078 .0112

σtH̃20 .0015 .0015 .0014 .0014

µH̃
(2)
20 .0498 .1000 .1498 .2001 .2498 .2996 .3497 .4006 .4496

σH̃
(2)
20 .0047 .0051 .0053 .0058 .0069 .0082 .0103 .0155 .0345

σtH̃
(2)
20 .0046 .0050 .0054 .0060 .0069 .0082 .0102 .0144 .0269

µã20 1.000 1.000 1.000 1.003 1.007 1.020 1.057 1.146 1.305
σã20 .0200 .0196 .0180 .0175 .0181 .0263 .0591 .1468 .3050

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 44 / 84



The results show that the estimator H̃20 has consistently the best
performance. For H > 1/4, a positive bias is visible, which is not
surprising as it can be checked using the same transformations as in the
proof of Proposition 3 that in this case

H̃k − H ∼ (1− 22H−1)a−2b2T 1−2H2(2H−1)k , k →∞.

The estimator Ĥ20 underestimates all values of H by around 8 %. The
underestimation follows from (12), since aTH > 1. Finally, the relative

error of H̃
(2)
20 is larger than that of H̃20. The mean square error reflects the

theoretical standard deviation quite good for all values of H except 0.4 and
0.45. The latter divergence from the theoretical values is not surprising.
Indeed, a careful check of the proof of Proposition 3 reveals that the error
of the normal approximation is of order 2−Hk , which for values of H close
to 1/2 is comparable with the order 2−k/2 of the Gaussian term.

The estimator ã20 is quite reliable, especially for smaller values of H; for
H > 1/4 it has a positive bias (inherited from H̃k).
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Table 2 compares estimators Ĥ
(2)
20 and H̃

(2)
20 of Hurst parameter H. It also

contains a “regression” estimator H̄(2) obtained in the following way: we

consider the linear regression of
{

log2+ UH,2
j , j = m,m + 1, . . . , 19

}
on

{m,m + 1, . . . , 19}, where m = 11, 12, . . . , 15, and take the best
regression (in terms of the coefficient of determination). If r̄ (2) is the
coefficient of the best linear regression, we set H̄(2) = (1− r̄ (2))/2. We
also give the estimator b̂20. Due to uselessness of the estimator â20, we do
not present its values.

It is clear that none of the estimators is reliable: average errors are in most
cases comparable to the length of the range (1/2, 3/4), so they are quite

useless. Only the performance of Ĥ
(2)
20 in the range 0.575–0.7 is

acceptable, but one should be aware of a positive bias.

It is interesting to note that the errors of both H̃
(2)
20 and H̄(2) explode for

H > 5/8. We admit that we found no explanation for this phenomenon.
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Table: Values of the quadratic variation based estimators for H ∈ (1/2, 3/4)

H 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725

µĤ
(2)
20 .6099 .6068 .6152 .6279 .6433 .6615 .6785 .6789 .6713

σĤ
(2)
20 .0850 .0569 .0403 .0284 .0197 .0172 .0328 .0683 .1067

µH̃
(2)
20 .5234 .5440 .5784 .5926 .6150 .6377 .6535 .6250 .6517

σH̃
(2)
20 .1401 .1041 .1167 .1533 .2218 .3854 .6446 .7568 .8520

σtH̃
(2)
20 .0905 .0824 .0999 .1365 .1989 .3021 .4723 .7540 1.2234

µH̄(2) .5148 .5477 .5705 .5920 .6150 .6469 .7178 .7065 .7071

σH̄(2) .0830 .0543 .0549 .0717 .1014 .1607 .3272 .5247 .7174

µb̂20 1.236 1.131 1.071 1.038 1.020 1.011 1.006 1.003 1.002

σb̂20 .2362 .1310 .0713 .0382 .0204 .0109 .0058 .0031 .0018
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Table 3 contains values of
{[

104UH,2
k

]
, k = 10, 11, 12, . . . , 19

}
for

H = 0.7 and H = 0.8. The difference is clearly visible: for H = 0.7 the
sequence is positive, while for H = 0.8 there is a plenty of negative values.

Table: Scaled values of UH,2
k for H = 0.7 and H = 0.8

H = 0.7 869 649 523 3 260 18 78 98 53 50
H = 0.8 665 −620 482 −475 8 −29 −104 −71 −78 −28
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Table 4 contains estimators Ĥ
(4)
20 and H̃

(4)
20 of Hurst parameter H, the

values of H range from 0.525 to 0.725 with step 0.025. We also give a
“regression” estimator H̄(4). It is obtained in the following way: we

consider the linear regression of
{

log2+ UH,4
j , j = m,m + 1, . . . , 19

}
on

{m,m + 1, . . . , 20}, where m = 11, 12, . . . , 16, and take the best
regression (in terms of the coefficient of determination). If r̄ (4) is the
coefficient of the best linear regression, we set H̄(4) = −r̄ (4)/2.

Table: Values of the quartic variation based estimators for H ∈ (1/2, 3/4)

H 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725

µĤ
(4)
20 .4840 .4876 .4997 .5157 .5321 .5509 .5460 .5001 .4450

σĤ
(4)
20 .0414 .0626 .0754 .0846 .0934 .1021 .1793 .2899 .3838

µH̃
(4)
20 .5313 .5527 .5799 .6122 .6103 .6230 .6085 .5064 .3915

σH̃
(4)
20 .1994 .1489 .1595 .2177 .3067 .5534 .8112 .8873 .9655

µH̄(4) .5164 .5484 .5751 .6013 .6249 .7566 .8640 .7561 .5888

σH̄(4) .1531 .0749 .0905 .1309 .2300 .4827 .844 1.155 1.421
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We see that the estimators based on the quartic variation are quite useless
and definitely worse than those based on the quadratic variation. Again,

the errors of H̃
(4)
20 and µH̄(4) explode for H ≥ 5/8. In contrast to the

quadratic variation case, now this phenomenon can be easily explained.
The fact is that the nature of the error changes at H = 5/8: for H < 5/8,

the error comes from the term UH,0,4
k (in the notation of the proof of

Theorem 1.10), which behaves quite smoothly, but for H ≥ 5/8, the main

contribution comes from the fluctuations of UH,4,0
k , which are much wilder.
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Table 5 gives the estimators Ĥ20(a) and Ĥ20(a, b) for H from 0.05 to 0.45
with the step 0.05. Since the errors are very small, we multiply them by
100. We can see that the estimator Ĥ20(a) is comparable to H̃20(a, b) for
H ≤ 1/4; then it becomes worse, but it uses only the knowledge of a.

Table: Values of the estimators for H ∈ (0, 1/2) and known scale coefficients

H 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

µĤ20(a) .05 .1 .15 .2 .25 .3 .349 .397 .44

100σĤ20(a) .007 .007 .006 .006 .009 .024 0.085 0.294 0.964

µĤ20(a, b) .05 .1 .15 .2 .25 .3 .35 .4 .45

100σĤ20(a, b) .007 .007 .006 .006 .006 .006 .006 .006 .007
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Table 6 contains the estimators H̃20(b) and H̃
(2)
20 (a, b) of Hurst parameter

H ∈ [1/2, 1). We multiply average errors by 10 to make them visible.

Table: Values of the estimators for H ∈ [1/2, 3/4) and known scale coefficients

H 0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725

µH̃20(b) .4999 .5249 .5501 .5749 .5999 .6248 .648 .6744 .6934 .7307

10σH̃20(b) .0196 .0288 .0432 .0713 .1251 .2136 .4055 .7316 1.48 2.402

µĤ20(a, b) .5 .525 .55 .575 .6 .625 .65 .6752 .7008 .7306

10σĤ20(a, b) .0011 .0015 .0025 .0043 .0073 .0140 .0252 .0485 .0957 .2398

We see that Ĥ20(a, b) outperforms H̃20(b) by a good margin, but the
advantage of the latter is that it uses only the knowledge of b.
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To facilitate the usage of the estimators, we summarize our findings about
them.

For H ∈ (0, 1/2), it is better to use the estimator H̃ for the Hurst
parameter. The estimator for the scale coefficient a is quite reliable, but
always overestimates the coefficient for H ∈ (1/4, 1/2). The estimator for
b is virtually useless.

For H ∈ (1/2, 3/4), there is no good estimator for the Hurst parameter.
Only the regression estimator H̄(2) is useful for values of H between 0.55
and 0.6, but still the error is comparable with the length of this integral.
The coefficient b can be estimated efficiently, while the estimator for a is
useless. Nevertheless, it is possible to construct efficient estimators for H
using the knowledge of b or of the both scale coefficients.

Finally, for H > 3/4, the estimation of H is not possible (even the
knowledge of the scale coefficients is not helpful). However, it is possible
to distinguish statistically between the cases H > 3/4 and H < 3/4 by

looking at the statistic UH,2
k .
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1 Parameter estimation in the mixed models via power variations

Description of the mixed model and mixed power variations

Exact calculation and asymptotic behavior of the moments of higher
order of mixed power variations

Weak and strong limit theorems for the centered and normalized
mixed power variations

Statistical estimation in mixed model

Simulations

2 Drift parameter estimation in models with mfBm

Multifractional Brownian motion

Upper bounds for the incremental variances of mfBm

Asymptotic growth of the trajectories of mfBm with probability 1

Asymptotic growth with probability 1 of the increments of mfBm

Linear multifractional model

Multifractional Ornstein–Uhlenbeck process
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FBm is widely used in the modeling of long-range dependent processes in
Internet traffic, stock markets, etc. However the stationarity of increments
of fBm means that the behavior of it is the same at each point, and this
substantially restricts the area of its application. In particular, it does not
allow one to model situations, where the regularity at a point depends on
the point. One way to overcome these limitations is to extend the
standard fBm to mfBm. Following this approach, in the present section we
investigate two statistical models with mfBm: the linear model and the
multifractional Ornstein–Uhlenbeck process. For these models we propose
estimators for an unknown drift parameter and prove their strong
consistency. The proofs are based on the asymptotic bounds with
probability 1 for the rate of the growth of the trajectories of mfBm and of
some other functionals of mfBm, including increments and fractional
derivatives.
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Let H : R+ → (0, 1) be a continuous function satisfying the following
conditions:

(M1) There exist constants 0 < h1 < h2 ≤ 1 such that for any t ≥ 0

h1 ≤ Ht ≤ h2.

(M2) There exist constants D > 0 and κ ∈ (0, 1] such that for all t ≥ s > 0

|Ht − Hs | ≤ D |t − s|κ .

A multifractional Brownian motion (mfBm) with functional parameter H
was introduced in [Benassi et al.(1997)]. It is defined by

Yt =

∫
R

e itu − 1

|u|Ht+1/2
W̃ (du), t ≥ 0, (16)

where W̃ (du) is the “Fourier transform” of the white noise W (du), that is
a unique complex-valued random measure such that for all f ∈ L2(R)∫

R
f (u)W (du) =

∫
R
f̂ (u)W̃ (du) a. s.,

see [Benassi et al.(1997), Stoev and Taqqu(2006)].
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The covariance function of mfBm is given by

EYsYt = D(Hs ,Ht)
(
sHs+Ht + tHs+Ht − |s − t|Hs+Ht

)
,

where D(x , y) = π
Γ(x+y+1) sin(π(x+y)/2) , see [Ayache et al.(2000)] or

[Stoev and Taqqu(2006), p. 213]. Note that if Ht is a constant, then the
process Y is an fBm (up to multiplicative constant).

In particular, (
E |Yt |2

)1/2
= C (Ht)t

Ht , (17)

where C (H) =
(

π
HΓ(2H) sin(πH)

)1/2
. Since the function C (H) is bounded

on [h1, h2], we have under assumptions (M1)–(M2)(
E |Yt |2

)1/2
≤ K1t

h2 , t ≥ 1, (18)

for some K1 > 0.
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Denote h3 = min {h1, κ} , h4 = max {h2, κ} , h5 = h4 − h3, where h1,
h2 and κ are the constants from assumptions (M1)–(M2).

Lemma 2.1

Under the assumption (M1), there exists a constant K2 > 0 such that for
all t ≥ s ≥ 0

E(Y (t)− Y (s))2 ≤ K2 |t − s|2Ht + K2(Ht − Hs)2z2(s), (19)

where

z(s) =

{
sh2
(
log2 s + 1

)1/2
, s ≥ 1,

1, 0 < s < 1;
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Remark 8

It follows from the bound (19), from the fact that multifractional process
is Gaussian, and from Kolmogorov’s theorem that under conditions (M1)
and (M2) the process Y with probability 1 has Hölder trajectories up to
order h3 = min {h1, κ} on any finite interval.

Remark 9

There exist different definitions of mfBm in the literature. In particular,
Peltier and Lévy Véhel [Peltier and Lévy Véhel(1995)] introduced mfBm
based on the Mandelbrot–van Ness representation of fBm. This version of
mfBm is often termed a moving-average mfBm. It has different covariance
structure, see [Dobrić and Ojeda(2006)]. Another version of mfBm, a
Volterra-type mfBm. It was studied in
[Boufoussi et al.(2010), Ralchenko and Shevchenko(2010)]. The process
introduced in (16) is sometimes called a harmonizable mfBm to distinguish
it from other types of mfBm.
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Assume that the Hurst function satisfies the conditions (M1)–(M2) and,
additionally, h3 > 1/2. In this case, according to Remark 8, process Y with
probability 1 has Hölder trajectories up to order h3 on any finite interval
[0,T ]. Assume that we have another process, say Z = {Zt , t ∈ [0,T ]},
also having Hölder trajectories up to some order h with h + h3 > 1. In
particular, it can be h = h3. Then there exists an integral

∫ b
a ZsdYs , which

is the limit a.s. of the Riemann sums and has the standard properties (so
called path-wise integral). This integral is defined as∫ b

a
ZdY :=

∫ b

a
(Dαa+Z )(x)(D1−α

b− Yb−)(x)dx . (20)

An evident estimate follows immediately from (20):∣∣∣ ∫ b

a
Z dY

∣∣∣ ≤ sup
a≤x≤b

|(D1−α
b− Yb−)(x)|

∫ b

a
|(Dαa+Z )(x)|dx . (21)
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Remark 10

Bound (19) is inconvenient in the sense that it contains two different
exponents of |t − s| and therefore one should every time relate
corresponding terms depending upon the value of |t − s|. To avoid this
technical difficulty, we establish the next result.

Lemma 2.2

Assume that the Hurst function H satisfies the conditions (M1) and (M2).
Let a, b ∈ R+, b − a ≥ 1. Then

(a) for all t, s ∈ [a, b] such that |t − s| ≤ 1,(
E(Y (t)− Y (s))2

)1/2 ≤ K3 |t − s|h3 z(b),

where K3 = K
1/2
2

(
1 + D2

)1/2
, D is the Hölder coefficient from (M2).

(b) for all t, s ∈ [a, b](
E(Y (t)− Y (s))2

)1/2 ≤ K3 |t − s|h3 (b − a)h5z(b);

(c) for all t1, t2, s1, s2 ∈ [a, b]

(
E (Y (t1)− Y (t2)− Y (s1) + Y (s2))2

)1/2

≤ 2K3 max (|t1 − s1| , |t2 − s2|)h3 (b − a)h5z(b).
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These results can give the maximal exponential bound for the weighted
mfBm. In order to get it, introduce the following notations. Let bk , k ≥ 0,
be a sequence such that b0 = 0, bk+1 − bk ≥ 1, and let a(t) > 0 be an
increasing continuous function such that a(t)→∞ as t →∞, ak = a(bk).

Theorem 2.3

Let the Hurst function H satisfy the conditions (M1) and (M2). Assume
that there exists 0 < γ ≤ 1 such that

∞∑
k=0

b
h2+

γh4
h3

k+1

(
log2 bk+1 + 1

) γ
2h3

ak
<∞. (22)

Then for all 0 < θ < 1, u > 0

P

{
sup
t>0

|Y (t)|
a(t)

> u

}
≤ 2

2
h3
−1

exp

{
−u2(1− θ)2

2A2

}
A8(θ, γ), (23)

Yuliya Mishura (Kyiv University) Mixed and multifractional models 2021 62 / 84



Theorem 2.4

where

A = K1

∞∑
k=0

bh2
k+1

ak
, (24)

A8(θ, γ) = exp

K
1− γ

h3
1 K

γ
h3

3

γA

∞∑
k=0

b
h2+

γh4
h3

k+1

(
log2 bk+1 + 1

) γ
2h3

ak

(
2

2
h3
−1

θ
1
h3

)γ ,

and additionally for all u > A

P

{
sup
t>0

|Y (t)|
a(t)

> u

}
≤ 2

2
h3
−1

e
1
2 exp

{
− u2

2A2

}
A8

(
1−

√
1− A2

u2
, γ

)
.

(25)
Here K1 is the constant from (18).
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Remark 11

Theorem 2.3 remains true if the process Y (t) is considered on the set
t > R, where R > 0 is an arbitrary number. In this case the conditions
(M1) and (M2) are replaced with the assumptions

(M1R) There exist constants 0 < h1R < h2R ≤ 1 such that for any t > R

h1R ≤ Ht ≤ h2R .

(One can put h2R = supt>R Ht .)

(M2R) There exist constants DR > 0 and κ ∈ (0, 1] such that for all
t ≥ s > R

|Ht − Hs | ≤ DR |t − s|κ .
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Theorem 2.5

Let the Hurst function H satisfy the conditions (M1R) and (M2R) for some
R > 0. Then for any δ > 0 there exists a nonnegative random variable
ξ = ξ(δ) such that for all t > R

|Y (t)| ≤
(
th2R+δ ∨ 1

)
ξ a. s., (26)

and there exist positive constants C1 = C1(δ) and C2 = C2(δ) such that
for all u > 0

P(ξ > u) ≤ C1e
−C2u2

. (27)

Let A = K1(Re)h2R

1−e−δ . Then for any γ ∈
(

0, δh3R
h4R
∧ 1
)

there exists a constant

C3 > 0 such that for all u > A

P(ξ > u) ≤ 2
2

h3R
−1

e
1
2 exp

{
− u2

2A2

}
exp

C3

(
1−

√
1− A2

u2

)−γ/h3R

 .

(28)
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Remark 12

The result of Theorem 2.5 cannot be improved substantially. Indeed, Y (t)
is a normal random variable, EY (t) = 0,

√
EY 2(t) = K1t

Ht . Therefore,
Y (t) = ξK1t

Ht , where ξ is a standard random variable. If there exists tm
such that H(tm) = supHt , then Y (tm) = ξK1t

Htm .

Theorem 2.6

Let the Hurst function H satisfy the conditions (M1) and (M2). Then for
any δ > 0 there exists tδ such that for all t > tδ

|Y (t)| ≤
(
th

∗+δ ∨ 1
)
ξ a. s.,

where h∗ = lim supt→∞Ht , ξ is a nonnegative random variable such that
for all u > 0

P(ξ > u) ≤ C1e
−C2u2

for some positive constants C1 = C1(δ) and C2 = C2(δ).
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Let ∆ ∈ (0, 1], T∆ =
{
t = (t1, t2) ∈ R2

+ : t1 −∆ ≤ t2 ≤ t1

}
. Consider

the increment of mfBm Z (t) = Y (t1)− Y (t2), t ∈ T∆. Let bk , k ≥ 0, be
a sequence such that b0 = 0, bk+1 − bk ≥ 1, and let a(t) > 0 be an
increasing continuous function such that a(t)→∞ as t →∞, ak = a(bk).

Theorem 2.7

Let the Hurst function H satisfy the conditions (M1) and (M2). Assume
that there exists 0 < γ ≤ 1 such that

∞∑
l=0

b
2h5γ
h3

l+1 z(bl+1)

al
<∞. (29)

Then for all θ ∈ (0, 1), ε ∈ (0, h3) and λ > 0

E exp

{
λ sup

t∈T∆

|Z (t)|
a(t1)

}
≤ 1

∆
exp

{
λ2A2∆2h3

2(1− θ)2

}
A9(θ, γ, ε),
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Theorem 2.8

where A = K3
∑∞

l=0
z(bl+1)

al
,

A9(θ, γ, ε) = 2
2
ε

+2 exp

{
K3

A

∞∑
l=0

z(bl+1) log(bl+1 − bl)

al

}

× exp


K3

γA42γ
(

1− ε
h3

) 2γ
ε
θ

2γ
h3

∞∑
l=0

z(bl+1)(bl+1 − bl)
2h5γ
h3

al

 .
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Let dk , k ≥ 0, be a strictly decreasing sequence such that d0 = 1, dk ↓ 0 as
k →∞. Let g : (0, 1]→ (0,∞) be a continuous function and gk , k ≥ 0,
be a sequence such that 0 < gk ≤ mindk+1≤t≤dk g(t).

Theorem 2.9

Assume that the assumptions of Theorem 2.7 hold and

∞∑
k=0

dh3
k |log dk |

gk
<∞.

Then for all θ ∈ (0, 1), ε ∈ (0, h3) and λ > 0

I (λ) = E exp

{
λ sup

0≤t2<t1≤t2+1

|Z (t)|
a(t1)g(t1 − t2)

}
≤ exp

{
λ2A2B2

2(1− θ)2

}
A10(θ, γ, ε),

where

B =
∞∑
k=0

dh3
k

gk
, A10(θ, γ, ε) = exp

{
1

B

∞∑
k=0

dh3
k |log dk |

gk

}
A9(θ, γ, ε).
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Corollary 2.10

Let the assumptions of Theorem 2.9 hold. Then for all θ ∈ (0, 1),
ε ∈ (0, h3) and u > 0,

P

{
sup

0≤t2<t1≤t2+1

|Z (t)|
a(t1)g(t1 − t2)

> u

}
≤ exp

{
−u2(1− θ)2

2A2B2

}
A10(θ, γ, ε).

(30)

With the help of Corollary 2.10, we can now state the second main result
of this section, which is the following upper bound for the asymptotic
growth of the increments of mfBm with probability 1.
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Theorem 2.11

For any ε > 0 and any p > 2 there exists a nonnegative random variable
η = η(ε, p) such that for all 0 ≤ t2 < t1 ≤ t2 + 1

|Z (t)| ≤
(
th2+ε
1 ∨ 1

)
(t1 − t2)h3 (|log(t1 − t2)|p ∨ 1) η a. s.,

and there exist positive constants C1 = C1(ε, p) and C2 = C2(ε, p) such
that for all u > 0

P(η > u) ≤ C1e
−C2u2

.
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Consider the simplest linear model, namely

Xt = θt + Yt , t ≥ 0,

where θ ∈ R is an unknown parameter, Yt is an mfBm with the Hurst
function Ht satisfying the conditions (M1)–(M2) of Subsection 1. Assume
that our aim is to estimate the parameter θ by the observations of Xt . Let
us introduce the estimator

θ̂T =
XT

T
= θ +

YT

T
.
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Theorem 2.12

1) The estimator θ̂T is strongly consistent as T →∞.

2) For all T > 0,
T 1−HT

C (HT )

(
θ̂T − θ

)
d
= N (0, 1),

where C (H) =
(

π
HΓ(2H) sin(πH)

)1/2
. Consequently, a confidence

interval of level 1− α is given by

θ̂T ±
C (HT )

T 1−HT
z1−α/2,

where zp denotes the p-quantile of the standard normal distribution.
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Let h3 exceed 1/2. In this subsection we consider the estimation of the
unknown parameter θ ≥ 0 by observations of the process X = {Xt , t ≥ 0}
that is a solution of the SDE of Langevin type,

Xt = x0 + θ

∫ t

0
Xs ds + Yt , (31)

where x0 ∈ R is a known constant, Y = {Yt , t ≥ 0} is an mfBm.

Note that the trajectories of the processes Y and consequently X are a. s.
Hölder continuous up to order h3. Therefore, path-wise integrals∫ T

0 Xs dXs and
∫ T

0 Xs dYs are well defined. One can verify that the
solution of (31) can be represented in the following form

Xt = eθt
(
x0 +

∫ t

0
e−θs dYs

)
.

Using the integration-by-parts, this process can be written as follows

Xt = x0e
θt + θeθt

∫ t

0
e−θsYs ds + Yt . (32)
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We call the process X = {Xt , t ≥ 0} a multifractional Ornstein–Uhlenbeck
process.

Let, more precisely, our goal be to estimate the unknown drift parameter
θ ∈ R by the continuous-time observations on the interval [0,T ]. Consider
the estimator

θ̂T =

∫ T
0 Xs dXs∫ T
0 X 2

s ds
. (33)

Since by (31), dXs = θXs ds + dYs , we have that θ̂T admits the following
stochastic representation

θ̂T = θ +

∫ T
0 Xs dYs∫ T
0 X 2

s ds
.
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Lemma 2.13

Let ε > 0, T > 1, θ > 0. Then∣∣∣∣∫ T

0
Xs dYs

∣∣∣∣ ≤ ζ2T h2+ε+1eθT , (34)

where ζ ≥ 0 is a random variable with the following property: there exist
positive constants C1 and C2 not depending on T such that for all u > 0

P(ζ > u) ≤ C1e
−C2u2

.

Theorem 2.14

Let θ > 0. Then the estimator θ̂T is strongly consistent as T →∞.

Theorem 2.15

Let θ = 0. Then the estimator θ̂T is consistent as T →∞.
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