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Binary moves I

So far, we used unary moves and we introduced binary moves in an exercise.
Why are binary moves needed? In Physics, interparticle collisions cause a
change of category (state) of two particles. A binary collision is represented
by two particles in the initial categories (also called cells in this case) (i, j) and
ending in the final categories (k , l). A binary transition can be represented by
nkl

ij |n, where

n = (n1, . . . , ni , . . . , nj , . . . , nk , . . . , nl , . . . , ng) (1)

and

nkl
ij = (n1, . . . , ni − 1, . . . , nj − 1, . . . , nk + 1, . . . , nl + 1, . . . , ng). (2)

A generalization of the Ehrenfest Brillouin transition probability to binary moves
is the following, for i, j, k , l all different:

P(nkl
ij |n) = P(nij |n)P(nkl

ij |nij) = 4
ni

n
nj

n − 1
(αk + nk )(αl + nl)

(α+ n − 2)(α+ n − 1)
(3)
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Binary moves II

Neglecting the coefficient 4, the first two terms give the probability to select a particle in
the i-th cell, followed by the extraction of a particle in cell j in a hypergeometric process
of parameter n, where n is the initial occupation vector. The third term is an accom-
modation Pólya process with weights αk + nk for the k -th cell when the total weight is
α+ n− 2, and the fourth is an accommodation Pólya process with weights αl + nl and
total weight given by α + n − 1. This mechanism is just the same as for unary moves,
considering that each destruction or creation step is conditioned to the current state
of the population and that the population diminishes during destructions, and increases
during creations. The factor 4 is due to the four paths connecting n to nkl

ij . In fact, denote
by D1 = i , D2 = j , C1 = k , C2 = l the sequence of the two extractions followed by the
two accommodations. There are two destruction sequences connecting n to nij , that is
D1 = i,D2 = j and D1 = j,D2 = i , and there are two creation sequences from nij to nkl

ij ,
that is C1 = k , C2 = l and C1 = l , C2 = k . Due to the exchangeability of destructions
{Dr} and and creations {Cr}, the four paths D1, D2, C1, C2 are equiprobable. The
coefficient is not 4 if some index is repeated, but these subtleties can be omitted. The
simplest route to the invariant distribution is using the detailed balance conditions, and
showing that the invariant distribution of (3) is still the Pólya distribution.
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Pólya invariance
There is another way to show that the Pólya distribution is invariant for sequences of creations and destructions.
Assume that n elements are described by a dichotomous exchangeable distribution. Then, as known from previous
lectures, one can write

Pn(k) =

(n

k

)
P(X(k, n)), (4)

where X(k, n) denotes an individual description with k successes in n trials. Then, a random destruction is performed,
leading to

Pn−1(k) = Pn(k + 1)P(k|k + 1) + Pn(k)P(k|k) = Pn(k + 1)
k + 1

n
+ Pn(k)

n − k

n
. (5)

Therefore, in the dichotomous case, if the chain is described by Polya((k, n − k); (α1, α − α1)), then, after a
sequence of m ≤ n hypergeometric destructions, the chain will be described by a Polya((k, n−m−k); (α1, α−α1))
and, in the multivariate case, if m denotes the vector of destructions, one will pass from Polya(n; α) to Polya(n −
m; α).
Consider the case in which an element is added to a population of n elements. In the case of creation probabilities
following the Pólya scheme, the analogous of equation (5) is given by:

Pn+1(k) = Pn(k − 1)
α1 + k − 1

α + n
+ Pn(k)

α− α1 + n − k

α + n
(6)

The reader can directly check that, if Pn(k) is Polya((k, n − k); (α1, α − α1)), then Pn+1(k) is Polya((k, n + 1 −
k); (α1, α−α1)). Again this results is valid for any number of steps, and also for the multivariate Pólya distribution.
Then applying equation (6) m times in sequence to Polya(n−m; α)), one recovers Polya(n; α)), that is the starting
distribution.
Summarizing all the previous discussion: if the population is described by a distribution Polya(n; α), then after a
sequence of m ≤ n hypergeometric destructions the shrinked population is described by a distribution which is
Polya(n−m; α), and after a sequence of m Pólya creations, the restored population is described by the same initial
distribution, that is Polya(n; α).
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Collisions in a gas I

Suppose that two particles in a gas collide, and that their final states are dif-
ferent from the initial ones. The transition from the occupation state n to the
occupation state nkl

ij is associated with the events D1 = i,D2 = j , representing
the initial categories of the two selected particles, and C1 = k ,C2 = l , repre-
senting the final categories of the colliding particles. Now, further assume that
the collision is elastic meaning that the total energy of the two particles is the
same before and after the collision. In other words, the transition can occur
only if

ε(i) + ε(j) = ε(l) + ε(k), (7)

where ε(i) denotes the energy of a particle in the i-th category, the transition
can occur, otherwise it is forbidden. In this case, it is useful to call the cate-
gories cells and divide the g cells into energy levels, grouping cells of equal
energy.
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Collisions in a gas II
The parameters of the system are n, the number of particles, and the set
{gi , εi}i=1,...,d , where g =

∑d
i=1 gi is the decomposition of the g cells accord-

ing to their energy. If cells are re-ordered with respect to their energy in the
following way (1, . . . , g1, g1+1, . . . g1+g2, g1+g2+1, . . . ,

∑d
i=1 gi), with g0 = 0,

the vector

Ni =

∑i
k=1 gk∑

j=1+
∑i

k=1 gk−1

nj (8)

represents the occupation number of an energy level. The level-occupation
vector N = (N1, . . . ,Nd ) is the so-called macrostate of the system, whereas
the original cell-occupation vector (with cells numbered from 1 to g, as usual)
n = (n1, . . . , ng) is the microstate of the system. The same procedure can be
used for the initial weights, leading to

βi =

∑i
k=1 gk∑

j=1+
∑i

k=1 gk−1

αj . (9)
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Collisions in a gas III

If the system starts from a given microstate n and energy is conserved, with
unary moves, it cannot leave the initial macrostate N. On the contrary, binary
moves can mimic elastic collisions, and the transition probability P(nkl

ij |n) still
has the form of equation (3), with a slight modification due to the existence of
forbidden transitions. In fact, the destruction term is given by the usual term
2(ni/n)(nj/(n − 1)) for i 6= j , or by (ni/n)(ni − 1)/(n − 1) for j = i ; if creation
concerns cells not involved in the previous destructions, the creation term is
proportional to 2(αk + nk )(αl + nl) for l 6= k , or to (αk + nk )(αk + nk + 1)
for l = k . These cumbersome notes are useful in order to write a program
simulating the dynamics: at any stage of the move, one must use the current
occupation number, possibly modified by previous partial moves. In order to
normalize the creation probability, one must consider all final states reachable
from nij adding two particles whose total energy is ε(l) + ε(k) = ε(i) + ε(j).
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The effect of constraints
Defining the term

Q(nkl
ij |nij) = (2− δlk )(αk + n′k )(αl + n′l + δlk ), (10)

where n′k and n′l are the occupation numbers of nij , then one has

P(nkl
ij |nij) =

Q(nkl
ij |nij)∑

k′,l′ Q(nk′ l′
ij |nij)

(11)

and, finally, the transition probability for the binary move is

P(nkl
ij |n) = P(nij |n)P(nkl

ij |nij) =

= (2− δij)
ni

n
nj

n − 1
Q(nkl

ij |nij)

D
δ[ε(l) + ε(k)− (ε(i) + ε(j))] (12)

where
D =

∑
k′,l′

Q(nk′ l′
ij |nij), (13)

and the sum is on the set

A(n, i, j) = {k ′, l ′ : ε(l ′) + ε(k ′) = ε(i) + ε(j)}. (14)
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Useful remarks

Not all the “first neighbours” of the initial microstate n can be reached in a sin-
gle step, as the motion is confined to the so-called constant energy surface.
Nevertheless, it is remarkable that, if P(nkl

ij |n) > 0, then also the inverse tran-
sition is possible, that is P(n|nkl

ij ) > 0. This is called microscopic reversibility.
If one considers all the states reachable from the initial state Y0 = n(0) by
means of repeated applications of the transition probability (12), for all these
states Yt = n(t), one finds that

∑g
j=1 nj(t)ε(j) =

∑g
j=1 nj(0)ε(j) = E(n(0))

is a constant of motion. One can assume that all the states compatible with
the constraint, i.e. the energy surface or energy shell {n :

∑g
j=1 njε(j) =

E(n(0))}, can be reached by means of binary collisions (if this is not the case,
in principle, nothing prevents to introduce m-ary collisions). In any case, the
energy surface is a subset of the unconstrained state space Sn

g , which strongly
depends on the values {gi , εi}i=1,2,...,d . Therefore, the transition matrix (12)
rules a multidimensional random walk on the energy surface which is an irre-
ducible and aperiodic Markov chain.
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Invariant distribution I
In order to discuss the inverse transition, one can start from

nkl
ij = n + k + l− i− j, (15)

where k, l, i, and j indicate vectors which are zero everywhere except for the
positions k , l , i , and j , respectively, where they are equal to 1. Now, consider
the path D1 = l,D2 = k , leading to nij = n−i− j, and the path C1 = j,C2 = i ,
leading to n. Then, one has

P(nij |nkl
ij ) = (2− δlk )

nk

n
nl

n − 1
, (16)

whereas

P(nij
ij |nij) =

Q(nij
ij |nij)

D
, (17)

where nij
ij = n and the denominator D coincides with the one in equation

(12). In words, any path connecting n to nkl
ij passes through the intermediate

state nij in both directions. In both cases the destructions end in nij , which is
the starting state for creations, all constrained to belong to the set A(n, i, j).
Note that if one sets nkl

ij = n′, then nij = n′kl , and A(n,i, j) = A′(n′, k , l), as
ε(l) + ε(k) = ε(i) + ε(j).
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Invariant distribution II
Given that the multipliclity factors are equal, one gets from equation (12) and
from the previous discussion

P(nkl
ij |n)

P(n|nkl
ij )

=
ninj(αk + nk )(αl + nl)

(nk + 1)(nl + 1)(αi + ni − 1)(αj + nj − 1)
, (18)

for the case i 6= j 6= k 6= l . Indeed, there exists a probability distribution which
satisfies the detailed balance conditions, such that

π(nkl
ij )

π(n)
=

P(nkl
ij |n)

P(n|nkl
ij )

(19)

where the right hand side is given by equation (18), and it is the following:

π(n) ∝
g∏

j=1

α
[nj ]

j

nj !
. (20)

It is the usual generalized Pólya distribution now restricted to (or conditional
on) all the states belonging to the energy surface. It is tedious but straightfor-
ward to check that this works in all cases.
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Deriving quantum statistics

If ∀j one has αj = 1 (the Bose-Einstein case), then one finds
π(nkl

ij ) = π(n) and one gets the uniform distribution restricted
to the energy shell; if ∀j αj = −1 (the Fermi-Dirac case), then
one has π(nkl

ij ) = π(n) for all n : ni ∈ {0,1}; finally, the case in
which ∀j , one has αj →∞ (the Maxwell-Boltzmann case) yields

π(n) ∝
(∏g

j=1 nj !
)−1

, which is uniform on all the allowed individ-
ual descriptions. In other words, what was previously written in
the abstract unconstrained case, here is valid, but within the en-
ergy shell. Further note that these results were obtained without
knowing a detailed description of the energy shell.
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From cells to levels
In all the three cases decribed above, all the parameters αj have the same value (all the cells are on a par, if allowed
by the energy constraint); therefore, it is useful to introduce the new parameter c = 1/αj . The creation factor
αj + nj becomes proportional to 1 + cnj = c[(1/c) + nj ], and the three statistics relevant in Physics are obtained for
c = 0,±1. For the Markov chain of macrostates N, the creation factor becomes gi + cNi = c[(gi/c) + Ni ]. From
equation (20), the invariant weight (to be normalized) of a macrostate is given by

W (N) =
d∏

i=1

cNi (gi/c)[Ni ]

Ni !
, (21)

which become the usual weight for macrostates in statistical mechanics:

WBE(N) =
d∏

i=1

gi
[Ni ]

Ni !
=

d∏
i=1

(gi + Ni − 1

Ni

)
, (22)

for c = 1 (Bose-Einstein case),

WFD(N) =
d∏

i=1

gi [Ni ]

Ni !
=

d∏
i=1

(gi

Ni

)
, (23)

for c = −1 (Fermi-Dirac case), and

WMB(N) =
d∏

i=1

gi
Ni

Ni !
, (24)

for c = 0 (Maxwell-Boltzmann case).
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Boltzmann’s approximate method I

In the unconstrained case, it is possible to get rid of the multivariate
equilibrium distribution by marginalizing on a single category, and then
obtain expected values for the multivariate distribution; on the contrary,
in the constrained case, the initial symmetry of categories is broken
by the energy function, and the marginal chain for a single category
is very complicated. The only way to extract a univariate distribution
from equation (21) was envisaged by Boltzmann for the first time: it is
the method of the most probable macrostate. The reason to maximize
the probability of the macrostate given in equation (21) instead of the
microstate probability (20) is due to the assumed uniform distributions
on the underlying microstates. Moreover, in Physics, macrostates are
obtained by merging many energy levels, in order to obtain large val-
ues of Ni and gi so that Stirling’s approximation for factorials can be
used. However, it is possible to use a better procedure than Stirling’s
approximation as one knows that equation (21) is exact.
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Boltzmann’s approximate method II
The maximum of ln W (N) with the constraints

∑d
i=1 Ni = N and

∑d
i=1 Niεi = E is

obtained by introducing Lagrange multipliers β, ν and by requiring that ∆(ln W (N) −
βE+ νN) = 0. The variation is discrete. Considering the i-th level, assume that Ni
becomes Ni ± 1, so that ∆Ei = ±εi and ∆Ni = ±1. Now define W (Ni ) as

W (Ni ) =
cNi (gi/c)[Ni ]

Ni !
, (25)

considering that ln W (N) =
∑d

i=1 ln W (Ni ) one can calculate the variation of the weight
for a level if Ni becomes Ni ± 1 using (21):

∆+ ln W (Ni ) = ln
W (Ni + 1)

W (Ni )
= ln

c(gi/c + Ni )

Ni + 1
= ln

gi + cNi

Ni + 1
(26)

and

∆− ln W (Ni ) = ln
W (Ni − 1)

W (Ni )
= ln

Ni

gi + c(Ni − 1)
= − ln

gi + c(Ni − 1)

Ni
(27)

Note that the term Ni + 1 in equation (26) allows an accommodation in an empty cell,
whereas the term Ni in equation (27) forbids a destruction in an empty cell. These terms
are important when Ni is small.
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Boltzmann’s approximate method III
But all this procedure is intended for macrostates where Ni � 1. In this
case ∆+ ln W (Ni ) and ∆− ln W (Ni ) become equal in absolute value,
Ni can be treated as a continuous variable, and one can write

d
dNi

ln W (Ni ) = ln
gi + cNi

Ni
= βεi − ν, (28)

and deduce a simple analitic formula for the solution. If there exists a
macrostate N∗ such that

ln
(gi + cN∗i )

N∗i
= βεi − ν, (29)

that is
N∗i =

gi

exp[βεi − ν]− c
, (30)

then it is the most probable state, which for c = 1,−1,0 represents
the Bose-Einstein, the Fermi-Dirac and the Maxwell-Boltzmann case,
respectively.
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Lagrange multipliers and statistical equilibrium
The two new parameters β, ν must be chosen so that

∑d
i=1 N∗i = N and

∑d
i=1 N∗i εi = E . Returning to the exact

formulae (26) and (27), considering the transition P(Nkl
ij |N), the variation of ln W (N) is just ln W (Nkl

ij ) − ln W (N),
which contains four terms, if all levels are different, leading to

ln W (Nkl
ij )− ln W (N) =

= ∆+ ln W (Nk ) + ∆+ ln W (Nl ) + ∆− ln W (Ni ) + ∆− ln W (Nj ) =

= ln
Ni

gi + c(Ni − 1)

Nj

gj + c(Nj − 1)

gk + cNk

Nk + 1

gl + cNl

Nl + 1
=

= ln
P(Nkl

ij |N)

P(N|Nkl
ij )

= ln
π(Nkl

ij )

π(N)
(31)

where the last equalities are a direct consequence of equation (19) applied to macrostates. In the limit of large
occupation numbers, if the starting N is N∗, and applying equation (28), one finds that

∆ ln W (N∗) = β(εk + εl − εi − εj ) = 0 (32)

if Nkl
ij has the same energy as N∗. This means that the probability is “flat” around N∗, as all its first neighbours nearly

have the same probability. In words, starting from N∗, and considering any transition which satisfies the energy
constraint (that is such that εk + εl = εi + εj ), the final vector is still in the region of maximum probability. For

macroscopic physical systems, where n is roughly 1023, the assumption of statistical mechanics is that,the region of
motion is overhelmingly concentrated around N∗, which then summarizes all the underlying dynamics and, at least,
all equilibrium properties.
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Statistical equilibrium for small systems
Surprisingly, a formula similar to equation (30) holds true also for small values of n. In fact, considering the expected
flux

φ
kl
ij =

∑
N

P(Nkl
ij |N)P(N), (33)

which is the probability that a transition i, j → k, l occurs whatever the initial state N may be, and the reversed flux

φ
ij
kl =

∑
N

P(Nij
kl |N)P(N), (34)

then assuming that the two fluxes are equal, one has that φkl
ij /φ

ij
kl = 1. Now, one can write

φ
kl
ij /φ

ij
kl =

E[Ni Nj (gk + cNk )(gl + cNl )]

E[Nk Nl (gi + cNi )(gj + cNj )]
. (35)

If one can approximate the expectation of the product with the product of expectations, then from φkl
ij /φ

ij
kl = 1 one

gets

ln
E[Ni ]

gi + cE[Ni ]

E[Nj ]

gj + cE[Nj ]

gk + cE[Nk ]

E[Nk ]

gl + cE[Nl ]

E[Nl ]
= 0; (36)

in other words, if for any energy level ln[E[Ni ]/(gi + cE[Ni ])] = ν − βεi , then for any conservative collision the two
fluxes equalize. Then equation (30) can be re-written also for expected values

E[Ni ] =
gi

exp[βεi − ν]− c
, (37)
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Final remarks I
Although both equations (37) and (30) are approximate, in some ap-
plications (30) could be meaningless, whereas equation (37) is always
meaningful. For instance, consider a system with gi = 1 for all the
values of i . This is strange in Physics, where gi in an increasing func-
tion of i , but it can be the case in Economics or in other fields. Then
equation (30) could still apply, because it was only for Ni � 1, while
the usual Stirling’s approximation also needs gi � 1. In this particu-
lar case, macrostates and microstates do coincide. Further assume
that c = 1. One knows from the distribution for occupation vectors in
the quantum Bose-Einstein case that the equilibrium distribution is flat,
that is all occupation states are equiprobable. Hence there is no N∗ at
all! On the contrary, and this is can be shown by computer simulation,
E[Ni ] can be derived from the time average of occupation numbers for
the i-th level as time goes by, and an agreement with equation (37)
is easily obtained. Note that if there exists N∗ such that π(N∗) ≈ 1,
then E[Ni ] =

∑
Niπ(N) ≈ N∗i , but E[Ni ] also exists when there is no

predominant macrostate N∗.
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Final remarks II

Finally, in order to justify the assumption leading from equation (35)
to equation (36), note that if g random variables satisfy the constraint∑g

1 Yi = n, then V(
∑g

1 Yi ) =
∑g

1 V(Yi ) +
∑

j 6=i C(Yi ,Yj ) = 0. If all
the variables Yi are equidistributed, one finds that g(g − 1)C(Yi ,Yj ) =
−gV(Yi ) and the Bravais-Pearson correlation becomes

ρ(Yi ,Yj ) =
C(Yi ,Yj )√
V(Yi )V(Yj )

= − 1
g − 1

. (38)

Given that in any concrete case, the number g of levels involved in
the dynamics is far larger than n, the correlation among the occupa-
tion numbers is negligible, and the corresponding approximation works
fairly well.
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