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Infinite number of categories and innovations

Up to now, the case of n objects to be allocated into g categories was dis-
cussed. But, what happens if the number of categories is infinite? The sit-
uation with an infinite number of categories can naturally take into account
“innovations”. Consider for instance the case in which the n elements are
agents who work in k firms. The random variable Y = n = (n1, . . . , nk ) with∑k

i=1 ni = n represents the distribution of agents into the k occupied firms.
Assume that, at a certain point, an agent decides to leave his/her firm (say the
firm labeled by j) and create a new one (a one-person firm). The new situation
is represented by the vector Y′ = n′ = (n1, . . . , nj − 1, . . . , nk , nk+1 = 1). Now,
there are k + 1 firms (occupied categories) with a new distribution of agents
among them. Often, it is useful to study the size distribution of these cate-
gories. As usual, this is described by the random variable (note that z0 = ∞)
Z = z = (z1, . . . , zn), where zi is the number of categories with i elements, but
now, one has

∑n
i=1 zi = k and

∑n
i=1 izi = n with k not fixed (and in general

randomly varying!). It turns out that the methods developed in the previous
chapters can be used to quantitatively discuss these problems and to derive
useful distributions that can be compared with empirical data.
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The Chinese restaurant process I

In order to visualize the situation described above, it is useful to refer to the so-called Chinese restaurant process.
There is a Chinese restaurant; usually, it is described as having an infinite number of tables each one with infinite
capacity. However, for our purposes, it is better to think of a Chinese restaurant in which each table can accommodate
an arbitrary number of customers and each customer can be hosted at a new table if the customer wishes so. In
principle, this process can be effectively realized in reality! (A table can be always expanded to host a new person
and an additional table can be added to host a new customer). A customer comes and decides where to sit. Then,
a second customer comes and decides where to sit. The second customer can sit at the same table of the previous
one or choose a new table. After the accommodation of the second customer, the restaurant may have either k = 2
tables occupied by 1 person (n1 = 1, n2 = 1) or k = 1 table occupied by 2 persons n1 = 2. In the former case,
there are 2 clusters of size 1 (z1 = 2), in the latter case, there is 1 cluster of size 2 (z1 = 0, z2 = 1). Again, when a
third customer comes, he/she can join a table occupied by the previous two customers or a new table. After the third
customer sits down the possibilities are as follows:

1 all the three customers sit at the same table, then, k = 1, n1 = 3 and z1 = 0, z2 = 0, z3 = 1;

2 two customers sit at the same table and another one occupies a different table; then k = 2 and one has
either n1 = 2, n2 = 1 or n1 = 1, n2 = 2 and z1 = 1, z2 = 1;

3 the three customers sit at separate tables; in this case k = 3 and n1 = 1, n2 = 1, n3 = 1 with z1 = 3.
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The Chinese restaurant process II

The process is then iterated for the desired number of times. For instance, the following configuration is compatible
with the allocation of n = 10 agents in the Chinese restaurant process: k = 4 tables are occupied, n1 = 3, n2 =
5, n3 = 1, n4 = 1 and z1 = 2, z2 = 0, z3 = 1, z4 = 0, z5 = 1, z6 = 0, z7 = 0, z8 = 0, z9 = 0, z10 = 0. Note
that in the scheme proposed above, tables are numbered (labelled) according to the order of occupation. There is an
alternative way of naming tables (categories). One can introduce an auxiliary urn with integer numbers from 1 to n
and randomly extract a label without replacement every time, one of the n customers decides to choose a new table.
For instance, after the arrival and accommodation of the third customer the situation is as follows. As three agents
are expected to arrive, one has

1 all the three customers sit at the same table, then, k = 1, nj = 3, where j = 1 or j = 2 or j = 3 and
z1 = 0, z2 = 0, z3 = 1; the number of possible situations is 3;

2 two customers sit at the same table and another one occupies a different table; then k = 2 and one has
either ni = 2, nj = 1 or nj = 1, ni = 2 and z1 = 1, z2 = 1; i can take 3 values and j one of the two
remaining values after the choice of i . Therefore, there are 6 possible situations;

3 the three customers sit at separate tables; in this case k = 3 and ni = 1, nj = 1, nl = 1 with z1 = 3. Also
in this case there are 6 possible situations, corresponding to the permutations of the three labels.

After a little thought, one should convince him/herself that, if there are k occupied tables and n is the number of the
labels, the number of situations corresponding to a case is given by n(n− 1) · · · (n− k + 1). Note that, in general,
one can prepare g labels for the tables, with g ≤ n of which only n will be selected. The numbers of situations
corresponding to each case will be given by g(g− 1) · · · (g− k + 1) if k tables are occupied as for the first occupied
table there are g choices, for the second occupied table g − 1 choices are left, until g − k + 1 choices available for
the k -th occupied table.
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Relation with the Pólya process I
We showed that the Pólya distribution converges to the Dirichlet distribution for n →∞
and g and α fixed. The question with which this Chapter began was: What happens,
when the number of categories becomes infinite, that is when g → ∞ with fixed n?
Indeed, in this case the frequency description n = (n1, . . . , ng) has infinite terms, and
some caution is necessary. The vector n can be considered as the description of the
size of categories (or clusters) of “colours” labelled from 1 to g. As discussed above,
when g → ∞, it is useful to introduce the description of clusters z = (z1, . . . , zn),∑

i izi = n, taking into account the number of clusters of size i = 1, . . . , n (and not their
names). In order to understand what happens, it is useful to consider the case in which
g is large but finite, and assume that there are k ≤ n distinct clusters (categories initially
occupied). Relabel them, and set n = (n1, . . . , nk , nk+1), where the (k + 1)-th category
collects all the g − k empty categories at present. One can see that n1, . . . , nk are
positive, whereas nk+1 = 0. In this setting, one has the following predictive probabilities

P(Xn+1 = j|X1 = x1, . . . ,Xn = xn) = P(Xn+1 = j|nj , n) =
αj + nj

α+ n
for j ≤ k

α−
∑k

i=1 αi

α+ n
for j = k + 1,

(1)

where α =
∑k+1

i=1 αi , and α−
∑k

i=1 αi is the the total weight of the g−k empty categories
at present.
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Relation with the Pólya process II

If the weight αi of each category is finite, for large g both α and α−
∑k

i=1 αi diverge, so
that P(Xn+1 = j|nj , n)→ 0 for j ≤ k , and P(Xn+1 = j|nj , n)→ 1 for j = k + 1. In other
words, the next category observed will be a new one with probability one. The a priori
weights dominate on the empirical observations, so that no correlations are present.
New categories are always chosen and one expects to observe n clusters occupied by
a single object, that is z = (z1 = n, z2 = 0, . . . , zn = 0) with probability one. A different
situation is obtained if the total weight of the initial distribution converges to a constant
value, limg→∞

∑g
i αi = α = θ < ∞. (Note that the previous case can be recovered

setting θ = ∞). Now the initial weight θ and the number of empirical observations are
both finite, and an interesting behaviour is expected. In this limit, one can study the
stochastic process characterized by the following predictive probability

P(Xn+1 = j|X1 = x1, . . . ,Xn = xn) = P(Xn+1 = j|nj , n) =
nj

θ + n
for j ≤ k

θ

θ + n
for j = k + 1;

(2)

We are now going to study the process defined by equation (2).
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Hoppe’s urn
Consider n random variables X1, . . . ,Xn, whose range is a set of labels 1, . . . , n. As-
sume that the first random variable is labelled 1 and that a new label is introduced se-
quentially whenever a new category appears. In this case, the label j denotes the j-th la-
bel that has been introduced. To be more specific, Ym = (m1, . . . ,mk ) is the current oc-
cupation vector, with mj = #{Xi = j, i = 1, . . . ,m}, and k = #{mj > 0, j = 1, . . . , k}
is the number of present labels. The conditional predictive distribution of Xm+1 is given
by equation (2), leading to (for m = 0, 1, . . . , n − 1):

P(Xm+1 = j|mj ,m) =


mj

m + θ
j ≤ k

θ

m + θ
, j = k + 1

(3)

with P(X1 = 1) = 1 by definition. This sampling process can be modelled by an urn
process: Hoppe’s urn, that can be traced back to A. De Moivre, according to Zabell.
Initially, the urn contains a single white ball whose weight is θ. The following rules
define the drawing process:

1 Whenever the white ball is drawn, it is painted with a colour not yet present in the
urn; then a new white ball (of the same weight θ) is replaced into the urn,
together with the ball just painted (of weight 1).

2 If a colored ball is drawn, it is replaced into the urn, together with a ball (of weight
1) of the same colour, as in the Pólya scheme.
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Individual and frequency descriptions
The probability of an individual sequence is obtained from (3) and is given by:

P(X1 = 1, X2 = x2, . . . , Xn = xn) =
θk

θ[n]

k∏
i=1

(ni − 1)!; (4)

You can try and derive equation (4) as a useful exercise. Given an occupation vector n = (n1, . . . , nk ) there are
many corresponding sequences with the same probability. For instance, if n = 4, the sequences X1 = 1, X2 =
2, X3 = 3, X4 = 2 and X1 = 1, X2 = 2, X3 = 2, X4 = 3 are equiprobable. However, the sequences are not
exchangeable! For instance the probability of the sequence X1 = 2, X2 = 1, X3 = 3, X4 = 2 is 0 by definition and
different from the probability of the other two sequences, even if in all three cases one has n1 = 1, n2 = 2, n3 = 1.
Therefore, one cannot use the usual multinomial factor to determine the probability of an occupation vector. In
particular, all the sequences where 1 is not the first label are forbidden, as well as all the sequences where 3 appears
before 2, 4 before 3 and 2, and so on. Taking this into account, if there are n1 elements belonging to category 1, only
n1 − 1 can be freely chosen out of n− 1 elements. Then, only n2 − 1 elements in category 2 are free to be chosen
out of the n − n1 − 1 remaining elements, and so on. These considerations leads to the following equation

P(Yn = n) =

( n − 1

n1 − 1

)(n − n1 − 1

n2 − 1

)
· · ·
(nk−1 + nk − 1

nk−1 − 1

)
θk

θ[n]

k∏
i=1

(ni − 1)!

=
n!

nk (nk + nk−1) . . . (nk + nk−1 + . . . + n1)

θk

θ[n]
(5)

called by Donnelly “the size-biased permutation of the Ewens sampling formula”.
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The Chinese restaurant revisited I
Consider n random variables X∗1 , . . . , X∗n whose range is a set of g > n labels L = {l1, . . . , lg}. Now, when X∗1
is observed, a label is randomly chosen from an urn U (without replacement) and we label the category of X∗1 with,
say li1 . As for X∗2 , if X∗2 = X∗1 , it will be labeled by li1 otherwise a second draw is made from U and a new label,
say li2 , is assigned to X∗2 , and so on. Continuing with this procedure, all the coincident values of X∗i have the same
label, whereas different values correspond to different labels. Comparing the label urn process with the Hoppe urn
scheme, one can see that while X1 = 1 with probability 1, X∗1 ∈ {l1, . . . , lg} equiprobably; and when the second
label appears in Hoppe’s scheme, a new label will be drawn from U. The predictive probability for the label process is

P(X∗m+1 = j|mj ,m) =


mj

m + θ
for mj > 0

1

g − k(m)

θ

m + θ
for mj = 0;

(6)

indeed, as before, new labels are selected when the white ball of weight θ is drawn, but, then, independently, the
name of the category is randomly selected among all the remaining labels. The probability of a sequence can be
directly obtained from (6). However, it is easier to note that every sequence X1 = 1, X2 = x2, . . . , Xn = xn
corresponds to g!/(g − k)! label sequences. Moreover, a little thought should convince the reader that the label
process is exchangeable. Therefore, one gets

P(X∗1 = x∗1 , . . . , X∗n = x∗n ) =
P(X1 = 1, X2 = x2 . . . , Xn = xn)

g(g − 1) . . . (g − k + 1)
. (7)

In other words, the non-exchangeable sequence X1 = 1, X2 = x2 . . . , Xn = xn is partitioned into g!/(g − k)!
exchangeable sequences X∗1 , . . . , X∗n .
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A remark on exchangeability

Equation (4) only depends on n, but this does not mean that
X1 = 1,X2 = x2 . . . ,Xn = xn is exchangeable. As discussed
before, sequences such as X1 = 1,X2 = 2,X3 = 1 and X1 =
1,X2 = 1,X3 = 2 are both possible and equiprobable with occu-
pation vector (n1 = 2,n2 = 1), whereas the permuted sequence
X1 = 2,X2 = 1,X3 = 1 is forbidden by construction. This is also
in agreement with the multiplicity factor in P(Yn = n) in equa-
tion (5). The fact is that (4) is symmetric with respect to to ni so
that Y1 = 1,Y2 = 2,Y3 = 1 and Y1 = 1,Y2 = 2,Y3 = 2 are
equiprobable, but the number of allowed sequences belonging
to (n1 = 2,n2 = 1) is greater than the number of sequences
corresponding to (n1 = 1,n2 = 2).
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The Chinese restaurant revisited II

Thanks to exchangeability, we can use the multinomial formula
and, from equations (4) and (7), the distribution of the occupa-
tion vectors defined on the g states of the label urn turns out to
be

P(Y∗n = n) =
n!∏

i∈A ni !
P(X∗(n) = x∗(n)) =

(g − k)!
g!

n!∏
i∈A ni

θk

θ[n]
,

(8)
where A is the set of k labels representing the occupied clusters.
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The Ewens sampling formula I
Equation (8) can be written in a way that directly leads to the Ewens sampling
formula. One can see that

∏g
i=1 ni ! =

∏n
i=0(i!)

zi . Similarly, in our case, one
has that ∏

i∈A

ni =
n∏

i=1

izi , (9)

where, as usual, zi is the number of clusters/categories with i elements. Re-
placing equation (9) into equation (8) leads to

P(Y∗n = n) =
(g − k)!

g!
n!
θ[n]

n∏
i=1

(
θ

i

)zi

. (10)

Note that, in this framework z0 = g − k gives the number of empty clus-
ters/categories. Again, thanks to the exchangeability of occupation vectors,
using the multinomial formula, from equation (10) one immediately gets the
celebrated Ewens sampling formula for partitions (remember that there are k
occupied categories and z0 = g − k )

P(Zn = zn) =
g!

(g − k)!z1! · · · zn!
P(Y∗n = n) =

n!
θ[n]

n∏
i=1

(
θ

i

)zi 1
zi !
. (11)
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The Ewens sampling formula II

As a side remark, note that combining the multinomial formula for partitions and (7)
leads to

P(Zn = zn) =
n!∏k

i=1 ni !

1∏n
i=1 zi !

P(Xn = xn) =
n!∏n

i=1(i!)zi zi !
P(Xn = xn), (12)

so that, one can directly obtain the joint cluster distribution from the knowledge of
P(X1 = 1,X2 = x2, . . . ,Xn = xn). In this framework, the Ewens sampling formula
appears as the distribution of partition vectors for the exchangeable label process char-
acterized by the predictive probability given by equation (6).
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The Ewens sampling formula III

This formula was introduced by W. Ewens in population genet-
ics. If a random sample of n gametes is taken from a popula-
tion and classified according to the gene at a particular locus,
the probability that there are z1 alleles represented once in the
sample, z2 alleles represented twice, and so on is given by (11)
under the following conditions:

1 the sample size n is small if compared to the size of the
whole population;

2 the population is in statistical equilibrium under mutation
and genetic drift and the role of selection at the locus
under scrutiny can be neglected;

3 every mutant allele is an “innovation”.

Enrico Scalas Ewens sampling formula and ZYS process



Innovations
Ewens sampling formula
Zipf-Yule-Simon process

The Ewens sampling formula IV
As mentioned by Tavaré and Ewens, equation (11) provides a sort of
null hypothesis for a non-Darwinian theory of evolution (a theory where
selection plays no role). The case θ = 0 corresponds to the situa-
tion where all the objects occupy the initial category (all the genes are
copies of the same allele, in the genetic intepretation). This can be im-
mediately seen from the equations for the predictive probability: when
θ = 0 no innovation is possible. The opposite case was discussed
above and appears in the limit θ → ∞. In this case all the objects
occupy a new category. The case θ = 1 is also remarkable as it cor-
responds to the distribution of integer partitions induced by uniformly
distributed random permutations meaning that each permutation has
a probability equal to (n!)−1. In this case, equation (11) becomes

P(Zn = zn) =
n∏

i=1

(
1
i

)zi 1
zi !
, (13)

and is quite old: it be traced back at least to Cauchy.
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Limit of Pólya partitions I

Consider the symmetric Pólya distribution where α denotes the
common weight of each category. We are interested in the limit
in which this weight vanishes, α → 0, the number of categories
diverges, g →∞, but the total weight θ = gα remains constant.
For small α the rising factorial α[i] can be approximated as fol-
lows:

α[i] = α(α− 1) · · · (α+ i − 1) ' α(i − 1)!. (14)
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Limit of Pólya partitions II

As a consequence of equation (14), the symmetric Pólya sam-
pling distribution can be approximated as follows

P(n) =
n!

(gα)[n]

g∏
j=1

α[nj ]

nj !
=

n!
(gα)[n]

n∏
i=1

(
α[i]

i!

)zi

' n!
θ[n]

n∏
i=1

(α
i

)zi
,

(15)
where the following identities has been used

g∏
j=1

nj ! =
n∏

i=1

(i!)zi ,

and
g∏

j=1

α[nj ] =
n∏

i=1

(α[i])zi .
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Limit of Pólya partitions III

Recall that z0 = g − k and that
∑n

i=1 zi = k . Then, in the limit of
small α and large g, for partitions, one gets

P(z) =
g!

(g − k)!
∏n

i=1 zi !
P(n) '

n!
θ[n]

gkαk
n∏

i=1

(
1
i

)zi 1
zi !

=
n!
θ[n]

n∏
i=1

(
θ

i

)zi 1
zi !
, (16)

which coincides with the Ewens sampling formula.
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Cluster number distribution I

The distribution of the number of clusters at step n, Kn, can be
obtained from equation (8) by summing over all the occupation
vectors with exactly k clusters. Let us denote this set by B. The
distribution is given by

P(Kn = k) =
∑
n∈B

P(Y ∗n = n) = S(n, k)
θ

θ[n]
, (17)

where S(n, k) are unsigned Stirling numbers of the first kind,
obeying the following recurrence equation

S(n + 1, k) = S(k ,n − 1) + nS(n, k).
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Cluster number distribution II

The expected value and variance of the number of clusters at
step n are given by

E(Kn) =
n−1∑
j=0

θ

θ + j
,

V(Kn) =
n−1∑
j=0

θj
(θ + j)2 .
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Expectation of cluster sizes

As for the expected cluster sizes, one gets

E(Zi) =
θ

i
θ[n−1]/(n − i)!

θ[n]/n!
.

The formula and derivation for the variance of Zi is omitted and
you are referred to the book and to the literature listed below.
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Hoppe’s vs Zipf’s urn I

Consider the label process for Hoppe’s urn. Using the indicator functions Inj =0 which is 1 when Y∗j = nj = 0 and 0

for Y∗j = nj > 0 and its complement Inj>0 = 1− Inj =0, equation (6) can be written in a single line

P(X∗n+1 = j|nj , n) =
n

n + θ

nj

n
Inj>0 +

θ

n + θ

1

g − Kn
Inj =0, (18)

where all the parameters and variables have the same meaning as above. Once more, note that at the beginning
of this process, the probability of selecting one of the g categories/sites is given by 1/g and this is automatically
included in equations (6) and (18). In the right-hand side of equation (18), the first term describes herding as it gives
the probability of joining an already occupied site, whereas the second term describes innovation because it is the
probability of joining an empty site as a pioneer. We have previously seen ithat the label process is exchangeable.
For example, the probability of the sequence X∗1 = i, X∗2 = j, X∗3 = i (with i 6= j) is

P(X∗1 = i, X∗2 = j, X∗3 = i) =
1

g(g − 1)

θ2

θ(θ + 1)(θ + 2)
, (19)

and it coincides with the probability of any permutation of the values, that is with the probability of the sequences
X∗1 = i, X∗2 = i, X∗3 = j and X∗1 = j, X∗2 = i, X∗3 = i .
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Hoppe’s vs Zipf’s urn II

The label process for Zipf’s urn can be defined in a similar way. Using the indicator function In=0 and In>0, one can
write

P(X∗n+1 = j|nj , n) =

[
(1− u)

nj

n
Inj>0 + u

1

g − Kn
Inj =0

]
In>0 +

1

g
In=0, (20)

where 0 < u < 1 is the probability of innovation which is now independent of n and its complement 1 − u is
the probability of herding. A direct application of equation (20) on the sequences X∗1 = i, X∗2 = j, X∗3 = i and
X∗1 = i, X∗2 = i, X∗3 = j immediately shows that this process is no longer exchangeable. Indeed, one has

P(X∗1 = i, X∗2 = j, X∗3 = i) =
1

2

u(1− u)

g(g − 1)
, (21)

whereas

P(X∗1 = i, X∗2 = i, X∗3 = j) =
u(1− u)

g(g − 1)
. (22)

Given that the process of individual sequences is not exchangeable, the methods we have applied so far cannot be
used in order to derive the distribution of site and/or cluster sizes. In 1955, Simon suggested to study the average
cluster dynamics as a way to circumvent this problem and obtain quantitative (albeit approximate) results. His method
will be described in the next part using the language developed in the course.
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Average cluster dynamics and Yule distribution I

Simon refers to the sequential construction of a text adding a new word at each step.
This is equivalent to consider a new customer entering the Chinese restaurant and
choosing an existing table (a word already written in the text) or a new table (a new
word not yet used in the text). Here, instead of using site labels as in the previous
section, it is useful to refer to time labels. Equation (20) modifies to

P(Xn+1 = j|nj , n) = (1− u)
nj

n
Ij≤Kn + uIj=Kn+1. (23)

Simon assumes that you are writing a text using the following rules. You have already
written n words. If zi,n is the number of words appearing i times in the text, the probability
of using one of these words at the next step is proportional to izi,n; the probability of
using a new word not yet present in the text is constant and equal to u with 0 < u < 1.
Note that the first word in the text is new with probability 1. Morever, if u = 0, no
innovation is possible and P(Zn,n = 1) = 1, in other words, there is only a cluster
containing n repetitions of the same word. On the contrary, if u = 1, every word included
in the text is a new word not yet used; therefore, in this case, the text is made up of n
distinct words meaning that there are n clusters each containing 1 element, so that one
has P(Z1,n = n) = 1.
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Average cluster dynamics and Yule distribution II

If Yn+1 = i denotes the event that the (n + 1)-th word is among
the words that occurred i times and Yn+1 = 0 means that the
(n+1)-th word is a new one, equation (23) leads to the following
probabilities conditioned on the partition vector Zn = zn:

P(Yn+1 = i |Zn = zn) = (1− u)
izi,n

n
P(Yn+1 = 0|Zn = zn) = u n > 0
P(Y1 = 0) = 1.

(24)
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Average cluster dynamics and Yule distribution III

The evolution of the partition vector is the following. If Yn+1 = i , it
means that a cluster of size i is destroyed and a cluster of size i + 1
is created meaning that zi,n+1 = zi,n − 1 and zi+1,n+1 = zi+1,n + 1. If
Yn+1 = 0, it means that a cluster of size 1 is created, that is z1,n+1 =
z1,n + 1. Consider now the random variable difference Zi,n+1 − Zi,n; it
can assume two values, one has Zi,n+1 − Zi,n = 1 if a cluster of size
(i−1) is destroyed and a cluster of size i is created and Zi,n+1−Zi,n =
−1 if a cluster of size i is destroyed and a cluster of size i+1 is created.
As a consequence of equation (24), one has for i = 2, . . . ,n

P(Zi,n+1 − Zi,n = 1|Zn = zn) = (1− u)
(i − 1)zi−1,n

n
, (25)

and
P(Zi,n+1 − Zi,n = −1|Zn = zn) = (1− u)

izi,n

n
. (26)
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Average cluster dynamics and Yule distribution IV
Therefore, considering that E(Zi,n|Zn = zn) = zi,n for any i , one finds that

E(Zi,n+1|Zn = zn)− zi,n = (1− u)

(
(i − 1)zi−1,n

n
−

izi,n

n

)
, (27)

an equation valid for i = 2, . . . , n. For i = 1, as a consequence of equation (24), one finds that

E(Z1,n+1|Zn = zn)− z1,n = u − (1− u)
z1,n

n
. (28)

Further note that one has

E(E(Zi,n+1|Zn = zn)|Zn−1 = zn−1) = E(Zi,n+1|Zn−1 = zn−1) (29)

as Zn−1 = zn−1 ⊂ Zn = zn . Therefore, defining

z̄i,n = E(Zi,n) =
∑

zn−1

E(Zi,n|Zn−1 = zn−1)P(Zn−1 = zn−1), (30)

one can derive the following equations by taking the averages of (27) and (28)

z̄i,n+1 − z̄i,n = (1− u)

(
(i − 1)z̄i−1,n

n
−

i z̄i,n

n

)
, (31)

and

z̄1,n+1 − z̄1,n = u − (1− u)
z̄1,n

n
. (32)
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Average cluster dynamics and Yule distribution V
In principle, the recurrence equations (31) and (32) can be directly solved. However, Simon suggests to look for
solutions such that z̄i,n ∝ n corresponding to a steady growth of the clusters. With Simon’s Ansatz, one has that

z̄i,n+1

z̄i,n
=

n + 1

n
, (33)

equivalent to

z̄i,n+1 − z̄i,n =
z̄i,n

n
, (34)

for i = 1, . . . , n. Replacing equation (34) for i = 1 into equation (32) gives

z̄∗1,n =
nu

2− u
=

ρ

1 + ρ
nu, (35)

where ρ > 1 is a parameter defined as

ρ =
1

1− u
. (36)

If equation (34) is replaced into equation (31), the recurrence equation simplifies to

z̄∗i,n =
(1− u)(i − 1)

1 + (1− u)i
z̄∗i−1,n =

i − 1

ρ + i
z̄∗i−1,n. (37)
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Average cluster dynamics and Yule distribution VI

The iteration of (37) leads to a closed-form solution for z̄∗i,n :

z̄∗i,n =
i − 1

ρ + i

i − 2

ρ + i − 1
· · ·

1

ρ + 2
z̄∗1,n =

Γ(i)Γ(ρ + 2)

Γ(ρ + i + 1)
z̄∗1,n =

(ρ + 1)
Γ(i)Γ(ρ + 1)

Γ(ρ + i + 1)
z̄∗1,n = ρB(i, ρ + 1)nu, (38)

where equation (35) and the definition of Euler’s Beta function were used. Direct replacement shows that equation
(38) is a solution of equation (31). Note that the ratio z̄i,n/n on the left-hand side of equation (34) is not a frequency.
The expected number of clusters (of words in the text) is given by

E(Kn) =
n∑

i=1

E(Zi,n) =
n∑

i=1

z̄∗i,n = nu
n∑

i=1

ρB(i, ρ + 1), (39)

and it is possible to prove that
∞∑
i=1

ρB(i, ρ + 1) = 1. (40)

Therefore, from equation (39) one has that E(Kn) ≈ nu for large n meaning that there is a constant flow of new
words. In other words, Simon’s Ansatz means that the relative frequency of clusters of size i (the number of words
that appeared i times in the text) given by E(Zi,n)/E(Kn) ≈ z̄∗i,n/nu is invariant once steady growth is reached.
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Average cluster dynamics and Yule distribution VII
It is necessary to convince oneself that equation (40) holds true. Using

fi = ρB(i, ρ+ 1), (41)

one has that ∀i , fi > 0, moreover ∀i , fi < 1. As for the limiting properties, one has that
limi→∞ fi = 0 and that limi→∞ ifi = 0. From

fi =
i − 1
ρ+ i

fi−1, (42)

one can derive the recurrence relation(
1 +

1
ρ

)
fi = (i − 1)

1
ρ

(fi−1 − fi ) (43)

valid for any i ≥ 2, whereas, for i = 1, one has(
1 +

1
ρ

)
f1 = 1. (44)

Now define Sn =
∑n

i=1 fi . Using the previous two equations (43) and (44), one arrives
at (

1 +
1
ρ

)
Sn = 1 +

1
ρ

Sn −
n
ρ

fn. (45)
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Average cluster dynamics and Yule distribution VIII

In order to derive (45), one must write equation (43) for i =
2, . . . ,n and add all the (n − 1) equations and finally add also
equation (44). Solving equation (45) for Sn leads to

n∑
i=1

fi = 1− n
ρ

fn, (46)

so that one finds
∞∑

i=1

fi = lim
n→∞

(
1− n

ρ
fn

)
= 1. (47)

In summary, equation (41) defines a legitimate probability distri-
bution on the integers i ≥ 1 called Yule distribution.
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Average cluster dynamics and Yule distribution IX
Let Y be a random variable distributed according the Yule distribution, then one has

P(Y = i) = fi = ρB(i, ρ + 1); (48)

in particular, from equation (38), one can see that the ratio z̄∗i,n/nu coincides with the Yule distribution. For the sake
of completeness, and without proof, note that, if Y follows the Yule distribution, its expected value is

E(Y ) =
∞∑
i=1

ifi =
ρ

ρ− 1
, (49)

and its variance is

V(Y ) =
ρ2

(ρ− 1)2(ρ− 2)
. (50)

It is now time to summarize the previous results. If at each step a unit is added to the system (a word is added to
the text) according to equation (24), the expected number of clusters of size i (the expected number of words with i
occurrences) converges to z̄∗i,n/nu. Note that z̄i,n = 0 for i > n and the convergence holds true only for n � i . In
other words, considering a fixed size i , if the population grows, it is possible to find a size n̄ such that for n > n̄, one
has z̄i,n ∝ n reaching a steady growth. Eventually, one can see that for i � ρ

fi = ρB(i, ρ + 1) = ρ
Γ(i)Γ(ρ + 1)

Γ(i + ρ + 1)
= ρ

Γ(ρ + 1)

i(i + 1) · · · (i + ρ)
≈
ρΓ(ρ + 1)

iρ+1
, (51)

so that one gets a power-law tail of the distribution with fi ≈ i−(ρ+1).
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A Monte Carlo simulation

This is the background for the exercise session. In order to sim-
ulate the dynamics of clusters, one can consider a system of
n elements which can be found in g = n + 1 sites, assuming
that the initial state is Y∗ = (1,1, . . . ,1,0). At each step a clus-
ter is removed. If k is the number of active clusters, for each
cluster, the probability of removal is simply given by 1/k . If m
is the size of the removed cluster, these items are returned to
the system following Zipf’s scheme. Accommodations are such
that elements either join existing clusters (proportionally to their
size) or move to free sites with innovation probability u. How-
ever, they cannot join the cluster which was just destroyed. The
herding probabilities of joining already existing clusters sum up
to 1− u.

Enrico Scalas Ewens sampling formula and ZYS process



Innovations
Ewens sampling formula
Zipf-Yule-Simon process

Further reading

J. Bertoin, Exchangeable Coalescents, Lecture Notes
2010.

U. Garibaldi and E. Scalas, Finitary Probabilistic Methods
in Econophysics, Cambridge University Press, 2010.

J. Pitman, Combinatorial Stochastic Processes, Lecture
Notes 2006.
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