Normal Coverings of the Symmetric and Alternating Group

Daniela Bubboloni
Università degli Studi di Firenze
Dipartimento di Matematica per le Decisioni

To the memory of Silvia
Ischia, 12th April 2010

Definitions

Let G be a finite group.
i) A covering of G is a set of m proper subgroups of G, called components, whose union is G.
\qquad
\qquad which realizes $\sigma(G)$
Δ normal comerina of G is a covering which is invariant under G-conjugation.

Definitions

Let G be a finite group.
i) A covering of G is a set of m proper subgroups of G, called components, whose union is G. $\sigma(G)$ is defined as the smallest integer m such that G has a covering with m components (Cohn, 1994).
A covering with $\sigma(G)$ components is called a minimal covering which realizes $\sigma(G)$.

Definitions

Let G be a finite group.
i) A covering of G is a set of m proper subgroups of G, called components, whose union is G. $\sigma(G)$ is defined as the smallest integer m such that G has a covering with m components (Cohn, 1994).
A covering with $\sigma(G)$ components is called a minimal covering which realizes $\sigma(G)$.
ii) A normal covering of G is a covering which is invariant under G-conjugation.

Definitions

Let G be a finite group.
i) A covering of G is a set of m proper subgroups of G, called components, whose union is G.
$\sigma(G)$ is defined as the smallest integer m such that G has a covering with m components (Cohn, 1994).
A covering with $\sigma(G)$ components is called a minimal covering which realizes $\sigma(G)$.
ii) A normal covering of G is a covering which is invariant under G-conjugation.
A normal covering Σ is the set of the G-conjugacy classes of some non conjugated subgroups of G, say H_{1}, \ldots, H_{k}, called the basic components of the normal covering, such that

$$
G=\bigcup_{i=1}^{k} \bigcup_{g \in G} H_{i}^{g}
$$

Definitions

We say that $\delta=\left\{H_{i}<G: i=1, \ldots, k\right\}$ is a basic set for the k-normal covering Σ.

Every non cyclic group admits a normal covering

When G is abelian $\sigma(G)=\gamma(G)>3$
c) You can always replace a k-normal covering with a k-normal
covering with maximal components

Definitions

We say that $\delta=\left\{H_{i}<G: i=1, \ldots, k\right\}$ is a basic set for the k-normal covering Σ.
We define $\gamma(G)$ as the smallest k such that G admits a k-normal covering.
A normal covering with $\gamma(G)$ basic components is called a minimal normal covering of G which realizes $\gamma(G)$.

Definitions

We say that $\delta=\left\{H_{i}<G: i=1, \ldots, k\right\}$ is a basic set for the k-normal covering Σ.
We define $\gamma(G)$ as the smallest k such that G admits a k-normal covering.
A normal covering with $\gamma(G)$ basic components is called a minimal normal covering of G which realizes $\gamma(G)$.

Note:
a) Every non cyclic group admits a normal covering
b) When G is abelian $\sigma(G)=\gamma(G) \geq 3$
c) You can always replace a k-normal covering with a k-normal covering with maximal components

Introduction

I am going to present the results of a joined work with C. Praeger (2010) in which we investigate the natural numbers $\gamma(G)$, where $G=A_{n}, S_{n}$.
expressed in terms of the Euler function ϕ.
We give the exact value when n decomposes in at most two odd primes, lower and upper bound as well as asymptotic estimate in the

Introduction

I am going to present the results of a joined work with C. Praeger (2010) in which we investigate the natural numbers $\gamma(G)$, where $G=A_{n}, S_{n}$.

This number depends on the arithmetical complexity of n and can be expressed in terms of the Euler function ϕ.

Introduction

I am going to present the results of a joined work with C. Praeger (2010) in which we investigate the natural numbers $\gamma(G)$, where $G=A_{n}, S_{n}$.

This number depends on the arithmetical complexity of n and can be expressed in terms of the Euler function ϕ. We give the exact value when n decomposes in at most two odd primes, lower and upper bound as well as asymptotic estimate in the general case.

Background

Theorem (D. B. (1998))
i) $\gamma\left(S_{n}\right)=2$ if and only if $3 \leq n \leq 6$
ii) $\gamma\left(A_{n}\right)=2$ if and only if $4 \leq n \leq 8$.

Background

Theorem (D. B. (1998))
i) $\gamma\left(S_{n}\right)=2$ if and only if $3 \leq n \leq 6$
ii) $\gamma\left(A_{n}\right)=2$ if and only if $4 \leq n \leq 8$.

Here we deal with S_{n} for $n \geq 7$ and A_{n} for $n \geq 9$.

Background

Theorem (D. B. (1998))
i) $\gamma\left(S_{n}\right)=2$ if and only if $3 \leq n \leq 6$
ii) $\gamma\left(A_{n}\right)=2$ if and only if $4 \leq n \leq 8$.

Here we deal with S_{n} for $n \geq 7$ and A_{n} for $n \geq 9$.

- A. Maróti (2005) explored the numbers $\sigma\left(S_{n}\right)$ and $\sigma\left(A_{n}\right)$.

Some of his ideas are useful also to compute $\gamma\left(S_{n}\right)$ and $\gamma\left(A_{n}\right)$, though our methods diverge.

Example: S_{7}

S_{7} has no 2-normal coverings.
S_{7} has the 3-normal covering Σ with basic maximal components

$$
\delta=\left\{S_{2} \times S_{5}, \quad S_{3} \times S_{4}, \quad A G L_{1}(7) \cong C_{7} \rtimes C_{6}\right\}
$$

Simply check that any type of permutation is inside one component $\Longrightarrow \gamma\left(S_{7}\right)=3$.
$|\Sigma|=120>\sigma\left(S_{7}\right)=2^{6} \Longrightarrow \Sigma$ is not minimal.

Example: S_{7}

S_{7} has no 2-normal coverings.
S_{7} has the 3-normal covering Σ with basic maximal components

$$
\delta=\left\{S_{2} \times S_{5}, \quad S_{3} \times S_{4}, \quad A G L_{1}(7) \cong C_{7} \rtimes C_{6}\right\}
$$

Simply check that any type of permutation is inside one component $\Longrightarrow \gamma\left(S_{7}\right)=3$.
$|\Sigma|=120>\sigma\left(S_{7}\right)=2^{6} \Longrightarrow \Sigma$ is not minimal.

Example: S_{7}

S_{7} has no 2-normal coverings.
S_{7} has the 3-normal covering Σ with basic maximal components

$$
\delta=\left\{S_{2} \times S_{5}, \quad S_{3} \times S_{4}, \quad A G L_{1}(7) \cong C_{7} \rtimes C_{6}\right\}
$$

Simply check that any type of permutation is inside one component $\Longrightarrow \gamma\left(S_{7}\right)=3$.
$|\Sigma|=120>\sigma\left(S_{7}\right)=2^{6} \Longrightarrow \Sigma$ is not minimal.
A minimal covering Δ of S_{7} is given by the four subgroups

$$
S_{2} \times S_{5}, \quad S_{3} \times S_{4}, \quad S_{6}, \quad A_{7}
$$

and all their conjugates in S_{7}.

Example: S_{7}

S_{7} has no 2-normal coverings.
S_{7} has the 3 -normal covering Σ with basic maximal components

$$
\delta=\left\{S_{2} \times S_{5}, \quad S_{3} \times S_{4}, \quad A G L_{1}(7) \cong C_{7} \rtimes C_{6}\right\}
$$

Simply check that any type of permutation is inside one component $\Longrightarrow \gamma\left(S_{7}\right)=3$.
$|\Sigma|=120>\sigma\left(S_{7}\right)=2^{6} \Longrightarrow \Sigma$ is not minimal.
A minimal covering Δ of S_{7} is given by the four subgroups

$$
S_{2} \times S_{5}, \quad S_{3} \times S_{4}, \quad S_{6}, \quad A_{7}
$$

and all their conjugates in S_{7}.
Thus Δ is a 4 -normal covering and $\sigma\left(S_{7}\right)$ is realizable through a normal covering.

A question

- The known examples of minimal coverings for A_{n} and S_{n} are normal:

Question
Is $\sigma(G)$, for $G=A_{n}, S_{n}$, always realizable through a normal covering?

The starting points

If $\pi \in S_{n}$ decomposes into the product of r disjoint cycles of lengths $l_{1}, \ldots, l_{r}, l_{i} \geq 1$ we say that π is of type $\left[l_{1}, \ldots, l_{r}\right]$.

The starting points

If $\pi \in S_{n}$ decomposes into the product of r disjoint cycles of lengths $l_{1}, \ldots, l_{r}, l_{i} \geq 1$ we say that π is of type $\left[l_{1}, \ldots, l_{r}\right]$.

- $\delta=\left\{H_{i}<S_{n}: i=1 \ldots k\right\}$ is a normal covering for S_{n} if and only if at least one permutation of any type in S_{n} belongs to some $H_{i} \in \delta$.

The starting points

If $\pi \in S_{n}$ decomposes into the product of r disjoint cycles of lengths $l_{1}, \ldots, l_{r}, l_{i} \geq 1$ we say that π is of type $\left[l_{1}, \ldots, l_{r}\right]$.

- $\delta=\left\{H_{i}<S_{n}: i=1 \ldots k\right\}$ is a normal covering for S_{n} if and only if at least one permutation of any type in S_{n} belongs to some $H_{i} \in \delta$.

Dealing with A_{n}, recall that the if $\pi \in A_{n}$ then the S_{n}-conjugacy class $\pi^{S_{n}}$ can splits into two A_{n}-conjugacy classes.

- There is an useful link between the numbers $\gamma\left(S_{n}\right)$ and $\gamma\left(A_{n}\right)$: Lemma
Any normal covering of S_{n} with maximal components all different from A_{n} defines, by intersection, a normal covering of A_{n}. In particular if $\gamma\left(S_{n}\right)$ is realized by a normal covering with maximal components which does not involve A_{n}, then $\gamma\left(A_{n}\right) \leq \gamma\left(S_{n}\right)$.
- There is an useful link between the numbers $\gamma\left(S_{n}\right)$ and $\gamma\left(A_{n}\right)$:

Lemma

Any normal covering of S_{n} with maximal components all different from A_{n} defines, by intersection, a normal covering of A_{n}.

In particular if $\gamma\left(S_{n}\right)$ is realized by a normal covering with maximal components which does not involve A_{n}, then $\gamma\left(A_{n}\right) \leq \gamma\left(S_{n}\right)$.

Motivations

- Group theory

Covering groups by subgroups is a classic topic in group theory
\qquad

Motivations

- Group theory

Covering groups by subgroups is a classic topic in group theory

- Number theory

Let $f \in \mathbf{Z}[x]$ be a polynomial with a root $\bmod p$, for all primes p and with no linear factors.
Consider $G=G a l_{\mathbf{Q}}(f)$ acting on the set Ω of the roots of f. If f splits into k distinct irreducible factors, choosing a root ω_{i} for each of them, and taking their stabilizers $G_{\omega_{i}}$, we get k basic components of a normal covering of G (D. Berend, Y. Bilou (1996)).

In particular $k \geq \gamma(G)$.

Motivations

- Group theory

Covering groups by subgroups is a classic topic in group theory

- Number theory

Let $f \in \mathbf{Z}[x]$ be a polynomial with a root $\bmod p$, for all primes p and with no linear factors.
Consider $G=G a l_{\mathbf{Q}}(f)$ acting on the set Ω of the roots of f. If f splits into k distinct irreducible factors, choosing a root ω_{i} for each of them, and taking their stabilizers $G_{\omega_{i}}$, we get k basic components of a normal covering of G (D. Berend, Y. Bilou (1996)).

In particular $k \geq \gamma(G)$.
By a Van der Waerden's result, the most common event is $G=S_{n}, A_{n}$.
An example is $f(x)=\left(x^{2}+x+1\right)\left(x^{3}-2\right)$ with $G a l_{\mathbf{Q}}(f)=S_{3}$.

Motivations

- Group theory

Covering groups by subgroups is a classic topic in group theory

- Number theory

Let $f \in \mathbf{Z}[x]$ be a polynomial with a root $\bmod p$, for all primes p and with no linear factors.
Consider $G=G a l_{\mathbf{Q}}(f)$ acting on the set Ω of the roots of f. If f splits into k distinct irreducible factors, choosing a root ω_{i} for each of them, and taking their stabilizers $G_{\omega_{i}}$, we get k basic components of a normal covering of G (D. Berend, Y. Bilou (1996)).

In particular $k \geq \gamma(G)$.
By a Van der Waerden's result, the most common event is $G=S_{n}, A_{n}$.
An example is $f(x)=\left(x^{2}+x+1\right)\left(x^{3}-2\right)$ with $G a l_{\mathbf{Q}}(f)=S_{3}$.

An ongoing research

J. Sonn and his student D. Rebayev are working in constructing polynomials $f \in \mathbf{Z}[x]$ with

- roots $\bmod p$, for all primes p
- Galois group G the alternating or the symmetric group
- $\gamma(G)$ distinct irreducible factors

An ongoing research

J. Sonn and his student D. Rebayev are working in constructing polynomials $f \in \mathbf{Z}[x]$ with

- roots $\bmod p$, for all primes p
- Galois group G the alternating or the symmetric group
- $\gamma(G)$ distinct irreducible factors

Using the knowledge of the minimal normal coverings and field theory techniques, they succeeded for S_{n} when $3 \leq n \leq 6$ and for A_{n} when $4 \leq n \leq 6$, which are all cases in which γ assumes value 2 .

An ongoing research

J. Sonn and his student D. Rebayev are working in constructing polynomials $f \in \mathbf{Z}[x]$ with

- roots $\bmod p$, for all primes p
- Galois group G the alternating or the symmetric group
- $\gamma(G)$ distinct irreducible factors

Using the knowledge of the minimal normal coverings and field theory techniques, they succeeded for S_{n} when $3 \leq n \leq 6$ and for A_{n} when $4 \leq n \leq 6$, which are all cases in which γ assumes value 2 .

It is not clear, at the moment, how to deal with the general case: for such polynomials we have both an existence and an explicit construction problem, which is part of the inverse problem in Galois theory.

Methods

We get upper bounds for $\gamma(G), G=A_{n}, S_{n}$ constructing normal coverings, lower bounds finding some mandatory maximal components.

Examples
Let n be odd.
Permutations of type
with $(k, n-k)=1$
intrancitine eaharaum

Methods

We get upper bounds for $\gamma(G), G=A_{n}, S_{n}$ constructing normal coverings, lower bounds finding some mandatory maximal components.

Examples

Let n be odd.

- Permutations of type

$$
[k, n-k]
$$

with $(k, n-k)=1, \quad 2 \leq k<n / 2$ belongs only to the maximal intransitive subgroup

$$
S_{k} \times S_{(n-k)}
$$

Methods

- Permutations of type

$$
[p \alpha, p \beta],
$$

where $p \mid n$ is a prime, $\alpha, \beta \in \mathbf{N}^{*}$ are coprime and

$$
\alpha \leq \frac{2(\sqrt{n}-1)}{p}
$$

belongs only to the maximal subgroups

$$
S_{p} \backslash S_{n / p}, \quad S_{n / p} \backslash S_{p}
$$

or to

$$
S_{p \alpha} \times S_{p \beta}
$$

Results: exact values and bounds

Theorem (A)
For any $p \neq 2,3$ prime, the group S_{p} admits the minimal normal covering with basic set

$$
\left\{A G L_{1}(p) \cong C_{p} \rtimes C_{p-1}, S_{k} \times S_{(p-k)}: 2 \leq k \leq \frac{p-1}{2}\right\} .
$$

In particular

$$
\gamma\left(S_{p}\right)=\frac{p-1}{2}, \quad \gamma\left(A_{p}\right) \leq \frac{p-1}{2} .
$$

Moreover for any prime $p \neq 2$,

$$
\gamma\left(A_{2 p}\right)=\frac{p+1}{2}
$$

Theorem (B)

For any p prime and $\alpha \geq 2$

$$
\delta=\left\{S_{p} \backslash S_{p^{\alpha-1}}, S_{k} \times S_{\left(p^{\alpha}-k\right)}: 1 \leq k<\frac{p^{\alpha}}{2}, p \nmid k\right\}
$$

is a basic set for $S_{p^{\alpha}}$. In particular

$$
\gamma\left(S_{2^{\alpha}}\right) \leq \frac{\phi\left(2^{\alpha}\right)}{2}+1 \quad \text { and for } \quad \alpha \geq 4, \quad \gamma\left(A_{2^{\alpha}}\right)=\frac{\phi\left(2^{\alpha}\right)}{2}+1
$$

If $p \neq 2$, then δ is minimal and

$$
\gamma\left(S_{p^{\alpha}}\right)=\frac{\phi\left(p^{\alpha}\right)}{2}+1, \quad \gamma\left(A_{p^{\alpha}}\right) \leq \frac{\phi\left(p^{\alpha}\right)}{2}+1
$$

Theorem (C)

Let $n=p q$ with $p<q$ primes. Then:

$$
\delta=\left\{S_{p} \imath S_{q}, S_{k} \times S_{(n-k)}: 1 \leq k<n / 2, p, q \nmid k\right\}
$$

and

$$
\delta^{\prime}=\left\{S_{q} \imath S_{p}, S_{k} \times S_{(n-k)}: 1 \leq k<n / 2, p, q \nmid k\right\}
$$

are basic sets for $S_{p q}$.
In particular $\quad \gamma\left(A_{p q}\right) \leq \frac{\phi(p q)}{2}+1 \quad$ and, for any $q \neq 2$,

$$
\gamma\left(S_{2 q}\right) \leq \frac{q+1}{2}
$$

If p, q are odd then δ, δ^{\prime} are minimal and

$$
\gamma\left(S_{p q}\right)=\frac{\phi(p q)}{2}+1
$$

Example: S_{10}, A_{10}

We know $\gamma\left(S_{10}\right), \gamma\left(A_{10}\right) \geq 3$.
By Theorem (C), $\gamma\left(S_{10}\right) \leq \frac{\phi(10)}{2}+1=3 \Longrightarrow \gamma\left(S_{10}\right)=3$.
has maximal components, all different from $A_{10} \Longrightarrow$ a basic set for a normal covering of A_{10} and

Example: S_{10}, A_{10}

We know $\gamma\left(S_{10}\right), \gamma\left(A_{10}\right) \geq 3$.
By Theorem $(\mathrm{C}), \gamma\left(S_{10}\right) \leq \frac{\phi(10)}{2}+1=3 \Longrightarrow \gamma\left(S_{10}\right)=3$.
The normal covering of S_{10} with basic set

$$
\delta=\left\{S_{2} \backslash S_{5}, S_{3} \times S_{7}, S_{9}\right\}
$$

has maximal components, all different from $A_{10} \Longrightarrow$

$$
\delta_{A_{10}}=\left\{\left[S_{2} \backslash S_{5}\right] \cap A_{10},\left[S_{3} \times S_{7}\right] \cap A_{10}, A_{9}\right\}
$$

is a basic set for a normal covering of A_{10} and $\gamma\left(A_{10}\right)=3$.

Example: S_{10}, A_{10}

We know $\gamma\left(S_{10}\right), \gamma\left(A_{10}\right) \geq 3$.
By Theorem $(\mathrm{C}), \gamma\left(S_{10}\right) \leq \frac{\phi(10)}{2}+1=3 \Longrightarrow \gamma\left(S_{10}\right)=3$.
The normal covering of S_{10} with basic set

$$
\delta=\left\{S_{2} \backslash S_{5}, S_{3} \times S_{7}, S_{9}\right\}
$$

has maximal components, all different from $A_{10} \Longrightarrow$

$$
\delta_{A_{10}}=\left\{\left[S_{2} \backslash S_{5}\right] \cap A_{10},\left[S_{3} \times S_{7}\right] \cap A_{10}, A_{9}\right\}
$$

is a basic set for a normal covering of A_{10} and $\gamma\left(A_{10}\right)=3$.

- We know that $\gamma\left(S_{n}\right)=\gamma\left(A_{n}\right)$ when $n \in\{4,5,6,10\}$.

Question

What are all the solution of the equation $\gamma\left(S_{n}\right)=\gamma\left(A_{n}\right) \quad(*)$?

The case $n=2 q$

The case $n=2 q, q \geq 7$ prime, is an interesting open case to investigate. We know that

$$
\gamma\left(S_{2 q}\right) \leq \frac{q+1}{2}=\gamma\left(A_{2 q}\right) .
$$

The case $n=2 q$

The case $n=2 q, q \geq 7$ prime, is an interesting open case to investigate. We know that

$$
\gamma\left(S_{2 q}\right) \leq \frac{q+1}{2}=\gamma\left(A_{2 q}\right) .
$$

Thus either we find solution for $(*)$ or we discover some degrees for which the gamma function on the symmetric group is less then the gamma function on the alternating group, which is unexpected.

The case $n=2 q$

The case $n=2 q, q \geq 7$ prime, is an interesting open case to investigate. We know that

$$
\gamma\left(S_{2 q}\right) \leq \frac{q+1}{2}=\gamma\left(A_{2 q}\right) .
$$

Thus either we find solution for $(*)$ or we discover some degrees for which the gamma function on the symmetric group is less then the gamma function on the alternating group, which is unexpected.

Question
Is always $\gamma\left(S_{n}\right) \geq \gamma\left(A_{n}\right)$?

Example: A_{9}

For A_{9}, we have the 3 -normal covering with basic set

$$
\delta=\left\{P \Gamma L_{2}(8), P \Gamma L_{2}(8),\left[S_{4} \times S_{5}\right] \cap A_{9}\right\}
$$

where the two non conjugated copies of $P \Gamma L_{2}(8)$ in A_{9} appear.

This example shows that in general we cannot avoid primitive
components and in particular almost simple components.

Example: A_{9}

For A_{9}, we have the 3 -normal covering with basic set

$$
\delta=\left\{P \Gamma L_{2}(8), P \Gamma L_{2}(8),\left[S_{4} \times S_{5}\right] \cap A_{9}\right\},
$$

where the two non conjugated copies of $P \Gamma L_{2}(8)$ in A_{9} appear. There are two conjugacy classes of 9 -cycles and a representative of each of them belongs exactly to one of the two copies of $P \Gamma L_{2}(8)$. So $\gamma\left(A_{9}\right)=3$.

Example: A_{9}

For A_{9}, we have the 3-normal covering with basic set

$$
\delta=\left\{P \Gamma L_{2}(8), P \Gamma L_{2}(8),\left[S_{4} \times S_{5}\right] \cap A_{9}\right\},
$$

where the two non conjugated copies of $P \Gamma L_{2}(8)$ in A_{9} appear. There are two conjugacy classes of 9 -cycles and a representative of each of them belongs exactly to one of the two copies of $P \Gamma L_{2}(8)$. So $\gamma\left(A_{9}\right)=3$.

This example shows that in general we cannot avoid primitive components and in particular almost simple components.

Results: exact values and bounds

Theorem (D)
Let $n=p^{\alpha} q^{\beta}$ with $p<q$ primes $\alpha, \beta \geq 1$ and $(\alpha, \beta) \neq(1,1)$. Then:

$$
\delta=\left\{S_{p} \backslash S_{n / p}, S_{q} \backslash S_{n / q}, S_{k} \times S_{(n-k)}: 1 \leq k<n / 2, p, q \nmid k\right\}
$$

is a basic set for S_{n}.
In particular

$$
\gamma\left(S_{n}\right), \gamma\left(A_{n}\right) \leq \frac{\phi(n)}{2}+2
$$

Results: exact values and bounds

Theorem (D)
Let $n=p^{\alpha} q^{\beta}$ with $p<q$ primes $\alpha, \beta \geq 1$ and $(\alpha, \beta) \neq(1,1)$. Then:

$$
\delta=\left\{S_{p} \backslash S_{n / p}, S_{q} \backslash S_{n / q}, S_{k} \times S_{(n-k)}: 1 \leq k<n / 2, p, q \nmid k\right\}
$$

is a basic set for S_{n}.
In particular

$$
\gamma\left(S_{n}\right), \gamma\left(A_{n}\right) \leq \frac{\phi(n)}{2}+2
$$

Let p, q be odd. If $\beta \geq 2$ or if $\beta=1$ and

$$
q \leq 2\left(p^{\alpha}-1\right)+2 \sqrt{p^{\alpha}\left(p^{\alpha}-2\right)}
$$

then

$$
\gamma\left(S_{n}\right)=\frac{\phi(n)}{2}+2
$$

- We are still working in understanding if the arithmetical assumption on q could be dropped.

Results: some general bounds

Proposition

i) If $n \in \mathbf{N}$ is odd and not a prime, then

$$
\frac{\phi(n)}{2}+1 \leq \gamma\left(S_{n}\right) \leq\left\lfloor\frac{n+1}{2}\right\rfloor
$$

ii) If $n \geq 10$ is even then A_{n} is normally covered through the basic set

$$
\delta=\left\{\left[S_{n / 2} \backslash S_{2}\right] \cap A_{n}, S_{i} \times S_{n-i}: 1 \leq i \leq n / 2-1, i \text { odd }\right\} .
$$

Moreover

$$
\frac{\phi(n)}{2}+1 \leq \gamma\left(A_{n}\right) \leq\left\lfloor\frac{n+4}{4}\right\rfloor
$$

- Note that the inequalities are sharp in the alternating case: use $n=2^{\alpha}$ with $\alpha \geq 4$ for the upper bound and $n=2 p$ with p an odd prime for the lower bound.

The feeling is that $\gamma\left(S_{n}\right)$ is of type $\frac{\phi(n)}{2}+f(n)$ where the function $f(n)$ is small with resnect to $力(n)$

- Note that the inequalities are sharp in the alternating case: use $n=2^{\alpha}$ with $\alpha \geq 4$ for the upper bound and $n=2 p$ with p an odd prime for the lower bound.
- The lower bound for the symmetric case is sharp: use $n=p^{\alpha}$ with $\alpha \geq 2$.
We don't know if there exists n such that $\gamma\left(S_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$.
The feeling is that $\gamma\left(S_{n}\right)$ is of type $\frac{\phi(n)}{2}+f(n)$ where the function $f(n)$ is small with respect to $\phi(n)$.
- Note that the inequalities are sharp in the alternating case: use $n=2^{\alpha}$ with $\alpha \geq 4$ for the upper bound and $n=2 p$ with p an odd prime for the lower bound.
- The lower bound for the symmetric case is sharp: use $n=p^{\alpha}$ with $\alpha \geq 2$.
We don't know if there exists n such that $\gamma\left(S_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$. The feeling is that $\gamma\left(S_{n}\right)$ is of type $\frac{\phi(n)}{2}+f(n)$ where the function $f(n)$ is small with respect to $\phi(n)$.
- What does it happen to $\gamma\left(S_{n}\right)$ in the even case and to $\gamma\left(A_{n}\right)$ in the odd case?

Results: some bounds

It is easy to get some upper bounds...

- When n is even, A_{n} contains all the permutations that decompose into two disjoint cycles \Longrightarrow

$$
\delta=\left\{A_{n}, S_{n / 2} \backslash S_{2}, S_{k} \times S_{n-k}: 1 \leq k \leq\left\lfloor\frac{n}{3}\right\rfloor\right\}
$$

is a basic set for $S_{n} \Longrightarrow \gamma\left(S_{n}\right) \leq 2+\left\lfloor\frac{n}{3}\right\rfloor$

Results: some bounds

It is easy to get some upper bounds...

- When n is even, A_{n} contains all the permutations that decompose into two disjoint cycles \Longrightarrow

$$
\delta=\left\{A_{n}, S_{n / 2} \backslash S_{2}, S_{k} \times S_{n-k}: 1 \leq k \leq\left\lfloor\frac{n}{3}\right\rfloor\right\}
$$

is a basic set for $S_{n} \Longrightarrow \gamma\left(S_{n}\right) \leq 2+\left\lfloor\frac{n}{3}\right\rfloor$

- When n is odd, A_{n} does not contain permutations that decompose into two disjoint cycles; thus we get a basic set for A_{n} taking a subgroup containing a n-cycle and the

$$
\left[S_{k} \times S_{n-k}\right] \cap A_{n}
$$

with $1 \leq k \leq\left\lfloor\frac{n}{3}\right\rfloor \Longrightarrow \gamma\left(A_{n}\right) \leq 1+\left\lfloor\frac{n}{3}\right\rfloor$.

Results: lower bounds for the symmetric group of even degree

Less easy to get some lower bounds...
Theorem
i) If $n \geq 10$ is even and not divisible by 3 , then

$$
\gamma\left(S_{n}\right) \geq\left|\left\{i \in\left(\frac{n}{4}, \frac{n-2}{3}\right] \cap \mathbf{N}^{*}:(i, n)=1\right\}\right|+1 \sim \frac{\phi(n)}{12} .
$$

Results: lower bounds for the symmetric group of even degree

Less easy to get some lower bounds...
Theorem
i) If $n \geq 10$ is even and not divisible by 3 , then

$$
\gamma\left(S_{n}\right) \geq\left|\left\{i \in\left(\frac{n}{4}, \frac{n-2}{3}\right] \cap \mathbf{N}^{*}:(i, n)=1\right\}\right|+1 \sim \frac{\phi(n)}{12} .
$$

ii) If $n \geq 12$ is even and divisible by 3 , then

$$
\gamma\left(S_{n}\right) \geq\left|\left\{i \in\left(\frac{n}{15}, \frac{n}{9}\right) \cap \mathbf{N}^{*}:(i, n)=1\right\}\right|+1 \sim \frac{2 \phi(n)}{45}
$$

Results: a lower bound for the alternating group of odd degree

Theorem
Let n be odd. If $n \geq 47$, then

$$
\begin{aligned}
& \gamma\left(A_{n}\right) \geq\left|\left\{i \in\left(\frac{\sqrt{n}-1}{2}, \sqrt{n}-1\right) \cap \mathbf{N}^{*}: \quad(i, n)=1\right\}\right|+ \\
& \quad+\left|\left\{i \in\left(\frac{n}{4}, \frac{n}{3}\right) \cap \mathbf{N}^{*}:(i, n)=1\right\}\right|+1 \sim \frac{\phi(n)}{12} .
\end{aligned}
$$

Number theory

The asymptotic estimates are due to this number theory result:
Lemma
Let $n \in \mathbf{N}^{*}$ and let $0<x<y<n$ with $x, y \in \mathbf{R}$.
For any interval I with extremes x and y, define

$$
\phi(I ; n)=\left|\left\{i \in \mathbf{N}^{*}: i \in I,(i, n)=1\right\}\right|
$$

If $y-x \sim c n^{\beta}$ for some $\beta \in(0,1], c>0$ then

$$
\phi(I ; n) \sim \frac{\phi(n)}{n}(y-x)
$$

Final comments on $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$

We consider $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$ as functions $\mathbf{N} \longrightarrow \mathbf{N}$:

We can give a look to the information we collected through our theorems on the γ values, when $n \leq 20$.

Final comments on $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$

We consider $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$ as functions $\mathbf{N} \longrightarrow \mathbf{N}$:

- $\lim _{n \rightarrow+\infty} \gamma\left(S_{n}\right)=\lim _{n \rightarrow+\infty} \gamma\left(A_{n}\right)=+\infty$ since $\lim _{n \rightarrow+\infty} \phi(n)=+\infty$

We can give a look to the information we collected through our theorems on the γ values, when $n \leq 20$.

Final comments on $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$

We consider $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$ as functions $\mathbf{N} \longrightarrow \mathbf{N}$:

- $\lim _{n \rightarrow+\infty} \gamma\left(S_{n}\right)=\lim _{n \rightarrow+\infty} \gamma\left(A_{n}\right)=+\infty$ since $\lim _{n \rightarrow+\infty} \phi(n)=+\infty$

We can give a look to the information we collected through our theorems on the γ values, when $n \leq 20$.

Some values

n	$\gamma\left(S_{n}\right)$	$\gamma\left(A_{n}\right)$
3	2	$/$
4	2	2
5	2	2
6	2	2
7	3	2
8	3	2
9	4	3
10	3	3
11	5	4
12	3,4	3,4
13	6	≤ 6
14	3,4	4
15	5	≤ 5
16	≤ 5	5
17	8	≤ 8
18	≤ 9	4,5
19	9	≤ 9
20	≤ 10	5,6

Final comments on $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$

- $\gamma\left(S_{n}\right)$ is not increasing :

$$
\gamma\left(S_{9}\right)=\frac{\phi(9)}{2}+1=4>\gamma\left(S_{10}\right)=3
$$

Final comments on $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$

- $\gamma\left(S_{n}\right)$ is not increasing :

$$
\gamma\left(S_{9}\right)=\frac{\phi(9)}{2}+1=4>\gamma\left(S_{10}\right)=3
$$

- $\gamma\left(S_{n}\right)$ "jumps":

$$
\gamma\left(S_{10}\right)=3, \quad \gamma\left(S_{11}\right)=\frac{11-1}{2}=5
$$

Final comments on $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$

- $\gamma\left(S_{n}\right)$ is not increasing :

$$
\gamma\left(S_{9}\right)=\frac{\phi(9)}{2}+1=4>\gamma\left(S_{10}\right)=3
$$

- $\gamma\left(S_{n}\right)$ "jumps":

$$
\gamma\left(S_{10}\right)=3, \quad \gamma\left(S_{11}\right)=\frac{11-1}{2}=5
$$

- A question: Are $\gamma\left(S_{n}\right), \gamma\left(A_{n}\right)$ surjective?

