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Definitions

Let G be a finite group.

i) A covering of G is a set of m proper subgroups of G, called
components, whose union is G.
σ(G) is defined as the smallest integer m such that G has a
covering with m components (Cohn, 1994).
A covering with σ(G) components is called a minimal covering
which realizes σ(G).

ii) A normal covering of G is a covering which is invariant under
G-conjugation.
A normal covering Σ is the set of the G-conjugacy classes of some
non conjugated subgroups of G, say H1, . . . ,Hk , called the basic
components of the normal covering, such that

G =
k⋃
i=1

⋃
g∈G

Hg
i .
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Definitions

We say that δ = {Hi < G : i = 1, . . . , k} is a basic set for the k-normal
covering Σ.
We define γ(G) as the smallest k such that G admits a k-normal
covering.
A normal covering with γ(G) basic components is called a minimal
normal covering of G which realizes γ(G).

Note:

a) Every non cyclic group admits a normal covering

b) When G is abelian σ(G) = γ(G) ≥ 3

c) You can always replace a k-normal covering with a k-normal
covering with maximal components
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Introduction

I am going to present the results of a joined work with C. Praeger
(2010) in which we investigate the natural numbers γ(G), where
G = An, Sn.

This number depends on the arithmetical complexity of n and can be
expressed in terms of the Euler function φ.
We give the exact value when n decomposes in at most two odd
primes, lower and upper bound as well as asymptotic estimate in the
general case.
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Background

Theorem ( D. B. (1998))

i) γ(Sn) = 2 if and only if 3 ≤ n ≤ 6

ii) γ(An) = 2 if and only if 4 ≤ n ≤ 8.

Here we deal with Sn for n ≥ 7 and An for n ≥ 9.

I A. Maróti (2005) explored the numbers σ(Sn) and σ(An).

Some of his ideas are useful also to compute γ(Sn) and γ(An), though
our methods diverge.

5 / 30



Background

Theorem ( D. B. (1998))

i) γ(Sn) = 2 if and only if 3 ≤ n ≤ 6

ii) γ(An) = 2 if and only if 4 ≤ n ≤ 8.

Here we deal with Sn for n ≥ 7 and An for n ≥ 9.
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Example: S7

S7 has no 2-normal coverings.
S7 has the 3-normal covering Σ with basic maximal components

δ = {S2 × S5, S3 × S4, AGL1(7) ∼= C7 o C6}.

Simply check that any type of permutation is inside one component
=⇒ γ(S7) = 3.

|Σ| = 120 > σ(S7) = 26 =⇒ Σ is not minimal.

A minimal covering ∆ of S7 is given by the four subgroups

S2 × S5, S3 × S4, S6, A7

and all their conjugates in S7.
Thus ∆ is a 4-normal covering and σ(S7) is realizable through a
normal covering.
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A question

I The known examples of minimal coverings for An and Sn are
normal:

Question
Is σ(G), for G = An, Sn, always realizable through a normal covering?
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The starting points

If π ∈ Sn decomposes into the product of r disjoint cycles of lengths
l1, . . . , lr, li ≥ 1 we say that π is of type [l1, . . . , lr].

I δ = {Hi < Sn : i = 1 . . . k} is a normal covering for Sn if and
only if at least one permutation of any type in Sn belongs to some
Hi ∈ δ.

Dealing with An, recall that the if π ∈ An then the Sn-conjugacy
class πSn can splits into two An-conjugacy classes.
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I There is an useful link between the numbers γ(Sn) and γ(An) :

Lemma
Any normal covering of Sn with maximal components all different from
An defines, by intersection, a normal covering of An.

In particular if γ(Sn) is realized by a normal covering with maximal
components which does not involve An, then γ(An) ≤ γ(Sn).
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Motivations

I Group theory
Covering groups by subgroups is a classic topic in group theory

I Number theory
Let f ∈ Z[x] be a polynomial with a root mod p, for all primes p
and with no linear factors.
Consider G = GalQ(f) acting on the set Ω of the roots of f.
If f splits into k distinct irreducible factors, choosing a root
ωi for each of them, and taking their stabilizers Gωi , we get k
basic components of a normal covering of G ( D. Berend, Y. Bilou
(1996)).
In particular k ≥ γ(G).
By a Van der Waerden’s result, the most common event is
G = Sn, An.
An example is f(x) = (x2 + x+ 1)(x3 − 2) with GalQ(f) = S3.
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An ongoing research

J. Sonn and his student D. Rebayev are working in constructing
polynomials f ∈ Z[x] with

I roots mod p, for all primes p

I Galois group G the alternating or the symmetric group

I γ(G) distinct irreducible factors

Using the knowledge of the minimal normal coverings and field theory
techniques, they succeeded for Sn when 3 ≤ n ≤ 6 and for An when
4 ≤ n ≤ 6, which are all cases in which γ assumes value 2.

It is not clear, at the moment, how to deal with the general case:
for such polynomials we have both an existence and an explicit
construction problem, which is part of the inverse problem in Galois
theory.
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Methods

We get upper bounds for γ(G), G = An, Sn constructing normal
coverings, lower bounds finding some mandatory maximal components.

Examples

Let n be odd.

I Permutations of type
[k, n− k]

with (k, n− k) = 1, 2 ≤ k < n/2 belongs only to the maximal
intransitive subgroup

Sk × S(n−k)
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Methods

I Permutations of type
[pα, pβ],

where p | n is a prime, α, β ∈ N∗ are coprime and

α ≤ 2(
√
n− 1)

p
,

belongs only to the maximal subgroups

Sp o Sn/p, Sn/p o Sp

or to
Spα × Sp β

13 / 30



Results: exact values and bounds

Theorem (A)

For any p 6= 2, 3 prime, the group Sp admits the minimal normal
covering with basic set

{AGL1(p) ∼= Cp o Cp−1, Sk × S(p−k) : 2 ≤ k ≤ p− 1

2
}.

In particular

γ(Sp) =
p− 1

2
, γ(Ap) ≤

p− 1

2
.

Moreover for any prime p 6= 2,

γ(A2p) =
p+ 1

2

14 / 30



Theorem (B)

For any p prime and α ≥ 2

δ = {Sp o Spα−1 , Sk × S(pα−k) : 1 ≤ k < pα

2
, p - k}

is a basic set for Spα . In particular

γ(S 2α) ≤ φ(2α)

2
+ 1 and for α ≥ 4, γ(A 2α) =

φ(2α)

2
+ 1.

If p 6= 2, then δ is minimal and

γ(Spα) =
φ(pα)

2
+ 1, γ(A pα) ≤ φ(pα)

2
+ 1.
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Theorem (C)

Let n = pq with p < q primes. Then:

δ = {Sp o Sq, Sk × S(n−k) : 1 ≤ k < n/2, p, q - k}

and
δ′ = {Sq o Sp, Sk × S(n−k) : 1 ≤ k < n/2, p, q - k}

are basic sets for Spq.

In particular γ(Apq) ≤
φ(pq)

2
+ 1 and, for any q 6= 2 ,

γ(S2q) ≤
q + 1

2
.

If p, q are odd then δ, δ′ are minimal and

γ(Spq) =
φ(pq)

2
+ 1.

16 / 30



Example: S10, A10

We know γ(S10), γ(A10) ≥ 3.

By Theorem (C), γ(S10) ≤ φ(10)

2
+ 1 = 3 =⇒ γ(S10) = 3.

The normal covering of S10 with basic set

δ = {S2 o S5, S3 × S7, S9}

has maximal components, all different from A10 =⇒

δA10 = {[S2 o S5] ∩A10, [S3 × S7] ∩A10, A9}

is a basic set for a normal covering of A10 and γ(A10) = 3.

I We know that γ(Sn) = γ(An) when n ∈ {4, 5, 6, 10}.

Question
What are all the solution of the equation γ(Sn) = γ(An) (∗)?
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The case n = 2q

The case n = 2q, q ≥ 7 prime, is an interesting open case to investigate.
We know that

γ(S2q) ≤
q + 1

2
= γ(A2q).

Thus either we find solution for (∗) or we discover some degrees for
which the gamma function on the symmetric group is less then the
gamma function on the alternating group, which is unexpected.

Question
Is always γ(Sn) ≥ γ(An)?
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Example: A9

For A9, we have the 3-normal covering with basic set

δ = {PΓL2(8), PΓL2(8), [S4 × S5] ∩A9},

where the two non conjugated copies of PΓL2(8) in A9 appear.
There are two conjugacy classes of 9-cycles and a representative of each
of them belongs exactly to one of the two copies of PΓL2(8).
So γ(A9) = 3.

This example shows that in general we cannot avoid primitive
components and in particular almost simple components.
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Results: exact values and bounds

Theorem (D)

Let n = pαqβ with p < q primes α, β ≥ 1 and (α, β) 6= (1, 1). Then:

δ = {Sp o Sn/p, Sq o Sn/q, Sk × S(n−k) : 1 ≤ k < n/2, p, q - k}

is a basic set for Sn.
In particular

γ(Sn), γ(An) ≤ φ(n)

2
+ 2

Let p, q be odd. If β ≥ 2or if β = 1 and

q ≤ 2(pα − 1) + 2
√
pα(pα − 2)

then

γ(Sn) =
φ(n)

2
+ 2
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I We are still working in understanding if the arithmetical
assumption on q could be dropped.

21 / 30



Results: some general bounds

Proposition

i) If n ∈ N is odd and not a prime, then

φ(n)

2
+ 1 ≤ γ(Sn) ≤ bn+ 1

2
c

ii) If n ≥ 10 is even then An is normally covered through the basic set

δ = {[Sn/2 o S2] ∩An, Si × Sn−i : 1 ≤ i ≤ n/2− 1, i odd }.

Moreover
φ(n)

2
+ 1 ≤ γ(An) ≤ bn+ 4

4
c

22 / 30



I Note that the inequalities are sharp in the alternating case:
use n = 2α with α ≥ 4 for the upper bound and n = 2p with p an
odd prime for the lower bound.

I The lower bound for the symmetric case is sharp:
use n = pα with α ≥ 2.

We don’t know if there exists n such that γ(Sn) = bn+ 1

2
c.

The feeling is that γ(Sn) is of type
φ(n)

2
+ f(n) where the

function f(n) is small with respect to φ(n).

I What does it happen to γ(Sn) in the even case and to γ(An) in
the odd case?
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I What does it happen to γ(Sn) in the even case and to γ(An) in
the odd case?
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Results: some bounds

It is easy to get some upper bounds...

I When n is even, An contains all the permutations that decompose
into two disjoint cycles =⇒

δ = {An, Sn/2 o S2, Sk × Sn−k : 1 ≤ k ≤ bn
3
c}

is a basic set for Sn =⇒ γ(Sn) ≤ 2 + bn
3
c

I When n is odd, An does not contain permutations that decompose
into two disjoint cycles; thus we get a basic set for An taking a
subgroup containing a n-cycle and the

[Sk × Sn−k] ∩An

with 1 ≤ k ≤ bn
3
c =⇒ γ(An) ≤ 1 + bn

3
c.
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Results: lower bounds for the symmetric group of even
degree

Less easy to get some lower bounds...

Theorem

i) If n ≥ 10 is even and not divisible by 3, then

γ(Sn) ≥ |{i ∈
(
n

4
,
n− 2

3

]
∩N∗ : (i, n) = 1}|+ 1 ∼ φ(n)

12
.

ii) If n ≥ 12 is even and divisible by 3, then

γ(Sn) ≥ |{i ∈
( n

15
,
n

9

)
∩N∗ : (i, n) = 1}|+ 1 ∼ 2φ(n)

45
.
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Results: a lower bound for the alternating group of odd
degree

Theorem
Let n be odd. If n ≥ 47, then

γ(An) ≥ |{i ∈
(√

n− 1

2
,
√
n− 1

)
∩ N∗ : (i, n) = 1}|+

+|{i ∈
(n

4
,
n

3

)
∩ N∗ : (i, n) = 1}|+ 1 ∼ φ(n)

12
.
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Number theory

The asymptotic estimates are due to this number theory result:

Lemma
Let n ∈ N∗ and let 0 < x < y < n with x, y ∈ R.
For any interval I with extremes x and y, define

φ(I;n) = |{i ∈ N∗ : i ∈ I, (i, n) = 1}|.

If y − x ∼ c nβ for some β ∈ (0, 1], c > 0 then

φ(I;n) ∼ φ(n)

n
(y − x)
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Final comments on γ(Sn), γ(An)

We consider γ(Sn), γ(An) as functions N −→ N :

I lim
n→+∞

γ(Sn) = lim
n→+∞

γ(An) = +∞ since lim
n→+∞

φ(n) = +∞

We can give a look to the information we collected through our
theorems on the γ values, when n ≤ 20.
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Some values

29 / 30



Final comments on γ(Sn), γ(An)

I γ(Sn) is not increasing :

γ(S9) =
φ(9)

2
+ 1 = 4 > γ(S10) = 3

I γ(Sn) ”jumps”:

γ(S10) = 3, γ(S11) =
11− 1

2
= 5

I A question: Are γ(Sn), γ(An) surjective?
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