Semi-Rational Groups

David Chillag and Silvio Dolfi

Groups Ischia 2010
April 2010
Dedicated to the memory of Silvia Lucido

- G a finite group. Class (G) the set of conjugacy classes of G.
- G a finite group. Class (G) the set of conjugacy classes of G.
- Conjecture: If $|C| \neq|D|$ for all
$C \neq D \in \operatorname{Class}(G)$ then $G \cong S_{3}$.
- G a finite group. Class (G) the set of conjugacy classes of G.
- Conjecture: If $|C| \neq|D|$ for all
$C \neq D \in \operatorname{Class}(G)$ then $G \cong S_{3}$.
- Proved for solvable groups by Zhang (1994), and independently by Knörr,Lempken and Thielke (1995).
- G a finite group. Class (G) the set of conjugacy classes of G.
- Conjecture: If $|C| \neq|D|$ for all
$C \neq D \in \operatorname{Class}(G)$ then $G \cong S_{3}$.
- Proved for solvable groups by Zhang (1994), and independently by Knörr,Lempken and Thielke (1995).
- Assume $|C| \neq|D|$ for all $C \neq D \in \operatorname{Class}(G)$. Let $x \in G$ and m with $(m, o(x))=1$. Then
$C_{G}(x)=C_{G}\left(x^{m}\right)$ so $\left|c l_{G}(x)\right|=\left|c l_{G}\left(x^{m}\right)\right|$. So x and x^{m} must be conjugate.

Definition

$x \in G$ is called rational if x is conjugate to all generators of $\langle x\rangle$. G is rational if all $x \in G$ are rational.

Definition

$x \in G$ is called rational if x is conjugate to all generators of $\langle x\rangle$. G is rational if all $x \in G$ are rational.

- Equivalnet to $x \in G$ is rational are:

Definition

$x \in G$ is called rational if x is conjugate to all generators of $\langle x\rangle$. G is rational if all $x \in G$ are rational.

- Equivalnet to $x \in G$ is rational are:
(1) $\left|\frac{N_{G}(<x>)}{C_{G}(x)}\right|=\phi(|x|), \phi$ Euler function.

Definition

$x \in G$ is called rational if x is conjugate to all generators of $\langle x\rangle$. G is rational if all $x \in G$ are rational.

- Equivalnet to $x \in G$ is rational are:
(1) $\left|\frac{N_{G}(<x>)}{C_{G}(x)}\right|=\phi(|x|), \phi$ Euler function.
(2) $\chi(x)$ is rational (integer) for all $\chi \in \operatorname{Irr}(G)$.

Definition

$x \in G$ is called rational if x is conjugate to all generators of $\langle x\rangle$. G is rational if all $x \in G$ are rational.

- Equivalnet to $x \in G$ is rational are:
(1) $\left|\frac{N_{G}(<x>)}{C_{G}(x)}\right|=\phi(|x|), \phi$ Euler function.
(2) $\chi(x)$ is rational (integer) for all $\chi \in \operatorname{Ir}(G)$.

Example

$G=S_{n}$ is rational, as x has the same cycle structure as x^{m} for $(m, o(x))=1$.

Definition

$x \in G$ is called rational if x is conjugate to all generators of $\langle x\rangle$. G is rational if all $x \in G$ are rational.

- Equivalnet to $x \in G$ is rational are:
(1) $\left|\frac{N_{G}(<x>)}{C_{G}(x)}\right|=\phi(|x|), \phi$ Euler function.
(2) $\chi(x)$ is rational (integer) for all $\chi \in \operatorname{Ir}(G)$.

Example

$G=S_{n}$ is rational, as x has the same cycle structure as x^{m} for $(m, o(x))=1$.

- So no restriction on $\pi(G)$, the set of prime divisors of $|G|$.
- However,
- However,

Theorem
 Let G a finite rational solvable group. Then

- However,

Theorem

Let G a finite rational solvable group. Then
(1) (Gow 1976). $\pi(G) \subset\{2,3,5\}$.

- However,

Theorem

Let G a finite rational solvable group. Then
(1) (Gow 1976). $\pi(G) \subset\{2,3,5\}$.
(2) (Hegedüs 2005). Sylow 5 -subgroup is normal \& elementary abelian. Structure of G if $\pi(G)=\{2,5\}$.

- Conjecture-analog for of odd order: ASSUMPTION: Let $|G|$ be odd such that $|C|=|D| \Leftrightarrow C=D$ or $C=D^{-1}$,
$\forall C, D \in \operatorname{Class}(G)\left(D^{-1}=\left\{x^{-1} \mid x \in D\right\}\right)$.
- Conjecture-analog for of odd order: ASSUMPTION: Let $|G|$ be odd such that $|C|=|D| \Leftrightarrow C=D$ or $C=D^{-1}$,
$\forall C, D \in \operatorname{Class}(G)\left(D^{-1}=\left\{x^{-1} \mid x \in D\right\}\right)$.

Theorem

(Herzog \& Schönheim 2006) ASSUMPTION $\Leftrightarrow G$ is nonabelian of order 21.

- Conjecture-analog for of odd order: ASSUMPTION: Let $|G|$ be odd such that $|C|=|D| \Leftrightarrow C=D$ or $C=D^{-1}$,
$\forall C, D \in \operatorname{Class}(G)\left(D^{-1}=\left\{x^{-1} \mid x \in D\right\}\right)$.

Theorem

(Herzog \& Schönheim 2006) ASSUMPTION $\Leftrightarrow G$ is nonabelian of order 21.

- All elements of such G are inverse semi-rational, i.e.:
- Conjecture-analog for of odd order: ASSUMPTION: Let $|G|$ be odd such that $|C|=|D| \Leftrightarrow C=D$ or $C=D^{-1}$, $\forall C, D \in \operatorname{Class}(G)\left(D^{-1}=\left\{x^{-1} \mid x \in D\right\}\right)$.

Theorem

(Herzog \& Schönheim 2006) ASSUMPTION $\Leftrightarrow G$ is nonabelian of order 21.

- All elements of such G are inverse semi-rational, i.e.:

Definition

$x \in G$ is inverse-semirational if every generator of $\langle x\rangle$ is conjugate to either x or x^{-1}. G itself is inverse semi-rational if all elements of G are inverse semi-rational.

- Description of odd order semi-rational groups.
- Description of odd order semi-rational groups.

Theorem

(C\&D 2010) Let G be an odd order inverse semi-rational group. Then one of the followin holds:

- Description of odd order semi-rational groups.

Theorem

(C\&D 2010) Let G be an odd order inverse semi-rational group. Then one of the followin holds:
(1) G is a Frobenius group of order $3 \cdot 7^{\text {a }}$.

- Description of odd order semi-rational groups.

Theorem

(C\&D 2010) Let G be an odd order inverse semi-rational group. Then one of the followin holds:
(1) G is a Frobenius group of order $3 \cdot 7^{a}$.
(2) $|G|=7 \cdot 3^{\text {a }}$ with a normal Frobenius subgroup of index 3 .

- Description of odd order semi-rational groups.

Theorem

(C\&D 2010) Let G be an odd order inverse semi-rational group. Then one of the followin holds:
(1) G is a Frobenius group of order $3 \cdot 7^{\text {a }}$.
(2) $|G|=7 \cdot 3^{a}$ with a normal Frobenius subgroup of index 3 .
(3) G is a 3 -group.

- Description of odd order semi-rational groups.

Theorem

(C\&D 2010) Let G be an odd order inverse semi-rational group. Then one of the followin holds:
(1) G is a Frobenius group of order $3 \cdot 7^{\text {a }}$.
(2) $|G|=7 \cdot 3^{a}$ with a normal Frobenius subgroup of index 3 .
(3) G is a 3 -group.

- All cases occur. \exists inverse semi-rational 3 - groups with any exponent and derived length
- Description of odd order semi-rational groups.

Theorem

(C\&D 2010) Let G be an odd order inverse semi-rational group. Then one of the followin holds:
(1) G is a Frobenius group of order $3 \cdot 7^{\text {a }}$.
(2) $|G|=7 \cdot 3^{a}$ with a normal Frobenius subgroup of index 3 .
(3) G is a 3 -group.

- All cases occur. \exists inverse semi-rational 3 - groups with any exponent and derived length
- The notion of inverse - semirational makes sense for even order groups as well. Is a Gow's like theorem exists ? That is: is $\pi(G)$ restricted?
- A supersolvable semi-rational group would serve as test case.
- A supersolvable semi-rational group would serve as test case.

Definition

We call $x \in G$ semi-rational if the set of generators of $\langle x\rangle$ is contained in a union of two conjugacy classes.

- A supersolvable semi-rational group would serve as test case.

Definition

We call $x \in G$ semi-rational if the set of generators of $\langle x\rangle$ is contained in a union of two conjugacy classes.

- A Frobenius group of order $6 \cdot 13$ is semi-rational but not inverse semi-rational.
- A supersolvable semi-rational group would serve as test case.

Definition

We call $x \in G$ semi-rational if the set of generators of $\langle x\rangle$ is contained in a union of two conjugacy classes.

- A Frobenius group of order $6 \cdot 13$ is semi-rational but not inverse semi-rational.

Theorem

(C\&D 2010). Let G be a finite semi-rational supersolvable group (G^{\prime} nilpotent suffices). Then $\pi(G) \subset\{2,3,5,7,13\}$.

- Each prime $p \in\{2,3,5,7,13\}$ divides the order of a semi-rational supersolvable group. E.g.: Frobenius group of order $\frac{1}{2} p(p-1)$.
- Each prime $p \in\{2,3,5,7,13\}$ divides the order of a semi-rational supersolvable group. E.g.: Frobenius group of order $\frac{1}{2} p(p-1)$.
- Main result:
- Each prime $p \in\{2,3,5,7,13\}$ divides the order of a semi-rational supersolvable group. E.g.: Frobenius group of order $\frac{1}{2} p(p-1)$.
- Main result:

Theorem

(C\&D 2010). Let G be a finite semi-rational solvable group Then $\pi(G) \subset\{2,3,5,7,13,17\}$. Furthermore, if G is inverse semi-rational then $17 \notin \pi(G)$.

- Each prime $p \in\{2,3,5,7,13\}$ divides the order of a semi-rational supersolvable group. E.g.: Frobenius group of order $\frac{1}{2} p(p-1)$.
- Main result:

Theorem

(C\&D 2010). Let G be a finite semi-rational solvable group Then $\pi(G) \subset\{2,3,5,7,13,17\}$. Furthermore, if G is inverse semi-rational then $17 \notin \pi(G)$.

- We do not have an example of a semi-rational solvable G with $17 \in \pi(G)$.

- GENERAL PROPERTIES

- GENERAL PROPERTIES
- The following are equivalent:
- GENERAL PROPERTIES
- The following are equivalent:
(1) $x \in G$ semi-rational.
- GENERAL PROPERTIES
- The following are equivalent:
(1) $x \in G$ semi-rational.
(2) \exists a positive integer m_{0} such that every generator of $\langle x\rangle$ is conjugate in G to either x or $x^{m_{0}}$.
- GENERAL PROPERTIES
- The following are equivalent:
(1) $x \in G$ semi-rational.
(2) \exists a positive integer m_{0} such that every generator of $\langle x\rangle$ is conjugate in G to either x or $x^{m_{0}}$.
(3) $\left|\frac{N_{G}(<x>)}{C_{G}(x)}\right|=\phi(|x|)$ or $\frac{1}{2} \phi(|x|)$.

- GENERAL PROPERTIES

- The following are equivalent:
(1) $x \in G$ semi-rational.
(2) \exists a positive integer m_{0} such that every generator of $\langle x\rangle$ is conjugate in G to either x or $x^{m_{0}}$.
(3) $\left|\frac{N_{G}(<x>)}{C_{G}(x)}\right|=\phi(|x|)$ or $\frac{1}{2} \phi(|x|)$.
- Furthermore: $x \in G$ semi-rational \Rightarrow (but not equivalent to) $\chi(x)$ lies in a quadratic extension of \mathbb{Q} for all $\chi \in \operatorname{lrr}(G)$.
- Characterization of semi-rational groups in terms of their "characters field of value", would be helpful. We do not have such. If G is rational then so is G / N for $N \triangleleft G$, because $\operatorname{Irr}(G / N) \subset \operatorname{Irr}(G)$. The same is true for "semi-rational", except that we do not have immediate "character reason", maybe because the lack of a "field of values" characterization.
- Characterization of semi-rational groups in terms of their "characters field of value", would be helpful. We do not have such. If G is rational then so is G / N for $N \triangleleft G$, because $\operatorname{Irr}(G / N) \subset \operatorname{Irr}(G)$. The same is true for "semi-rational", except that we do not have immediate "character reason", maybe because the lack of a "field of values" characterization.

Lemma

If G is semi-rational, then so is G / N.

- PROOF.Let $x N \in G / N$ and $x_{0} \in x N$ of minimal order. Semi-rationality $\Rightarrow \exists m_{0}$ such that if $\langle z\rangle=\left\langle x_{0}\right\rangle$ then z is congugate to eiher x_{0} or $x_{0}^{m_{0}}$.
- PROOF.Let $x N \in G / N$ and $x_{0} \in x N$ of minimal order. Semi-rationality $\Rightarrow \exists m_{0}$ such that if $\langle z\rangle=\left\langle x_{0}\right\rangle$ then z is congugate to eiher x_{0} or $x_{0}^{m_{0}}$.
- Assume $\langle x N\rangle=\langle y N\rangle\left(=\left\langle x_{0} N\right\rangle\right)$. Then $\exists a, b$ with $(x N)^{a}=y N$ and $(y N)^{b}=x N$. So

$$
\left(x_{0}\right)^{a} \in y N \quad,\left(x_{0}\right)^{a b} \in(y N)^{b}=x N
$$

- PROOF.Let $x N \in G / N$ and $x_{0} \in x N$ of minimal order. Semi-rationality $\Rightarrow \exists m_{0}$ such that if
$\langle z\rangle=\left\langle x_{0}\right\rangle$ then z is congugate to eiher x_{0} or $x_{0}^{m_{0}}$.
- Assume $\langle x N\rangle=\langle y N\rangle\left(=\left\langle x_{0} N\right\rangle\right)$. Then $\exists a, b$ with $(x N)^{a}=y N$ and $(y N)^{b}=x N$. So

$$
\left(x_{0}\right)^{a} \in y N \quad,\left(x_{0}\right)^{a b} \in(y N)^{b}=x N .
$$

- Minimality of $\left|x_{0}\right| \Rightarrow\left|x_{0}^{a b}\right|=\left|x_{0}\right| \Rightarrow\left\langle x_{0}^{a}\right\rangle=\left\langle x_{0}\right\rangle$.
- PROOF.Let $x N \in G / N$ and $x_{0} \in x N$ of minimal order. Semi-rationality $\Rightarrow \exists m_{0}$ such that if
$\langle z\rangle=\left\langle x_{0}\right\rangle$ then z is congugate to eiher x_{0} or $x_{0}^{m_{0}}$.
- Assume $\langle x N\rangle=\langle y N\rangle\left(=\left\langle x_{0} N\right\rangle\right)$. Then $\exists a, b$ with $(x N)^{a}=y N$ and $(y N)^{b}=x N$. So

$$
\left(x_{0}\right)^{a} \in y N \quad,\left(x_{0}\right)^{a b} \in(y N)^{b}=x N .
$$

- Minimality of $\left|x_{0}\right| \Rightarrow\left|x_{0}^{a b}\right|=\left|x_{0}\right| \Rightarrow\left\langle x_{0}^{a}\right\rangle=\left\langle x_{0}\right\rangle$.
- So $\exists g$ such that $\left(x_{0}^{a}\right)^{g}=x_{0}$ or $\left(x_{0}\right)^{m_{0}}$

$$
\Rightarrow(y N)^{g}=\left(x_{0}^{a} N\right)^{g}=\left\{\begin{array}{c}
x_{0} N=x N \\
x_{0}^{m_{0}} N=x^{m_{0}} N
\end{array}\right.
$$

- OUTLINE OF PROOF OF MAIN THEOREM. The proof uses some of the Gow's paper techniques and methods from Eelena Farias Soares paper "Big primes and character values for solvable groups" (1986).
- OUTLINE OF PROOF OF MAIN THEOREM. The proof uses some of the Gow's paper techniques and methods from Eelena Farias Soares paper "Big primes and character values for solvable groups" (1986).
- Let G be semi-rational solvable group. We induct on $|G|$.
- OUTLINE OF PROOF OF MAIN THEOREM. The proof uses some of the Gow's paper techniques and methods from Eelena Farias Soares paper "Big primes and character values for solvable groups" (1986).
- Let G be semi-rational solvable group. We induct on $|G|$.
- INITIAL REDUCTION. Let $V \triangleleft G$ be minimal normal $\Rightarrow V$ is an elementary abelian p - group, p a prime. Induction $\Rightarrow \pi(G / V) \subset\{2,3,5,7,13,17\}$. May assume: $p \notin\{2,3,5,7,13,17\}$ and that V is the unique minimal normal subgroup of G. So $G=H V$ a semi-direct product, and V is an irreducible faithfull H - module.
- We illustrate the proof for $p=19$. The proof for $p=1+2^{a} 3^{b}$ with $b>1$ is similar. Will not talk on how to show that $p=1+2^{\text {a }} 3^{b}$ (follows as an indirect application of Soares' main reault). Will not on how to proof that $b \leq 4$.
- We illustrate the proof for $p=19$. The proof for $p=1+2^{a} 3^{b}$ with $b>1$ is similar. Will not talk on how to show that $p=1+2^{a} 3^{b}$ (follows as an indirect application of Soares' main reault). Will not on how to proof that $b \leq 4$.
- Let $v \in V-\{1\}$. Then \mid Aut $\langle v\rangle \mid=18$.

Semirationality $\Leftrightarrow \frac{N_{G}(\langle v\rangle)}{C_{G}(v)}$ is (isomorphic to) a subgroup of index 1 or 2 of Aut $\langle v\rangle$.

- We illustrate the proof for $p=19$. The proof for $p=1+2^{a} 3^{b}$ with $b>1$ is similar. Will not talk on how to show that $p=1+2^{a} 3^{b}$ (follows as an indirect application of Soares' main reault). Will not on how to proof that $b \leq 4$.
- Let $v \in V-\{1\}$. Then \mid Aut $\langle v\rangle \mid=18$. Semirationality $\Leftrightarrow \frac{N_{G}(<v>)}{C_{G}(v)}$ is (isomorphic to) a subgroup of index 1 or 2 of Aut $\langle v\rangle$.
- Identify Aut $\langle v\rangle$ with $\mathbb{F}=G F(19)$. Let $\mu \in \mathbb{F}$ be of order 9 .
- We illustrate the proof for $p=19$. The proof for $p=1+2^{a} 3^{b}$ with $b>1$ is similar. Will not talk on how to show that $p=1+2^{\text {a }} 3^{b}$ (follows as an indirect application of Soares' main reault). Will not on how to proof that $b \leq 4$.
- Let $v \in V-\{1\}$. Then \mid Aut $\langle v\rangle \mid=18$. Semirationality $\Leftrightarrow \frac{N_{G}(\langle v>)}{C_{G}(v)}$ is (isomorphic to) a subgroup of index 1 or 2 of Aut $\langle v\rangle$.
- Identify Aut $\langle v\rangle$ with $\mathbb{F}=G F(19)$. Let $\mu \in \mathbb{F}$ be of order 9 .
- Semirationality \Rightarrow elements of ordr 9 of Aut $\langle v\rangle$ must lie in $\frac{N_{G}(\langle v\rangle)}{C_{G}(v)}$, and some $\left.g \in N_{G}(<v\rangle\right)$ of order $9 \bmod C_{G}(v)$, satisfies $v g=\mu v$ (using additive notation: vg for $\left.v^{g}\right)$.
- As $G=V H$ and V abelian, may assume $g \in H$. So the action of H on V has the following property: (*) $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- As $G=V H$ and V abelian, may assume $g \in H$. So the action of H on V has the following property: (*) $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- SECOND REDUCTION By a method devised by E. Farias Soares (1986), H and V can be replaced by "new" ones such that H now acts on V with no fixed points, and most of relevant properties of the original H and V are unchanged. In particular (*), and " $\chi(x)$ belongs to some quadratic extension of the rationals, for all $\chi \in \operatorname{Irr}(G)$ " remsin true.
- As $G=V H$ and V abelian, may assume $g \in H$. So the action of H on V has the following property: (*) $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- SECOND REDUCTION By a method devised by E. Farias Soares (1986), H and V can be replaced by "new" ones such that H now acts on V with no fixed points, and most of relevant properties of the original H and V are unchanged. In particular $\left({ }^{*}\right)$, and " $\chi(x)$ belongs to some quadratic extension of the rationals, for all $\chi \in \operatorname{Irr}(G)$ " remsin true.
- We do however, lose semi-rationality.
- So far:
- So far:
(1) H a Frobenius complement.
- So far:
(1) H a Frobenius complement.
(2) $\pi(|H|) \subset\{2,3,5,7,13,17\}$
- So far:
(1) H a Frobenius complement.
(2) $\pi(|H|) \subset\{2,3,5,7,13,17\}$
(3) H acts on the elememntary abelian 19 - group V with no fixed points.
- So far:
(1) H a Frobenius complement.
(2) $\pi(|H|) \subset\{2,3,5,7,13,17\}$
(3) H acts on the elememntary abelian 19 - group V with no fixed points.
(4) (*) For $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- So far:
(1) H a Frobenius complement.
(2) $\pi(|H|) \subset\{2,3,5,7,13,17\}$
(3) H acts on the elememntary abelian 19 -group V with no fixed points.
(9) (*) For $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- Set $|V|=19^{n}$.
- So far:
(1) H a Frobenius complement.
(2) $\pi(|H|) \subset\{2,3,5,7,13,17\}$
(3) H acts on the elememntary abelian 19 - group V with no fixed points.
(9) (*) For $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- Set $|V|=19^{n}$.
- Let $X=\{x \in H| | x \mid=9\}$ and $W_{x}=\{v \in V \mid v x=\mu v\}$ (the μ - eigenspace of x in V).
- So far:
(1) H a Frobenius complement.
(2) $\pi(|H|) \subset\{2,3,5,7,13,17\}$
(3) H acts on the elememntary abelian 19 -group V with no fixed points.
(9) (*) For $\forall \mu \in \mathbb{F}$ of order 9 and every $v \in V, \exists g \in H$ of order 9 such that $v g=\mu v$.
- Set $|V|=19^{n}$.
- Let $X=\{x \in H| | x \mid=9\}$ and $W_{x}=\{v \in V \mid v x=\mu v\}$ (the μ - eigenspace of x in V).
- $\left(^{*}\right) \Rightarrow V=\bigcup_{x \in X} W_{x} \Rightarrow 19^{n} \leq \sum_{x \in X}\left|W_{x}\right|$.
- Counting argumnets.
- Counting argumnets.
(1) Using " $\chi(x)$ belongs to some quadratic extension of the rationals, for all $x \in \operatorname{Irr}(G)$ " and an application of another result of Soares, we get that $n=3 f$ and $\operatorname{dim}\left(W_{x}\right) \leq f$ for all $x \in X$.
So $19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X|$.
- Counting argumnets.
(1) Using " $\chi(x)$ belongs to some quadratic extension of the rationals, for all $x \in \operatorname{Irr}(G)$ " and an application of another result of Soares, we get that $n=3 f$ and $\operatorname{dim}\left(W_{x}\right) \leq f$ for all $x \in X$.
So $19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X|$.
(2) Bounding $|X|$. H as Frobenius complement has a well known structure. Recall that $\pi(|H|) \subset\{2,3,5,7,13,17\}$. Not hard to show that X lies in some normal subgroup M whose $\{7,13\}$-Hall subgroup D is cyclic. Then it can be shown that $|X| \leq 24 d$ where $d=|D|$.
- Counting argumnets.
(1) Using " $\chi(x)$ belongs to some quadratic extension of the rationals, for all $x \in \operatorname{Irr}(G)$ " and an application of another result of Soares, we get that $n=3 f$ and $\operatorname{dim}\left(W_{x}\right) \leq f$ for all $x \in X$.
So $19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X|$.
(2) Bounding $|X|$. H as Frobenius complement has a well known structure. Recall that $\pi(|H|) \subset\{2,3,5,7,13,17\}$. Not hard to show that X lies in some normal subgroup M whose $\{7,13\}$-Hall subgroup D is cyclic. Then it can be shown that $|X| \leq 24 d$ where $d=|D|$.
(3) $\phi(d)$ divides $12 f$.

$$
\begin{aligned}
& 19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X| \\
& \quad \Rightarrow 19^{2 f} \leq 24 d .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X| \\
& \Rightarrow 19^{2 f} \leq 24 d .
\end{aligned}
$$

$$
\text { - } d \geq \frac{19^{2}}{24}=15.04 \Rightarrow d \geq 16 \text {. So } \pi(d)=\{7,13\}
$$

$$
\Rightarrow d \stackrel{24}{\geq} 49
$$

$$
\begin{aligned}
& \text { - } 19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X| \\
& \quad \Rightarrow 19^{2 f} \leq 24 d .
\end{aligned}
$$

- $d \geq \frac{19^{2}}{24}=15.04 \Rightarrow d \geq 16$. So $\pi(d)=\{7,13\}$ $\Rightarrow d \geq 49$
- Set $d=7^{\alpha} \cdot 13^{\beta}$. Then $\phi(d)=\frac{7^{\alpha} \cdot 13^{\beta}}{7 \cdot 13} \cdot 6 \cdot 12$ $=d \cdot \frac{72}{91} \geq \frac{7}{9} d .\left(\frac{72}{91}-\frac{7}{9}=0.0134\right)$.
- $19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X|$ $\Rightarrow 19^{2 f} \leq 24 d$.
- $d \geq \frac{19^{2}}{24}=15.04 \Rightarrow d \geq 16$. So $\pi(d)=\{7,13\}$ $\Rightarrow d \geq 49$
- Set $d=7^{\alpha} \cdot 13^{\beta}$. Then $\phi(d)=\frac{7^{\alpha} \cdot 13^{\beta}}{7 \cdot 13} \cdot 6 \cdot 12$ $=d \cdot \frac{72}{91} \geq \frac{7}{9} d$. $\left(\frac{72}{91}-\frac{7}{9}=0.0134\right)$.
- $\phi(d)$ divides $12 f \Rightarrow 2 f \geq \frac{\phi(d)}{6} \geq \frac{7}{9 \cdot 6} d$.
- $19^{n} \leq \sum_{x \in X}\left|W_{x}\right| \Rightarrow 19^{3 f} \leq 19^{f}|X| \Rightarrow 19^{2 f} \leq|X|$ $\Rightarrow 19^{2 f} \leq 24 d$.
- $d \geq \frac{19^{2}}{24}=15.04 \Rightarrow d \geq 16$. So $\pi(d)=\{7,13\}$ $\Rightarrow d \geq 49$
- Set $d=7^{\alpha} \cdot 13^{\beta}$. Then $\phi(d)=\frac{7^{\alpha} \cdot 13^{\beta}}{7 \cdot 13} \cdot 6 \cdot 12$ $=d \cdot \frac{72}{91} \geq \frac{7}{9} d$. $\left(\frac{72}{91}-\frac{7}{9}=0.0134\right)$.
- $\phi(d)$ divides $12 f \Rightarrow 2 f \geq \frac{\phi(d)}{6} \geq \frac{7}{9.6} d$.
- $24 d \geq 19^{2 f} \geq 19^{\frac{7}{54} d}$. Impossible for $d \geq 49$.

