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Let G be a finitely generated profinite group. We consider G as a
probability space (with respect to the normalized Haar measure) and
denote by P(G, k) the probability that k randomly chosen elements of
G generate G itself.

G is called positively finitely generated (PFG) if P(G, k) > 0 ∃ k ∈ N.

Definitions
For each open subgroup H of G we may define

µ(H,G) =

{
1 if H = G

−
∑

H<K≤G µ(K ,G) otherwise.

For each m ∈ N, let bm(G) be the number of open subgroups H
with |G : H| = m and µ(H,G) 6= 0.
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Conjectures

Conjecture (Mann, 2005)

Let G be a PFG group. Then bm(G) and |µ(H,G)| are bounded
polynomially, respectively in terms of m and |G : H|.

This conjecture by Mann is implied by the following:

Conjecture (Lucchini, 2010)

There exists a constant c such that if X is a finite almost simple
group, then bm(X ) ≤ mc and |µ(Y ,X )| ≤ |X : Y |c for each m ∈ N and
each Y ≤ X .
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Main theorems

We have proved that Lucchini’s conjecture holds for all the Alternating
and Symmetric groups:

Theorem 1
There exists an absolute constant α such that for any n ∈ N, if
X ∈ {Alt(n),Sym(n)} and m ∈ N, then bm(X ) ≤ mα.

Theorem 2
There exists an absolute constant β such that for any n ∈ N, if
X ∈ {Alt(n),Sym(n)} and Y ≤ X , then |µ(Y ,X )| ≤ |X : Y |β .
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Further results

These two theorems and Lucchini’s reduction theorem imply:

Corollary 1

If G is a PFG group, and for each open normal subgroup N of G all
the composition factors of G/N are either abelian or Alternating
groups, then

there exists γ1 such that bm(G) ≤ mγ1 for each m ∈ N;
there exists γ2 such that |µ(H,G)| ≤ |G : H|γ2 for each open
subgroup H of G.
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Further results

These two theorems and Lucchini’s reduction theorem imply:

Corollary 1

If G is a PFG group, and for each open normal subgroup N of G all
the composition factors of G/N are either abelian or Alternating
groups, then

there exists γ1 such that bm(G) ≤ mγ1 for each m ∈ N;
there exists γ2 such that |µ(H,G)| ≤ |G : H|γ2 for each open
subgroup H of G.

Example

G =
∏

n(Alt(n))n satisfies Mann’s conjecture.
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Further results

Theorem (Lucchini, 2009)

Let G =
∏

i Si , where the Si ’s are finite nonabelian simple groups;
suppose that G is d-generated and that there exists a constant c
such that: |µ(Y ,Si )| ≤ |Si : Y |c , ∀ i and ∀Y ≤ Si . Then

|µ(H,G)| ≤ |G : H|ε

for each open subgroup H of G, where ε = max(d , c) + 1.
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Further results

Theorem (Lucchini, 2009)

Let G =
∏

i Si , where the Si ’s are finite nonabelian simple groups;
suppose that G is d-generated and that there exists a constant c
such that: |µ(Y ,Si )| ≤ |Si : Y |c , ∀ i and ∀Y ≤ Si . Then

|µ(H,G)| ≤ |G : H|ε

for each open subgroup H of G, where ε = max(d , c) + 1.

Corollary 2

Let G =
∏

i Ai , where the Ai ’s are Alternating groups; suppose that G
is d-generated. Then

|µ(H,G)| ≤ |G : H|max(d, β)+1

with β as in Theorem 2.
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Corollary 2

Let G =
∏

i Ai , where the Ai ’s are Alternating groups; suppose that G
is d-generated. Then

|µ(H,G)| ≤ |G : H|max(d, β)+1

with β as in Theorem 2.

Example

G =
∏

n≥ 5(Alt(n))n!/8 is 2-generated and then, by Corollary 2, we
have

|µ(H,G)| ≤ |G : H|max(2, β)+1

for each open subgroup H of G.
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Corollary 2

Let G =
∏

i Ai , where the Ai ’s are Alternating groups; suppose that G
is d-generated. Then

|µ(H,G)| ≤ |G : H|max(d, β)+1

with β as in Theorem 2.

Example

G =
∏

n≥ 5(Alt(n))n!/8 is 2-generated and then, by Corollary 2, we
have

|µ(H,G)| ≤ |G : H|max(2, β)+1

for each open subgroup H of G.

Remark

Note that G =
∏

n≥ 5(Alt(n))n!/8 is not a PFG group.
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A key step
Proof of Theorem 2

Preliminaries

Let G be transitive on a finite set Γ; LG is the subgroup lattice of G.

Definition

Let H ≤ G and let {Ω1, . . . ,Ωr} be the orbits of H on Γ; define

H := (
∏

i Sym(Ωi )) ∩G

the closure of H in LG. H is said closed in LG if and only if H = H.
The set LG := {H ∈ LG |H = H} is a poset; for any H ∈ LG, denote
by µ(H,G) the Möbius number of H in LG.
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Preliminaries

Let G be transitive on a finite set Γ; LG is the subgroup lattice of G.

Definition

Let H ≤ G and let {Ω1, . . . ,Ωr} be the orbits of H on Γ; define

H := (
∏

i Sym(Ωi )) ∩G

the closure of H in LG. H is said closed in LG if and only if H = H.
The set LG := {H ∈ LG |H = H} is a poset; for any H ∈ LG, denote
by µ(H,G) the Möbius number of H in LG.

By the closure theorem of Crapo on LG:

∑
K≤G

K transitive

µ(H,K ) =

{
µ(H,G) if H = H

0 otherwise.
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Key step

Lemma 3
If H is a subgroup of a transitive permutation group G, then

µ(H,G) =
∑

K∈SH

µ(K ,G)g(H,K ),

where SH := {K ≤ G |K transitive on Γ,K ≥ H}

and g(H,K ) =

{
µ(H,K ) if H is closed in LK

0 otherwise.

We will apply this lemma when G ∈ {Sym(n),Alt(n)}. In particular we
will consider G with two different actions:

the natural action on the set In := {1, . . . ,n},
the action on the set ∆n := {(a,b) |1 ≤ a,b ≤ n, a 6= b} defined
by (a,b)g = (ag,bg). It is a transitive action.
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Proof of Theorem 2

Theorem 2
There exists an absolute constant β such that for any n ∈ N, if
G ∈ {Alt(n),Sym(n)} and H ≤ G, then |µ(H,G)| ≤ |G : H|β .

Let H ≤ G. We apply Lemma 3 with respect to the natural action of G
on In = {1, . . . ,n}:

µ(H,G) =
∑

T∈SH

µ(T ,G)g(H,T )

with SH = {T ≤ G |T transitive,T ≥ H}. Then

|µ(H,G)| ≤
∑

T∈SH

|µ(T ,G)| · |g(H,T )|

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Introduction
Main statements

Sketch of proof
Remarks

A key step
Proof of Theorem 2

Proof of Theorem 2

Theorem 2
There exists an absolute constant β such that for any n ∈ N, if
G ∈ {Alt(n),Sym(n)} and H ≤ G, then |µ(H,G)| ≤ |G : H|β .

Let H ≤ G. We apply Lemma 3 with respect to the natural action of G
on In = {1, . . . ,n}:

µ(H,G) =
∑

T∈SH

µ(T ,G)g(H,T )

with SH = {T ≤ G |T transitive,T ≥ H}. Then

|µ(H,G)| ≤
∑

T∈SH

|µ(T ,G)| · |g(H,T )|

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Introduction
Main statements

Sketch of proof
Remarks

A key step
Proof of Theorem 2

Proof of Theorem 2

Theorem 2
There exists an absolute constant β such that for any n ∈ N, if
G ∈ {Alt(n),Sym(n)} and H ≤ G, then |µ(H,G)| ≤ |G : H|β .

Let H ≤ G. We apply Lemma 3 with respect to the natural action of G
on In = {1, . . . ,n}:

µ(H,G) =
∑

T∈SH

µ(T ,G)g(H,T )

with SH = {T ≤ G |T transitive,T ≥ H}. Then

|µ(H,G)| ≤
∑

T∈SH

|µ(T ,G)| · |g(H,T )|

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Introduction
Main statements

Sketch of proof
Remarks

A key step
Proof of Theorem 2

Proof of Theorem 2

Theorem 2
There exists an absolute constant β such that for any n ∈ N, if
G ∈ {Alt(n),Sym(n)} and H ≤ G, then |µ(H,G)| ≤ |G : H|β .

Let H ≤ G. We apply Lemma 3 with respect to the natural action of G
on In = {1, . . . ,n}:

µ(H,G) =
∑

T∈SH

µ(T ,G)g(H,T )

with SH = {T ≤ G |T transitive,T ≥ H}. Then

|µ(H,G)| ≤
∑

T∈SH

|µ(T ,G)| · |g(H,T )|

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Introduction
Main statements

Sketch of proof
Remarks

A key step
Proof of Theorem 2

|µ(H,G)| ≤
∑

T∈SH

|µ(T ,G)| · |g(H,T )| (∗)

1) First of all we estimate |g(H,T )|. Let r be the number of orbits of
H on {1, . . . ,n}; then

– |g(H,T )| is bounded in terms of r : for any T 6= H

|g(H,T )| ≤ (r !)2/2,

– r ! is bounded in terms of |G : H|:

r ! ≤ 2 · |G : H|.

Hence
|g(H,T )| ≤ 2 · |G : H|2 ∀T ∈ SH .
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A key step
Proof of Theorem 2

|µ(H,G)| ≤ 2 · |G : H|2 ·
∑

T∈SH

|µ(T ,G)| (∗)

2) Then we give a bound for |µ(T ,G)|. Consider the action of G on
∆n = {(a,b) |1 ≤ a,b ≤ n, a 6= b}; by applying Lemma 3, we
obtain

|µ(T ,G)| ≤
∑

R∈ST

|µ(R,G)| · |g(T ,R)|

with ST = {R ≤ G |R transitive on ∆n,R ≥ T}. Let t be the
number of orbits of T on ∆n; then

As previously, |g(T ,R)| ≤ (t !)2/2 ≤ 2 · |G : T |2,
R ∈ ST is 2-transitive⇒ |µ(R,G)| ≤ 1, and there exists an
absolute constant b such that |ST | ≤ |G : T |b.
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A key step
Proof of Theorem 2

Hence ∃ ν (independent of n) such that

|µ(T ,G)| ≤ |G : T |ν ≤ |G : H|ν ∀T ∈ SH

Denote by s the number of T ∈ SH such that µ(T ,G) 6= 0. Then∑
T∈SH

|µ(T ,G)| ≤ s · |G : H|ν

and
|µ(H,G)| ≤ 2 · |G : H|2 · s · |G : H|ν (∗)

Aim: to bound polynomially s, in terms of |G : H|.
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3) We start proving: t(G) be the number of all the transitive
subgroups T of G with µ(T ,G) 6= 0; then ∃d , independent of n,
such that

t(G) ≤ (n!)d

We have
|µ(T ,G)| ≤

∑
R∈ST

|µ(R,G)| · |g(T ,R)|

with ST = {R ≤ G |R transitive on ∆n,R ≥ T}.
Since µ(T ,G) 6= 0⇒ ∃R ∈ ST such that g(T ,R) = µ(T ,R) 6= 0.
Then T is closed in LR , and

T = R ∩ C

where R is 2-transitive, and C is ∆n-closed and transitive in G.
• There are at most (n!)γ ∆n-closed transitive subgroups in G.
• The number of 2-transitive subgroups of G can be bounded by

(n!)δ, with δ an absolute constant.
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Introduction
Main statements

Sketch of proof
Remarks

A key step
Proof of Theorem 2

t(G) ≤ (n!)d ∃d

Let m ∈ N; denote by tm(G) the number of transitive subgroups T
of G such that |G : T | = m and µ(T ,G) 6= 0. If m ≤ 2, tm(G) ≤ 1.
Let m > 2; there exists an absolute constant f such that:

if mf ≥ n!⇒ tm(G) ≤ (n!)d ≤ mfd .
if mf < n! (i.e. m is very “small”), then any transitive
subgroup T of G, with |G : T | = m, is imprimitive and

(Alt(a))b ≤ T ≤ Sym(a) o Sym(b)

where 1 < b < a, ab = n. The number of these subgroups
of index m can be bounded polynomially on m.

Then there exists an absolute constant η such that

tm(G) ≤ mη ∀m ∈ N.
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Introduction
Main statements

Sketch of proof
Remarks

A key step
Proof of Theorem 2

tm(G) ≤ mη ∀m ∈ N

Aim: to bound polynomially s, in terms of |G : H|.

s: number of transitive subgroups of G containing H and with
non zero Möbius number.
Then

s ≤
∑

m≤ |G:H|

tm(G) ≤ |G : H|η+1.

Conclusion

|µ(H,G)| ≤ 2 · |G : H|2 · |G : H|ν · |G : H|η+1 (∗)
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Sketch of proof
Remarks

Some remarks

If we consider prime degrees, we are able to improve this result:

Theorem 4

Let p be a prime, with p 6= 11,23 and p 6= (qd − 1)/(q − 1), for any
(q,d), with q a prime power and q > 4 if d = 2.
If G ∈ {Alt(p),Sym(p)} and H ≤ G, then

|µ(H,G)| ≤ |G : H|.
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Theorem 4

Let p be a prime, with p 6= 11,23 and p 6= (qd − 1)/(q − 1), for any
(q,d), with q a prime power and q > 4 if d = 2.
If G ∈ {Alt(p),Sym(p)} and H ≤ G, then

|µ(H,G)| ≤ |G : H|.

Theorem 4 leads us to formulate

Conjecture

For any n ∈ N, if G ∈ {Alt(n),Sym(n)} and H ≤ G, then

|µ(H,G)| ≤ c · |G : H| ∃ c
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Appendix
The reduction theorem
Proof of Theorem 1
Key step

The Reduction Theorem

Denote by Λ(G) the set of finite monolithic groups L such that soc L is
non abelian and L is an epimorphic image of G.

Theorem (Lucchini)

Let G be a PFG group. Then the followings are equivalent.
(1) There exist two constants γ1 and γ2 such that

bm(G) ≤ mγ1 and |µ(H,G)| ≤ |G : H|γ2

for each m ∈ N and each open subgroup H of G.
(2) There exist two constants c1 and c2 such that

bm(XL) ≤ mc1 and |µ(Y ,XL)| ≤ |XL : Y |c2

for each L ∈ Λ(G), each m ∈ N and each Y ≤ XL.

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Appendix
The reduction theorem
Proof of Theorem 1
Key step

Proof of Theorem 1

bm(G) is the number of H ≤ G with |G : H| = m and µ(H,G) 6= 0.

Theorem 1
There exists an absolute constant α such that for any n ∈ N, if
G ∈ {Alt(n),Sym(n)} and m ∈ N, then bm(G) ≤ mα.

Let H ≤ G with |G : H| = m and µ(H,G) 6= 0. We apply Lemma 3
with respect to the natural action of G on {1, . . . ,n}:

µ(H,G) =
∑

T∈SH

µ(T ,G)g(H,T )

with SH = {T ≤ G |T transitive,T ≥ H}.
Since µ(H,G) 6= 0⇒ ∃T ∈ SH such that µ(T ,G)g(H,T ) 6= 0.
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Key step

In particular g(H,T ) = µ(H,T ) 6= 0; H is closed in LT , and

H = T ∩ C

where T is transitive with µ(T ,G) 6= 0, and C is closed in G.

Strategy

To bound bm(G), we have to find polynomial bounds, in terms of m:
1) for the number of closed subgroups of G with index dividing m,
2) for the number of transitive subgroups of G with non zero Möbius

number and with index dividing m.
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Key step

Lemma 5

Let G ∈ {Alt(n),Sym(n)} and denote by cm(G) the number of
subgroups of G with index m and closed in LG. Then cm(G) ≤ m4 for
each m ∈ N.

Lemma 6

Let G ∈ {Alt(n),Sym(n)} and denote by tm(G) the number of
transitive subgroups T of G with |G : T | = m and µ(T ,G) 6= 0. Then
there exists an absolute constant η such that tm(G) ≤ mη for each
m ∈ N.

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Appendix
The reduction theorem
Proof of Theorem 1
Key step

Key step
Let G be transitive on Γ. For any subgroup H of G, define

SH := {K ≤ G |K transitive on Γ,K ≥ H} ⊆ LG.

Define f ,g : LG × LG → Z:

f (H,Y ) =

{
µ(H,Y ) if Y ∈ SH

0 otherwise,

g(H,X ) =

{
µ(H,X ) if X ∈ SH and H is closed in LX

0 otherwise.

By the closure theorem of Crapo on LX , with X ∈ SH ,

∑
Y≤X

Y∈SH

µ(H,Y ) =

{
µ(H,X ) if H is closed in LX

0 otherwise.

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Appendix
The reduction theorem
Proof of Theorem 1
Key step

Key step
Let G be transitive on Γ. For any subgroup H of G, define

SH := {K ≤ G |K transitive on Γ,K ≥ H} ⊆ LG.

Define f ,g : LG × LG → Z:

f (H,Y ) =

{
µ(H,Y ) if Y ∈ SH

0 otherwise,

g(H,X ) =

{
µ(H,X ) if X ∈ SH and H is closed in LX

0 otherwise.

By the closure theorem of Crapo on LX , with X ∈ SH ,

∑
Y≤X

Y∈SH

µ(H,Y ) =

{
µ(H,X ) if H is closed in LX

0 otherwise.

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Appendix
The reduction theorem
Proof of Theorem 1
Key step

Key step
Let G be transitive on Γ. For any subgroup H of G, define

SH := {K ≤ G |K transitive on Γ,K ≥ H} ⊆ LG.

Define f ,g : LG × LG → Z:

f (H,Y ) =

{
µ(H,Y ) if Y ∈ SH

0 otherwise,

g(H,X ) =

{
µ(H,X ) if X ∈ SH and H is closed in LX

0 otherwise.

By the closure theorem of Crapo on LX , with X ∈ SH ,

∑
Y≤X

Y∈SH

µ(H,Y ) =

{
µ(H,X ) if H is closed in LX

0 otherwise.

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)



Appendix
The reduction theorem
Proof of Theorem 1
Key step

Key step
Then f and g satisfy the relation g(H,X ) =

∑
Y≤X

Y∈SH

f (H,Y ).

By the Möbius inversion formula, for any Y ∈ SH , we have

f (H,Y ) =
∑

X≤Y

X∈SH

µ(X ,Y )g(H,X ).

Setting Y = G, we get:

Lemma 3
If H is a subgroup of a transitive permutation group G, then

µ(H,G) =
∑

K∈SH

µ(K ,G)g(H,K ).
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