Subgroups with non-trivial Möbius number in the Alternating and Symmetric groups

Valentina Colombo

Università di Padova
Ischia Group Theory 2010
April, 14th-17th

Let G be a finitely generated profinite group. We consider G as a probability space (with respect to the normalized Haar measure) and denote by $P(G, k)$ the probability that k randomly chosen elements of G generate G itself.
G is called positively finitely generated (PFG) if $P(G, k)>0 \exists k \in \mathbb{N}$.

Definitions

- For each open subgroup H of G we may define

$$
\mu(H, G)=\left\{\begin{array}{cc}
1 & \text { if } H=G \\
-\sum_{H<K \leq G} \mu(K, G) & \text { otherwise } .
\end{array}\right.
$$

- For each $m \in \mathbb{N}$, let $b_{m}(G)$ be the number of open subgroups H with $|G: H|=m$ and $\mu(H, G) \neq 0$.

Conjectures

Conjecture (Mann, 2005)
Let G be a PFG group. Then $b_{m}(G)$ and $|\mu(H, G)|$ are bounded polynomially, respectively in terms of m and $|G: H|$.

This conjecture by Mann is implied by the following:
Conjecture (Lucchini, 2010)
There exists a constant c such that if X is a finite almost simple group, then $b_{m}(X) \leq m^{c}$ and $|\mu(Y, X)| \leq|X: Y|^{c}$ for each $m \in \mathbb{N}$ and each

Conjectures

Conjecture (Mann, 2005)
Let G be a PFG group. Then $b_{m}(G)$ and $|\mu(H, G)|$ are bounded polynomially, respectively in terms of m and $|G: H|$.

This conjecture by Mann is implied by the following:
Conjecture (Lucchini, 2010)
There exists a constant c such that if X is a finite almost simple group, then $b_{m}(X) \leq m^{c}$ and $|\mu(Y, X)| \leq|X: Y|^{c}$ for each $m \in \mathbb{N}$ and each $Y \leq X$.

Main theorems

We have proved that Lucchini's conjecture holds for all the Alternating and Symmetric groups:

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $X \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $m \in \mathbb{N}$, then $b_{m}(X) \leq m^{\alpha}$.

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $X \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $Y \leq X$, then $|\mu(Y, X)| \leq|X: Y|^{\beta}$.

Further results

These two theorems and Lucchini's reduction theorem imply:

Corollary 1

If G is a PFG group, and for each open normal subgroup N of G all the composition factors of G / N are either abelian or Alternating groups, then

- there exists γ_{1} such that $b_{m}(G) \leq m^{\gamma_{1}}$ for each $m \in \mathbb{N}$;
- there exists γ_{2} such that $|\mu(H, G)| \leq|G: H|^{\gamma_{2}}$ for each open subgroup H of G.

Further results

These two theorems and Lucchini's reduction theorem imply:

Corollary 1

If G is a PFG group, and for each open normal subgroup N of G all the composition factors of G / N are either abelian or Alternating groups, then

- there exists γ_{1} such that $b_{m}(G) \leq m^{\gamma_{1}}$ for each $m \in \mathbb{N}$;
- there exists γ_{2} such that $|\mu(H, G)| \leq|G: H|^{\gamma_{2}}$ for each open subgroup H of G.

Example

$G=\prod_{n}(\operatorname{Alt}(n))^{n}$ satisfies Mann's conjecture.

Further results

Theorem (Lucchini, 2009)

Let $G=\prod_{i} S_{i}$, where the S_{i} 's are finite nonabelian simple groups; suppose that G is d-generated and that there exists a constant c such that: $\left|\mu\left(Y, S_{i}\right)\right| \leq\left|S_{i}: Y\right|^{c}, \forall i$ and $\forall Y \leq S_{i}$. Then

$$
|\mu(H, G)| \leq|G: H|^{\epsilon}
$$

for each open subgroup H of G where $\epsilon=\max (d, c)+1$.

Further results

Theorem (Lucchini, 2009)

Let $G=\prod_{i} S_{i}$, where the S_{i} 's are finite nonabelian simple groups; suppose that G is d-generated and that there exists a constant c such that: $\left|\mu\left(Y, S_{i}\right)\right| \leq\left|S_{i}: Y\right|^{c}, \forall i$ and $\forall Y \leq S_{i}$. Then

$$
|\mu(H, G)| \leq|G: H|^{\epsilon}
$$

for each open subgroup H of G, where $\epsilon=\max (d, c)+1$.

Corollary 2

Let $G=\prod_{i} A_{i}$, where the A_{i} 's are Alternating groups; suppose that G is d-generated. Then

$$
|\mu(H, G)| \leq|G: H|^{\max (d, \beta)+1}
$$

with β as in Theorem 2.

Corollary 2

Let $G=\prod_{i} A_{i}$, where the A_{i} 's are Alternating groups; suppose that G is d-generated. Then

$$
|\mu(H, G)| \leq|G: H|^{\max (d, \beta)+1}
$$

with β as in Theorem 2.

Example

$G=\prod_{n \geq 5}(\operatorname{Alt}(n))^{n!/ 8}$ is 2-generated and then, by Corollary 2, we have

$$
|\mu(H, G)| \leq|G: H|^{\max (2, \beta)+1}
$$

for each open subgroup H of G.

Corollary 2

Let $G=\prod_{i} A_{i}$, where the A_{i} 's are Alternating groups; suppose that G is d-generated. Then

$$
|\mu(H, G)| \leq|G: H|^{\max (d, \beta)+1}
$$

with β as in Theorem 2.

Example

$G=\prod_{n \geq 5}(\operatorname{Alt}(n))^{n!/ 8}$ is 2-generated and then, by Corollary 2, we have

$$
|\mu(H, G)| \leq|G: H|^{\max (2, \beta)+1}
$$

for each open subgroup H of G.

Remark

Note that $G=\prod_{n \geq 5}(\operatorname{Alt}(n))^{n!/ 8}$ is not a PFG group.

Preliminaries

Let G be transitive on a finite set $\Gamma ; \mathcal{L}_{G}$ is the subgroup lattice of G.

Definition

Let $H \leq G$ and let $\left\{\Omega_{1}, \ldots, \Omega_{r}\right\}$ be the orbits of H on Γ; define

$$
\bar{H}:=\left(\prod_{i} \operatorname{Sym}\left(\Omega_{i}\right)\right) \cap G
$$

the closure of H in $\mathcal{L}_{G} . H$ is said closed in \mathcal{L}_{G} if and only if $H=\bar{H}$. The set $\overline{\mathcal{L}}_{G}:=\left\{H \in \mathcal{L}_{G} \mid H=\bar{H}\right\}$ is a poset; for any $H \in \overline{\mathcal{L}}_{G}$, denote by $\bar{\mu}(H, G)$ the Möbius number of H in $\overline{\mathcal{L}}_{G}$.

Preliminaries

Let G be transitive on a finite set $\Gamma ; \mathcal{L}_{G}$ is the subgroup lattice of G.

Definition

Let $H \leq G$ and let $\left\{\Omega_{1}, \ldots, \Omega_{r}\right\}$ be the orbits of H on Γ; define

$$
\bar{H}:=\left(\prod_{i} \operatorname{Sym}\left(\Omega_{i}\right)\right) \cap G
$$

the closure of H in \mathcal{L}_{G}. H is said closed in \mathcal{L}_{G} if and only if $H=\bar{H}$. The set $\overline{\mathcal{L}}_{G}:=\left\{H \in \mathcal{L}_{G} \mid H=\bar{H}\right\}$ is a poset; for any $H \in \overline{\mathcal{L}}_{G}$, denote by $\bar{\mu}(H, G)$ the Möbius number of H in $\overline{\mathcal{L}}_{G}$.

By the closure theorem of Crapo on \mathcal{L}_{G} :

$$
\sum_{\substack{K \leq G \\
K \text { transitive }}} \mu(H, K)=\left\{\begin{array}{cl}
\bar{\mu}(H, G) & \text { if } H=\bar{H} \\
0 & \text { otherwise }
\end{array}\right.
$$

Key step

Lemma 3

If H is a subgroup of a transitive permutation group G, then

$$
\mu(H, G)=\sum_{K \in \mathcal{S}_{H}} \mu(K, G) g(H, K),
$$

where $\mathcal{S}_{H}:=\{K \leq G \mid K$ transitive on $\Gamma, K \geq H\}$
and $g(H, K)=\left\{\begin{array}{cl}\bar{\mu}(H, K) & \text { if } H \text { is closed in } \mathcal{L}_{K} \\ 0 & \text { otherwise. }\end{array}\right.$

We will apply this lemma when $G \in\{\operatorname{Sym}(n), \operatorname{Alt}(n)\}$. In particular we will consider G with two different actions:

- the natural action on the set $I_{n}:=\{1, \ldots, n\}$,
- the action on the set $\Delta_{n}:=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\}$ defined by $(a, b) g=(a g, b g)$. It is a transitive action.

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $H \leq G$, then $|\mu(H, G)| \leq|G: H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_{n}=\{1$

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$. Then

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $H \leq G$, then $|\mu(H, G)| \leq|G: H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_{n}=\{1, \ldots, n\}$:

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$. Then

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $H \leq G$, then $|\mu(H, G)| \leq|G: H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_{n}=\{1, \ldots, n\}$:

$$
\mu(H, G)=\sum_{T \in \mathcal{S}_{H}} \mu(T, G) g(H, T)
$$

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$. Then

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $H \leq G$, then $|\mu(H, G)| \leq|G: H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_{n}=\{1, \ldots, n\}$:

$$
\mu(H, G)=\sum_{T \in \mathcal{S}_{H}} \mu(T, G) g(H, T)
$$

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$. Then

$$
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)|
$$

$$
\begin{equation*}
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)| \tag{*}
\end{equation*}
$$

1) First of all we estimate $|g(H, T)|$. Let r be the number of orbits of H on $\{1, \ldots, n\}$; then
$-|g(H, T)|$ is bounded in terms of r : for any $T \neq H$

$$
|g(H, T)| \leq(r!)^{2} / 2
$$

$-r$! is bounded in terms of $|G: H|$:

$$
r!\leq 2 \cdot|G: H|
$$

Hence

$$
|g(H, T)| \leq 2 \cdot|G: H|^{2} \quad \forall T \in \mathcal{S}_{H} .
$$

$$
\begin{equation*}
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)| \tag{*}
\end{equation*}
$$

1) First of all we estimate $|g(H, T)|$. Let r be the number of orbits of - $|g(H, T)|$ is bounded in terms of r : for any $T \neq H$

$$
|g(H, T)| \leq(r!)^{2} / 2
$$

- r ! is bounded in terms of $|G: H|:$

$$
H!\leq 2 \cdot|G: H|
$$

Hence

$$
|g(H, T)| \leq 2 \cdot|G: H|^{2} \quad \forall T \in \mathcal{S}_{H} .
$$

$$
\begin{equation*}
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)| \tag{*}
\end{equation*}
$$

1) First of all we estimate $|g(H, T)|$. Let r be the number of orbits of H on $\{1, \ldots, n\}$; then
$|g(H, T)|$ is bounded in terms of r : for any $T \neq H$ - r ! is bounded in terms of $|G: H|$:

$$
r!\leq 2 \cdot|G: H|
$$

Hence

$|g(H, T)| \leq 2 \cdot|G: H|^{2} \quad \forall T \in \mathcal{S}_{H}$.

$$
\begin{equation*}
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)| \tag{*}
\end{equation*}
$$

1) First of all we estimate $|g(H, T)|$. Let r be the number of orbits of H on $\{1, \ldots, n\}$; then

- $|g(H, T)|$ is bounded in terms of r : for any $T \neq H$

$$
|g(H, T)| \leq(r!)^{2} / 2
$$

- r ! is bounded in terms of $|G: H|$:

$$
r!\leq 2 \cdot|G: H|
$$

Hence

$$
|g(H, T)| \leq 2 \cdot|G: H|^{2} \quad \forall T \in \mathcal{S}_{H} .
$$

$$
\begin{equation*}
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)| \tag{*}
\end{equation*}
$$

1) First of all we estimate $|g(H, T)|$. Let r be the number of orbits of H on $\{1, \ldots, n\}$; then
$-|g(H, T)|$ is bounded in terms of r : for any $T \neq H$

$$
|g(H, T)| \leq(r!)^{2} / 2
$$

$-r$! is bounded in terms of $|G: H|$:

$$
r!\leq 2 \cdot|G: H|
$$

Hence
$|g(H, T)| \leq 2 \cdot|G: H|^{2} \quad \forall T \in \mathcal{S}_{H}$.

$$
\begin{equation*}
|\mu(H, G)| \leq \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \cdot|g(H, T)| \tag{*}
\end{equation*}
$$

1) First of all we estimate $|g(H, T)|$. Let r be the number of orbits of H on $\{1, \ldots, n\}$; then
$-|g(H, T)|$ is bounded in terms of r : for any $T \neq H$

$$
|g(H, T)| \leq(r!)^{2} / 2
$$

$-r$! is bounded in terms of $|G: H|$:

$$
r!\leq 2 \cdot|G: H|
$$

Hence

$$
|g(H, T)| \leq 2 \cdot|G: H|^{2} \quad \forall T \in \mathcal{S}_{H} .
$$

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the number of orbits of T on Δ_{n}; then

- As previously, $|g(T, R)| \leq(t!)^{2} / 2 \leq 2 \cdot|G: T|^{2}$,
- $R \in \mathcal{S}_{T}$ is 2-transitive $\Rightarrow|\mu(R, G)| \leq 1$, and there exists an absolute constant b such that $\left|\mathcal{S}_{T}\right| \leq|G: T|^{b}$.

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the number of orbits of T on Δ_{n}; then

- As previously, $|g(T, R)| \leq(t!)^{2} / 2 \leq 2 \cdot|G: T|^{2}$,
- $R \in \mathcal{S}_{T}$ is 2-transitive $\Rightarrow|\mu(R, G)| \leq 1$, and there exists an absolute constant b such that $\left|\mathcal{S}_{T}\right| \leq|G: T|^{b}$.

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the
number of orbits of T on Δ_{n}; then

- As previously, $|g(T, R)| \leq(t!)^{2} / 2 \leq 2 \cdot|G: T|^{2}$,
- $R \in \mathcal{S}_{T}$ is 2-transitive $\Rightarrow|\mu(R, G)| \leq 1$, and there exists an
absolute constant b such that $\left|\mathcal{S}_{T}\right| \leq|G: T|^{b}$.

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the number of orbits of T on Δ_{n}; then

absolute constant b such that $\left|\mathcal{S}_{T}\right| \leq|G: T|^{b}$.

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the number of orbits of T on Δ_{n}; then

- As previously, $|g(T, R)| \leq(t!)^{2} / 2 \leq 2 \cdot|G: T|^{2}$,
- $R \in \mathcal{S}_{T}$ is 2 -transitive $\Rightarrow|\mu(R, G)| \leq 1$, and there exists an
absolute constant b such that $\left|\mathcal{S}_{T}\right| \leq|G: T|^{b}$.

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the number of orbits of T on Δ_{n}; then

- As previously, $|g(T, R)| \leq(t!)^{2} / 2 \leq 2 \cdot|G: T|^{2}$,
- $R \in \mathcal{S}_{T}$ is 2-transitive $\Rightarrow|\mu(R, G)| \leq 1$, and there exists an

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot \sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \tag{*}
\end{equation*}
$$

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_{n}=\{(a, b) \mid 1 \leq a, b \leq n, a \neq b\} ;$ by applying Lemma 3, we obtain

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$. Let t be the number of orbits of T on Δ_{n}; then

- As previously, $|g(T, R)| \leq(t!)^{2} / 2 \leq 2 \cdot|G: T|^{2}$,
- $R \in \mathcal{S}_{T}$ is 2-transitive $\Rightarrow|\mu(R, G)| \leq 1$, and there exists an absolute constant b such that $\left|\mathcal{S}_{T}\right| \leq|G: T|^{b}$.

Hence $\exists \nu$ (independent of n) such that

$$
|\mu(T, G)| \leq|G: T|^{\nu} \leq|G: H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
$$

Denote by s the number of $T \in \mathcal{S}_{H}$ such that $\mu(T, G) \neq 0$. Then

$$
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot s \cdot|G: H|^{\nu}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.

Hence $\exists \nu$ (independent of n) such that

$$
|\mu(T, G)| \leq|G: T|^{\nu} \leq|G: H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
$$

Denote by s the number of $T \in \mathcal{S}_{H}$ such that $\mu(T, G) \neq 0$.

Aim: to bound polynomially s, in terms of $|G: H|$.

Hence $\exists \nu$ (independent of n) such that

$$
|\mu(T, G)| \leq|G: T|^{\nu} \leq|G: H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
$$

Denote by s the number of $T \in \mathcal{S}_{H}$ such that $\mu(T, G) \neq 0$. Then

$$
\sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \leq s \cdot|G: H|^{\nu}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.

Hence $\exists \nu$ (independent of n) such that

$$
|\mu(T, G)| \leq|G: T|^{\nu} \leq|G: H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
$$

Denote by \boldsymbol{s} the number of $T \in \mathcal{S}_{H}$ such that $\mu(T, G) \neq 0$. Then

$$
\sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \leq s \cdot \mid G: H^{\nu}
$$

and

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot s \cdot|G: H|^{\nu} \tag{*}
\end{equation*}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.

Hence $\exists \nu$ (independent of n) such that

$$
|\mu(T, G)| \leq|G: T|^{\nu} \leq|G: H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
$$

Denote by \boldsymbol{s} the number of $T \in \mathcal{S}_{H}$ such that $\mu(T, G) \neq 0$. Then

$$
\sum_{T \in \mathcal{S}_{H}}|\mu(T, G)| \leq s \cdot|G: H|^{\nu}
$$

and

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot s \cdot|G: H|^{\nu} \tag{*}
\end{equation*}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.
3) We start proving: $t(G)$ be the number of all the transitive subgroups T of G with $\mu(T, G) \neq 0$; then $\exists d$, independent of n, such that

$$
t(G) \leq(n!)^{d}
$$

We have

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$
Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in \mathcal{S}_{T}$ such that $g(T, R)=\bar{\mu}(T, R) \neq 0$.
Then T is closed in \mathcal{L}_{R}, and
where R is 2 -transitive, and C is Δ_{n}-closed and transitive in G.

- There are at most $(n!)^{\gamma} \Delta_{n}$-closed transitive subgroups in G.
- The number of 2-transitive subgroups of G can be bounded by
$(n!)^{\delta}$, with δ an absolute constant.

3) We start proving: $t(G)$ be the number of all the transitive subgroups T of G with $\mu(T, G) \neq 0$; then $\exists d$, independent of n, such that

$$
t(G) \leq(n!)^{d}
$$

We have

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$.
Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in \mathcal{S}_{T}$ such that $g(T, R)=\bar{\mu}(T, R) \neq 0$.
Then T is closed in \mathcal{L}_{R}, and
where R is 2 -transitive, and C is Δ_{n}-closed and transitive in G.

- There are at most $(n!)^{\gamma} \Delta_{n}$-closed transitive subgroups in G.
- The number of 2-transitive subgroups of G can be bounded by
$(n!)^{\delta}$, with δ an absolute constant.

3) We start proving: $t(G)$ be the number of all the transitive subgroups T of G with $\mu(T, G) \neq 0$; then $\exists d$, independent of n, such that

$$
t(G) \leq(n!)^{d}
$$

We have

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$.
Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in \mathcal{S}_{T}$ such that $g(T, R)=\bar{\mu}(T, R) \neq 0$.
where R is 2-transitive, and C is Δ_{n}-closed and transitive in G.

- There are at most $(n!)^{\gamma} \Delta_{n}$-closed transitive subgroups in G
- The number of 2-transitive subgroups of G can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

3) We start proving: $t(G)$ be the number of all the transitive subgroups T of G with $\mu(T, G) \neq 0$; then $\exists d$, independent of n, such that

$$
t(G) \leq(n!)^{d}
$$

We have

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$.
Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in \mathcal{S}_{T}$ such that $g(T, R)=\bar{\mu}(T, R) \neq 0$.
Then T is closed in \mathcal{L}_{R}, and

$$
T=R \cap C
$$

where R is 2 -transitive, and C is Δ_{n}-closed and transitive in G.

- The number of 2-transitive subgroups of G can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

3) We start proving: $t(G)$ be the number of all the transitive subgroups T of G with $\mu(T, G) \neq 0$; then $\exists d$, independent of n, such that

$$
t(G) \leq(n!)^{d}
$$

We have

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$.
Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in \mathcal{S}_{T}$ such that $g(T, R)=\bar{\mu}(T, R) \neq 0$.
Then T is closed in \mathcal{L}_{R}, and

$$
T=R \cap C
$$

where R is 2 -transitive, and C is Δ_{n}-closed and transitive in G.

- There are at most $(n!)^{\gamma} \Delta_{n}$-closed transitive subgroups in G.

3) We start proving: $t(G)$ be the number of all the transitive subgroups T of G with $\mu(T, G) \neq 0$; then $\exists d$, independent of n, such that

$$
t(G) \leq(n!)^{d}
$$

We have

$$
|\mu(T, G)| \leq \sum_{R \in \mathcal{S}_{T}}|\mu(R, G)| \cdot|g(T, R)|
$$

with $\mathcal{S}_{T}=\left\{R \leq G \mid R\right.$ transitive on $\left.\Delta_{n}, R \geq T\right\}$.
Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in \mathcal{S}_{T}$ such that $g(T, R)=\bar{\mu}(T, R) \neq 0$.
Then T is closed in \mathcal{L}_{R}, and

$$
T=R \cap C
$$

where R is 2 -transitive, and C is Δ_{n}-closed and transitive in G.

- There are at most $(n!)^{\gamma} \Delta_{n}$-closed transitive subgroups in G.
- The number of 2 -transitive subgroups of G can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$. Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \prec \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N} .
$$

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$.
Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \prec \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups
of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N} .
$$

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$.

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \prec \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups
of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N} .
$$

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$. Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \imath \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups
of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N} .
$$

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$.
Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \imath \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups
of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N} .
$$

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$.
Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \prec \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups
of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that
\square

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$.
Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \prec \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that
\square

$$
t(G) \leq(n!)^{d} \quad \exists d
$$

Let $m \in \mathbb{N}$; denote by $t_{m}(G)$ the number of transitive subgroups T of G such that $|G: T|=m$ and $\mu(T, G) \neq 0$. If $m \leq 2, t_{m}(G) \leq 1$.
Let $m>2$; there exists an absolute constant f such that:

- if $m^{f} \geq n!\Rightarrow t_{m}(G) \leq(n!)^{d} \leq m^{f d}$.
- if $m^{f}<n$! (i.e. m is very "small"), then any transitive subgroup T of G, with $|G: T|=m$, is imprimitive and

$$
(\operatorname{Alt}(a))^{b} \leq T \leq \operatorname{Sym}(a) \prec \operatorname{Sym}(b)
$$

where $1<b<a, a b=n$. The number of these subgroups of index m can be bounded polynomially on m.
Then there exists an absolute constant η such that

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}
$$

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.

s: number of transitive subgroups of G containing H and with non zero Möbius number.
Then

$$
s \leq \sum_{m \leq|G: H|} t_{m}(G) \leq|G: H|^{\eta+1} .
$$

Conclusion

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.
s: number of transitive subgroups of G containing H and with non zero Möbius number.
Then

Conclusion

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.
s : number of transitive subgroups of G containing H and with non zero Möbius number.

Conclusion

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.
s : number of transitive subgroups of G containing H and with non zero Möbius number.
Then

$$
s \leq \sum_{m \leq|G: H|} t_{m}(G) \leq|G: H|^{\eta+1} .
$$

Conclusion

$$
t_{m}(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}
$$

Aim: to bound polynomially s, in terms of $|G: H|$.
s : number of transitive subgroups of G containing H and with non zero Möbius number.
Then

$$
s \leq \sum_{m \leq|G: H|} t_{m}(G) \leq|G: H|^{\eta+1} .
$$

Conclusion

$$
\begin{equation*}
|\mu(H, G)| \leq 2 \cdot|G: H|^{2} \cdot|G: H|^{\nu} \cdot|G: H|^{\eta+1} \tag{*}
\end{equation*}
$$

Some remarks

If we consider prime degrees, we are able to improve this result:

Theorem 4

Let p be a prime, with $p \neq 11,23$ and $p \neq\left(q^{d}-1\right) /(q-1)$, for any (q, d), with q a prime power and $q>4$ if $d=2$. If $G \in\{\operatorname{Alt}(p), \operatorname{Sym}(p)\}$ and $H \leq G$, then

$$
|\mu(H, G)| \leq|G: H| .
$$

Some remarks

If we consider prime degrees, we are able to improve this result:

Theorem 4

Let p be a prime, with $p \neq 11,23$ and $p \neq\left(q^{d}-1\right) /(q-1)$, for any (q, d), with q a prime power and $q>4$ if $d=2$.
If $G \in\{\operatorname{Alt}(p), \operatorname{Sym}(p)\}$ and $H \leq G$, then

$$
|\mu(H, G)| \leq|G: H| .
$$

Theorem 4 leads us to formulate

Conjecture

For any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $H \leq G$, then

$$
|\mu(H, G)| \leq c \cdot|G: H| \quad \exists c
$$

The Reduction Theorem

Denote by $\Lambda(G)$ the set of finite monolithic groups L such that $\operatorname{soc} L$ is non abelian and L is an epimorphic image of G.

Theorem (Lucchini)

Let G be a PFG group. Then the followings are equivalent.
(1) There exist two constants γ_{1} and γ_{2} such that

$$
b_{m}(G) \leq m^{\gamma_{1}} \quad \text { and } \quad|\mu(H, G)| \leq|G: H|^{\gamma_{2}}
$$

for each $m \in \mathbb{N}$ and each open subgroup H of G.
(2) There exist two constants c_{1} and c_{2} such that

$$
b_{m}\left(X_{L}\right) \leq m^{c_{1}} \quad \text { and } \quad\left|\mu\left(Y, X_{L}\right)\right| \leq\left|X_{L}: Y\right|^{c_{2}}
$$

for each $L \in \Lambda(G)$, each $m \in \mathbb{N}$ and each $Y \leq X_{L}$.

Proof of Theorem 1

$b_{m}(G)$ is the number of $H \leq G$ with $|\boldsymbol{G}: H|=m$ and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $m \in \mathbb{N}$, then $b_{m}(G) \leq m^{\alpha}$.

Let $H \leq G$ with $|G: H|=m$ and $\mu(H, G) \neq 0$. We apply Lemma 3
with respect to the natural action of G on $\{1, \ldots, n\}$:

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$
Since $\mu(H, G) \neq 0 \Rightarrow \exists T \in \mathcal{S}_{H}$ such that $\mu(T, G) g(H, T) \neq 0$.

Proof of Theorem 1

$b_{m}(G)$ is the number of $H \leq G$ with $|G: H|=m$ and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $m \in \mathbb{N}$, then $b_{m}(G) \leq m^{\alpha}$.

Let $H \leq G$ with $|G: H|=m$ and $\mu(H, G) \neq 0$. We apply Lemma 3
with respect to the natural action of G on $\{1, \ldots, n\}$:

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$.
Since $\mu(H, G) \neq 0 \Rightarrow \exists T \in \mathcal{S}_{H}$ such that $\mu(T, G) g(H, T) \neq 0$.

Proof of Theorem 1

$b_{m}(G)$ is the number of $H \leq G$ with $|\boldsymbol{G}: H|=m$ and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $m \in \mathbb{N}$, then $b_{m}(G) \leq m^{\alpha}$.

Let $H \leq G$ with $|G: H|=m$ and $\mu(H, G) \neq 0$. We apply Lemma 3 with respect to the natural action of G on $\{1, \ldots, n\}$:

$$
\mu(H, G)=\sum_{T \in \mathcal{S}_{H}} \mu(T, G) g(H, T)
$$

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$.
Since $\mu(H, G) \neq 0 \Rightarrow \exists T \in \mathcal{S}_{H}$ such that $\mu(T, G) g(H, T) \neq 0$.

Proof of Theorem 1

$b_{m}(G)$ is the number of $H \leq G$ with $|G: H|=m$ and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and $m \in \mathbb{N}$, then $b_{m}(G) \leq m^{\alpha}$.

Let $H \leq G$ with $|G: H|=m$ and $\mu(H, G) \neq 0$. We apply Lemma 3 with respect to the natural action of G on $\{1, \ldots, n\}$:

$$
\mu(H, G)=\sum_{T \in \mathcal{S}_{H}} \mu(T, G) g(H, T)
$$

with $\mathcal{S}_{H}=\{T \leq G \mid T$ transitive, $T \geq H\}$.
Since $\mu(H, G) \neq 0 \Rightarrow \exists T \in \mathcal{S}_{H}$ such that $\mu(T, G) g(H, T) \neq 0$.

In particular $g(H, T)=\bar{\mu}(H, T) \neq 0$; H is closed in \mathcal{L}_{T}, and

where T is transitive with $\mu(T, G) \neq 0$, and C is closed in G.

Strategy

To bound $b_{m}(G)$, we have to find polynomial bounds, in terms of m :

1) for the number of closed subgroups of G with index dividing m,
2) for the number of transitive subgroups of G with non zero Möbius number and with index dividing m.

In particular $g(H, T)=\bar{\mu}(H, T) \neq 0 ; H$ is closed in \mathcal{L}_{T}, and

$$
H=T \cap C
$$

where T is transitive with $\mu(T, G) \neq 0$, and C is closed in G.

> Strategy
> To bound $b_{m}(G)$, we have to find polynomial bounds, in terms of m :
> 1) for the number of closed subgrouns of G with index dividing m,
> 2) for the number of transitive subgroups of G with non zero Möbius number and with index dividing m.

In particular $g(H, T)=\bar{\mu}(H, T) \neq 0 ; H$ is closed in \mathcal{L}_{T}, and

$$
H=T \cap C
$$

where T is transitive with $\mu(T, G) \neq 0$, and C is closed in G.

Strategy

To bound $b_{m}(G)$, we have to find polynomial bounds, in terms of m :

1) for the number of closed subgroups of G with index dividing m,
2) for the number of transitive subgroups of G with non zero Möbius number and with index dividing m.

Lemma 5

Let $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and denote by $c_{m}(G)$ the number of subgroups of G with index m and closed in \mathcal{L}_{G}. Then $c_{m}(G) \leq m^{4}$ for each $m \in \mathbb{N}$.

Lemma 6

Let $G \in\{\operatorname{Alt}(n), \operatorname{Sym}(n)\}$ and denote by $t_{m}(G)$ the number of transitive subgroups T of G with $|G: T|=m$ and $\mu(T, G) \neq 0$. Then there exists an absolute constant η such that $t_{m}(G) \leq m^{\eta}$ for each $m \in \mathbb{N}$.

Key step

Let G be transitive on Γ. For any subgroup H of G, define

$$
\mathcal{S}_{H}:=\{K \leq G \mid K \text { transitive on } \Gamma, K \geq H\} \subseteq \mathcal{L}_{G} .
$$

Define f, g

$g(H, X)=\left\{\begin{array}{cl}\bar{\mu}(H, X) & \text { if } X \in \mathcal{S}_{H} \text { and } H \text { is closed in } \mathcal{L}_{X} \\ 0 & \text { otherwise } .\end{array}\right.$
By the closure theorem of Crapo on \mathcal{L}_{X}, with $X \in \mathcal{S}_{H}$,

Key step

Let G be transitive on Γ. For any subgroup H of G, define

$$
\mathcal{S}_{H}:=\{K \leq G \mid K \text { transitive on } \Gamma, K \geq H\} \subseteq \mathcal{L}_{G} .
$$

Define $f, g: \mathcal{L}_{G} \times \mathcal{L}_{G} \rightarrow \mathbb{Z}$:

$$
\begin{aligned}
& f(H, Y)=\left\{\begin{array}{cl}
\mu(H, Y) & \text { if } Y \in \mathcal{S}_{H} \\
0 & \text { otherwise },
\end{array}\right. \\
& g(H, X)=\left\{\begin{array}{cl}
\bar{\mu}(H, X) & \text { if } X \in \mathcal{S}_{H} \text { and } H \text { is closed in } \mathcal{L}_{X} \\
0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

By the closure theorem of Crapo on \mathcal{L}_{X}, with $X \in \mathcal{S}_{H}$,

if H is closed in \mathcal{L}_{X}
otherwise.

Key step

Let G be transitive on Γ. For any subgroup H of G, define

$$
\mathcal{S}_{H}:=\{K \leq G \mid K \text { transitive on } \Gamma, K \geq H\} \subseteq \mathcal{L}_{G} .
$$

Define $f, g: \mathcal{L}_{G} \times \mathcal{L}_{G} \rightarrow \mathbb{Z}$:

$$
\begin{aligned}
& f(H, Y)=\left\{\begin{array}{cl}
\mu(H, Y) & \text { if } Y \in \mathcal{S}_{H} \\
0 & \text { otherwise }
\end{array}\right. \\
& g(H, X)=\left\{\begin{array}{cl}
\bar{\mu}(H, X) & \text { if } X \in \mathcal{S}_{H} \text { and } H \text { is closed in } \mathcal{L}_{X} \\
0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

By the closure theorem of Crapo on \mathcal{L}_{X}, with $X \in \mathcal{S}_{H}$,

$$
\sum_{\substack{Y \leq X \\
Y \in \mathcal{S}_{H}}} \mu(H, Y)=\left\{\begin{array}{cl}
\bar{\mu}(H, X) & \text { if } H \text { is closed in } \mathcal{L}_{X} \\
0 & \text { otherwise } .
\end{array}\right.
$$

Key step

Then f and g satisfy the relation $g(H, X)=\sum f(H, Y)$.
$Y \leq X$

$Y \in \mathcal{S}_{H}$
By the Möbius inversion formula, for any $Y \in \mathcal{S}_{H}$, we have

Setting $Y=G$, we get:

Lemma 3

If H is a subgroup of a transitive permutation group G, then

Key step

Then f and g satisfy the relation $g(H, X)=\sum f(H, Y)$.

$$
y \leq x
$$

$$
Y \in \mathcal{S}_{H}
$$

By the Möbius inversion formula, for any $Y \in \mathcal{S}_{H}$, we have

$$
f(H, Y)=\sum_{\substack{x \leq Y \\ X \in \mathcal{S}_{H}}} \mu(X, Y) g(H, X)
$$

Setting $Y=G$, we get:

Lemma 3
If H is a subgroup of a transitive permutation group G, then

Key step

Then f and g satisfy the relation $g(H, X)=\sum f(H, Y)$.

$$
\begin{aligned}
& Y \leq X \\
& Y \in \mathcal{S}_{H}
\end{aligned}
$$

By the Möbius inversion formula, for any $Y \in \mathcal{S}_{H}$, we have

$$
f(H, Y)=\sum_{\substack{x \leq Y \\ X \in \mathcal{S}_{H}}} \mu(X, Y) g(H, X)
$$

Setting $Y=G$, we get:

Lemma 3

If H is a subgroup of a transitive permutation group G, then

$$
\mu(H, G)=\sum_{K \in \mathcal{S}_{H}} \mu(K, G) g(H, K)
$$

