Subgroups with non-trivial Möbius number in the Alternating and Symmetric groups

Valentina Colombo

Università di Padova

Ischia Group Theory 2010 April, 14th-17th Let *G* be a finitely generated profinite group. We consider *G* as a probability space (with respect to the normalized Haar measure) and denote by P(G, k) the probability that *k* randomly chosen elements of *G* generate *G* itself.

G is called positively finitely generated (PFG) if $P(G, k) > 0 \exists k \in \mathbb{N}$.

Definitions

• For each open subgroup H of G we may define

$$\mu(H,G) = \begin{cases} 1 & \text{if } H = G \\ -\sum_{H < K \le G} \mu(K,G) & \text{otherwise.} \end{cases}$$

• For each $m \in \mathbb{N}$, let $b_m(G)$ be the number of open subgroups H with |G:H| = m and $\mu(H,G) \neq 0$.

< □ > < @ > < E > < E</pre>

Conjecture (Mann, 2005)

Let *G* be a PFG group. Then $b_m(G)$ and $|\mu(H, G)|$ are bounded polynomially, respectively in terms of *m* and |G : H|.

This conjecture by Mann is implied by the following:

Conjecture (Lucchini, 2010)

There exists a constant *c* such that if *X* is a finite almost simple group, then $b_m(X) \le m^c$ and $|\mu(Y, X)| \le |X : Y|^c$ for each $m \in \mathbb{N}$ and each $Y \le X$.

イロト イポト イヨト イヨト ヨ

1 = nan

Conjecture (Mann, 2005)

Let *G* be a PFG group. Then $b_m(G)$ and $|\mu(H, G)|$ are bounded polynomially, respectively in terms of *m* and |G : H|.

This conjecture by Mann is implied by the following:

Conjecture (Lucchini, 2010)

There exists a constant *c* such that if *X* is a finite almost simple group, then $b_m(X) \le m^c$ and $|\mu(Y, X)| \le |X : Y|^c$ for each $m \in \mathbb{N}$ and each $Y \le X$.

Main theorems

We have proved that Lucchini's conjecture holds for all the Alternating and Symmetric groups:

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $X \in {Alt(n), Sym(n)}$ and $m \in \mathbb{N}$, then $b_m(X) \le m^{\alpha}$.

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $X \in {Alt(n), Sym(n)}$ and $Y \leq X$, then $|\mu(Y, X)| \leq |X : Y|^{\beta}$.

< 口 > < 同 > < 回 > < 回 > 三

Further results

These two theorems and Lucchini's reduction theorem imply: 🛛 💽

Corollary 1

If G is a PFG group, and for each open normal subgroup N of G all the composition factors of G/N are either abelian or Alternating groups, then

- there exists γ_1 such that $b_m(G) \leq m^{\gamma_1}$ for each $m \in \mathbb{N}$;
- there exists γ₂ such that |μ(H, G)| ≤ |G : H|^{γ₂} for each open subgroup H of G.

Further results

These two theorems and Lucchini's reduction theorem imply: 📀

Corollary 1

If G is a PFG group, and for each open normal subgroup N of G all the composition factors of G/N are either abelian or Alternating groups, then

- there exists γ_1 such that $b_m(G) \leq m^{\gamma_1}$ for each $m \in \mathbb{N}$;
- there exists γ₂ such that |μ(H, G)| ≤ |G : H|^{γ₂} for each open subgroup H of G.

Example

$$G = \prod_{n} (Alt(n))^{n}$$
 satisfies Mann's conjecture.

Further results

Theorem (Lucchini, 2009)

Let $G = \prod_i S_i$, where the S_i 's are finite nonabelian simple groups; suppose that G is d-generated and that there exists a constant c such that: $|\mu(Y, S_i)| \le |S_i : Y|^c$, $\forall i$ and $\forall Y \le S_i$. Then

 $|\mu(H,G)| \leq |G:H|^{\epsilon}$

for each open subgroup H of G, where $\epsilon = \max(d, c) + 1$.

Further results

Theorem (Lucchini, 2009)

Let $G = \prod_i S_i$, where the S_i 's are finite nonabelian simple groups; suppose that G is d-generated and that there exists a constant c such that: $|\mu(Y, S_i)| \le |S_i : Y|^c$, $\forall i$ and $\forall Y \le S_i$. Then

 $|\mu(H,G)| \leq |G:H|^{\epsilon}$

for each open subgroup H of G, where $\epsilon = \max(d, c) + 1$.

Corollary 2

Let $G = \prod_i A_i$, where the A_i 's are Alternating groups; suppose that G is d-generated. Then

$$|\mu(H,G)| \leq |G:H|^{\max(d,\beta)+1}$$

with β as in Theorem 2.

Corollary 2

Let $G = \prod_i A_i$, where the A_i 's are Alternating groups; suppose that G is d-generated. Then

$$|\mu(H,G)| \leq |G:H|^{\max(d,\beta)+1}$$

with β as in Theorem 2.

Example

 $G = \prod_{n \ge 5} (Alt(n))^{n!/8}$ is 2-generated and then, by Corollary 2, we have

$$|\mu(H,G)| \leq |G:H|^{\max(2,\beta)+1}$$

for each open subgroup H of G.

Corollary 2

Let $G = \prod_i A_i$, where the A_i 's are Alternating groups; suppose that G is d-generated. Then

 $|\mu(H,G)| \leq |G:H|^{\max(d,\beta)+1}$

with β as in Theorem 2.

Example

 $G = \prod_{n \ge 5} (Alt(n))^{n!/8}$ is 2-generated and then, by Corollary 2, we have

 $|\mu(H,G)| \leq |G:H|^{\max(2,\beta)+1}$

for each open subgroup H of G.

Remark

Note that $G = \prod_{n>5} (Alt(n))^{n!/8}$ is not a PFG group.

A key step Proof of Theorem 2

Preliminaries

Let *G* be transitive on a finite set Γ ; \mathcal{L}_G is the subgroup lattice of *G*.

Definition

Let $H \leq G$ and let $\{\Omega_1, \ldots, \Omega_r\}$ be the orbits of H on Γ ; define

 $\overline{H} := (\prod_i \operatorname{Sym}(\Omega_i)) \cap G$

the **closure** of *H* in \mathcal{L}_G . *H* is said **closed** in \mathcal{L}_G if and only if $H = \overline{H}$. The set $\overline{\mathcal{L}}_G := \{H \in \mathcal{L}_G | H = \overline{H}\}$ is a poset; for any $H \in \overline{\mathcal{L}}_G$, denote by $\overline{\mu}(H, G)$ the Möbius number of *H* in $\overline{\mathcal{L}}_G$.

イロト イポト イヨト イヨト ヨ

E SQA

A key step Proof of Theorem 2

Preliminaries

Let *G* be transitive on a finite set Γ ; \mathcal{L}_G is the subgroup lattice of *G*.

Definition

Let $H \leq G$ and let $\{\Omega_1, \ldots, \Omega_r\}$ be the orbits of H on Γ ; define

 $\overline{H} := (\prod_i \operatorname{Sym}(\Omega_i)) \cap G$

the **closure** of *H* in \mathcal{L}_G . *H* is said **closed** in \mathcal{L}_G if and only if $H = \overline{H}$. The set $\overline{\mathcal{L}}_G := \{H \in \mathcal{L}_G | H = \overline{H}\}$ is a poset; for any $H \in \overline{\mathcal{L}}_G$, denote by $\overline{\mu}(H, G)$ the Möbius number of *H* in $\overline{\mathcal{L}}_G$.

By the closure theorem of Crapo on \mathcal{L}_G :

K

$$\sum_{K \leq G} \mu(H, K) = \begin{cases} \overline{\mu}(H, G) & \text{if } H = \overline{H} \\ 0 & \text{otherwise.} \end{cases}$$
transitive

A key step Proof of Theorem 2

Key step

Lemma 3

If H is a subgroup of a transitive permutation group G, then

$$\mu(H,G) = \sum_{K \in S_H} \mu(K,G)g(H,K),$$

where $S_H := \{K \le G \mid K \text{ transitive on } \Gamma, K \ge H\}$ and $g(H, K) = \begin{cases} \overline{\mu}(H, K) & \text{if } H \text{ is closed in } \mathcal{L}_K \\ 0 & \text{otherwise.} \end{cases}$

We will apply this lemma when $G \in {\text{Sym}(n), \text{Alt}(n)}$. In particular we will consider *G* with two different actions:

- the natural action on the set $I_n := \{1, \ldots, n\}$,
- the action on the set Δ_n := {(a, b) | 1 ≤ a, b ≤ n, a ≠ b} defined by (a, b)g = (ag, bg). It is a transitive action.

A key step Proof of Theorem 2

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in {\text{Alt}(n), \text{Sym}(n)}$ and $H \leq G$, then $|\mu(H, G)| \leq |G : H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_n = \{1, ..., n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \leq G \mid T \text{ transitive}, T \geq H\}$. Then

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$

A key step Proof of Theorem 2

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in {\text{Alt}(n), \text{Sym}(n)}$ and $H \leq G$, then $|\mu(H, G)| \leq |G : H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_n = \{1, ..., n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \leq G \mid T \text{ transitive}, T \geq H\}$. Then

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$

A key step Proof of Theorem 2

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in {\text{Alt}(n), \text{Sym}(n)}$ and $H \leq G$, then $|\mu(H, G)| \leq |G : H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_n = \{1, ..., n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \leq G \mid T \text{ transitive}, T \geq H\}$. Then

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$

A key step Proof of Theorem 2

Proof of Theorem 2

Theorem 2

There exists an absolute constant β such that for any $n \in \mathbb{N}$, if $G \in {\text{Alt}(n), \text{Sym}(n)}$ and $H \leq G$, then $|\mu(H, G)| \leq |G : H|^{\beta}$.

Let $H \leq G$. We apply Lemma 3 with respect to the natural action of G on $I_n = \{1, ..., n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \leq G \mid T \text{ transitive}, T \geq H\}$. Then

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$
 (*)

 First of all we estimate |g(H, T)|. Let r be the number of orbits of H on {1,...,n}; then

|g(H, T)| is bounded in terms of r: for any $T \neq H$

$$|g(H, T)| \le (r!)^2/2,$$

- r! is bounded in terms of |G:H|:

 $r! \leq 2 \cdot |G:H|.$

Hence

 $|g(H,T)| \leq 2 \cdot |G:H|^2 \quad \forall T \in \mathcal{S}_H.$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$
 (*)

First of all we estimate |g(H, T)|. Let r be the number of orbits of H on {1,...,n}; then
 - |g(H, T)| is bounded in terms of r; for any T ≠ H

 $|g(H, T)| \le (r!)^2/2,$

- r! is bounded in terms of |G:H|:

 $r! \leq 2 \cdot |G:H|.$

Hence

 $|g(H,T)| \leq 2 \cdot |G:H|^2 \quad \forall T \in \mathcal{S}_H.$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$
 (*)

 First of all we estimate |g(H, T)|. Let r be the number of orbits of H on {1,..., n}; then

|g(H, T)| is bounded in terms of r: for any $T \neq H$

 $|g(H, T)| \le (r!)^2/2,$

- r! is bounded in terms of |G:H|:

 $r! \leq 2 \cdot |G:H|.$

Hence

 $|g(H,T)| \leq 2 \cdot |G:H|^2 \quad \forall T \in \mathcal{S}_H.$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$
 (*)

 First of all we estimate |g(H, T)|. Let r be the number of orbits of H on {1,..., n}; then

-|g(H, T)| is bounded in terms of *r*: for any $T \neq H$

$$|g(H, T)| \le (r!)^2/2,$$

- r! is bounded in terms of |G:H|:

 $r! \leq 2 \cdot |G:H|.$

Hence

 $|g(H,T)| \leq 2 \cdot |G:H|^2 \quad \forall T \in \mathcal{S}_H.$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$
 (*)

 First of all we estimate |g(H, T)|. Let r be the number of orbits of H on {1,..., n}; then

-|g(H, T)| is bounded in terms of *r*: for any $T \neq H$

$$|g(H, T)| \le (r!)^2/2,$$

- r! is bounded in terms of |G:H|:

 $r! \leq 2 \cdot |G:H|.$

Hence

 $|g(H,T)| \leq 2 \cdot |G:H|^2 \quad \forall T \in \mathcal{S}_H.$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq \sum_{T \in S_H} |\mu(T,G)| \cdot |g(H,T)|$$
 (*)

 First of all we estimate |g(H, T)|. Let r be the number of orbits of H on {1,..., n}; then

-|g(H, T)| is bounded in terms of *r*: for any $T \neq H$

$$|g(H, T)| \le (r!)^2/2,$$

- r! is bounded in terms of |G:H|:

 $r! \leq 2 \cdot |G:H|.$

Hence

$$|g(H, T)| \leq 2 \cdot |G: H|^2 \quad \forall T \in \mathcal{S}_H.$$

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of *G* on $\Delta_n = \{(a, b) | 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathsf{T},\mathsf{G})| \leq \sum_{\mathsf{R}\in\,\mathcal{S}_{\mathsf{T}}} |\mu(\mathsf{R},\mathsf{G})|\cdot|g(\mathsf{T},\mathsf{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of *T* on Δ_n ; then

- As previously, $|g(T,R)| \le (t!)^2/2 \le 2 \cdot |G:T|^2$,
- *R* ∈ S_T is 2-transitive ⇒ |μ(*R*, *G*)| ≤ 1, and there exists an absolute constant *b* such that |S_T| ≤ |G : T|^b.

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of G on $\Delta_n = \{(a, b) | 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathsf{T},\mathsf{G})| \leq \sum_{\mathsf{R}\in\,\mathcal{S}_{\mathsf{T}}} |\mu(\mathsf{R},\mathsf{G})|\cdot|g(\mathsf{T},\mathsf{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of *T* on Δ_n ; then

- As previously, $|g(T,R)| \le (t!)^2/2 \le 2 \cdot |G:T|^2$,
- *R* ∈ S_T is 2-transitive ⇒ |μ(*R*, *G*)| ≤ 1, and there exists an absolute constant *b* such that |S_T| ≤ |G : T|^b.

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of *G* on $\Delta_n = \{(a, b) \mid 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathsf{T},\mathsf{G})| \leq \sum_{\mathsf{R}\in\,\mathcal{S}_{\mathsf{T}}} |\mu(\mathsf{R},\mathsf{G})|\cdot|\mathsf{g}(\mathsf{T},\mathsf{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of T on Δ_n ; then

- As previously, $|g(T,R)| \le (t!)^2/2 \le 2 \cdot |G:T|^2$,
- *R* ∈ S_T is 2-transitive ⇒ |μ(*R*, *G*)| ≤ 1, and there exists an absolute constant *b* such that |S_T| ≤ |G : T|^b.

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of *G* on $\Delta_n = \{(a, b) \mid 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathcal{T},\mathcal{G})| \leq \sum_{\mathcal{R} \in \, \mathcal{S}_{\mathcal{T}}} |\mu(\mathcal{R},\mathcal{G})| \cdot |oldsymbol{g}(\mathcal{T},\mathcal{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of *T* on Δ_n ; then

- As previously, $|g(T,R)| \le (t!)^2/2 \le 2 \cdot |G:T|^2$,
- *R* ∈ S_T is 2-transitive ⇒ |μ(*R*, *G*)| ≤ 1, and there exists an absolute constant *b* such that |S_T| ≤ |G : T|^b.

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of *G* on $\Delta_n = \{(a, b) \mid 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathsf{T},\mathsf{G})| \leq \sum_{\mathsf{R}\in\,\mathcal{S}_{\mathsf{T}}} |\mu(\mathsf{R},\mathsf{G})|\cdot|\mathsf{g}(\mathsf{T},\mathsf{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of *T* on Δ_n ; then

- As previously, $|g(T,R)| \leq (t!)^2/2 \leq 2 \cdot |G:T|^2$,
- *R* ∈ S_T is 2-transitive ⇒ |μ(*R*, *G*)| ≤ 1, and there exists an absolute constant *b* such that |S_T| ≤ |G : T|^b.

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of *G* on $\Delta_n = \{(a, b) \mid 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathsf{T},\mathsf{G})| \leq \sum_{\mathsf{R}\in\,\mathcal{S}_{\mathsf{T}}} |\mu(\mathsf{R},\mathsf{G})|\cdot|\mathsf{g}(\mathsf{T},\mathsf{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of *T* on Δ_n ; then

- As previously, $|g(T,R)| \leq (t!)^2/2 \leq 2 \cdot |G:T|^2$,
- *R* ∈ S_T is 2-transitive ⇒ |μ(*R*, *G*)| ≤ 1, and there exists an absolute constant *b* such that |S_T| ≤ |G : T|^b.

A key step Proof of Theorem 2

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot \sum_{T \in S_H} |\mu(T,G)|$$
 (*)

2) Then we give a bound for $|\mu(T, G)|$. Consider the action of *G* on $\Delta_n = \{(a, b) \mid 1 \le a, b \le n, a \ne b\}$; by applying Lemma 3, we obtain

$$|\mu(\mathsf{T},\mathsf{G})| \leq \sum_{\mathsf{R}\in\,\mathcal{S}_{\mathsf{T}}} |\mu(\mathsf{R},\mathsf{G})|\cdot|\mathsf{g}(\mathsf{T},\mathsf{R})|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Let *t* be the number of orbits of *T* on Δ_n ; then

- As previously, $|g(T,R)| \leq (t!)^2/2 \leq 2 \cdot |G:T|^2$,
- $R \in S_T$ is 2-transitive $\Rightarrow |\mu(R, G)| \le 1$, and there exists an absolute constant *b* such that $|S_T| \le |G : T|^b$.

A key step Proof of Theorem 2

Hence $\exists \nu$ (independent of *n*) such that

```
|\mu(T,G)| \leq |G:T|^{\nu} \leq |G:H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
```

Denote by *s* the number of $T \in S_H$ such that $\mu(T, G) \neq 0$. Then

$$\sum_{T\in \mathcal{S}_H} |\mu(T,G)| \leq s \cdot |G:H|^{
u}$$

and

$$|\mu(H,G)| \le 2 \cdot |G:H|^2 \cdot s \cdot |G:H|^{\nu} \qquad (*)$$

Aim: to bound polynomially s, in terms of |G:H|.

A key step Proof of Theorem 2

Hence $\exists \nu$ (independent of *n*) such that

```
|\mu(T,G)| \leq |G:T|^{\nu} \leq |G:H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
```

Denote by *s* the number of $T \in S_H$ such that $\mu(T, G) \neq 0$. Then

 $\sum_{T\in \mathcal{S}_H} |\mu(T,G)| \leq s \cdot |G:H|^{\nu}$

and

$$|\mu(H,G)| \le 2 \cdot |G:H|^2 \cdot s \cdot |G:H|^{\nu} \qquad (*)$$

Aim: to bound polynomially s, in terms of |G:H|.

A key step Proof of Theorem 2

Hence $\exists \nu$ (independent of *n*) such that

```
|\mu(T,G)| \leq |G:T|^{\nu} \leq |G:H|^{\nu} \qquad \forall T \in \mathcal{S}_{H}
```

Denote by *s* the number of $T \in S_H$ such that $\mu(T, G) \neq 0$. Then

$$\sum_{T\in \mathcal{S}_{\mathcal{H}}} |\mu(T,G)| \leq s \cdot |G:H|^{
u}$$

and

 $|\mu(H,G)| \le 2 \cdot |G:H|^2 \cdot s \cdot |G:H|^{\nu} \qquad (*)$

Aim: to bound polynomially s, in terms of |G:H|.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

A key step Proof of Theorem 2

Hence $\exists \nu$ (independent of *n*) such that

```
|\mu(T,G)| \leq |G:T|^{\nu} \leq |G:H|^{\nu} \qquad \forall T \in \mathcal{S}_{H}
```

Denote by *s* the number of $T \in S_H$ such that $\mu(T, G) \neq 0$. Then

$$\sum_{\mathcal{T}\in\,\mathcal{S}_{\mathcal{H}}} |\mu(\mathcal{T},\mathcal{G})| \leq m{s} \cdot |m{G}:m{H}|^{
u}$$

and

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot s \cdot |G:H|^{\nu}$$
 (*)

Aim: to bound polynomially s, in terms of |G : H|.

A key step Proof of Theorem 2

Hence $\exists \nu$ (independent of *n*) such that

```
|\mu(T,G)| \leq |G:T|^{\nu} \leq |G:H|^{\nu} \quad \forall T \in \mathcal{S}_{H}
```

Denote by *s* the number of $T \in S_H$ such that $\mu(T, G) \neq 0$. Then

$$\sum_{\mathcal{T}\in\,\mathcal{S}_{\mathcal{H}}} |\mu(\mathcal{T},\mathcal{G})| \leq m{s} \cdot |m{G}:m{H}|^{
u}$$

and

$$|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot s \cdot |G:H|^{\nu}$$
 (*)

Aim: to bound polynomially s, in terms of |G:H|.

A key step Proof of Theorem 2

We start proving: t(G) be the number of all the transitive subgroups T of G with µ(T, G) ≠ 0; then ∃ d, independent of n, such that

$t(G) \leq (n!)^d$

We have

$$|\mu(T,G)| \leq \sum_{R \in S_T} |\mu(R,G)| \cdot |g(T,R)|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Since $\mu(T, G) \ne 0 \Rightarrow \exists R \in S_T$ such that $g(T, R) = \overline{\mu}(T, R) \ne 0$. Then T is closed in \mathcal{L}_R , and

$T = R \cap C$

where *R* is 2-transitive, and *C* is Δ_n -closed and transitive in *G*.

- There are at most $(n!)^{\gamma} \Delta_n$ -closed transitive subgroups in G.
- The number of 2-transitive subgroups of *G* can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

イロト イポト イヨト イヨト ヨ

E SQA

A key step Proof of Theorem 2

We start proving: t(G) be the number of all the transitive subgroups T of G with µ(T, G) ≠ 0; then ∃ d, independent of n, such that

$$t(G) \leq (n!)^d$$

We have

$$|\mu(T,G)| \leq \sum_{R \in S_T} |\mu(R,G)| \cdot |g(T,R)|$$

with $S_T = \{ R \leq G \mid R \text{ transitive on } \Delta_n, R \geq T \}.$

Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in S_T$ such that $g(T, R) = \overline{\mu}(T, R) \neq 0$. Then T is closed in \mathcal{L}_R , and

$T = R \cap C$

where *R* is 2-transitive, and *C* is Δ_n -closed and transitive in *G*.

- There are at most $(n!)^{\gamma} \Delta_n$ -closed transitive subgroups in G.
- The number of 2-transitive subgroups of *G* can be bounded by (*n*!)^δ, with δ an absolute constant.

A key step Proof of Theorem 2

We start proving: t(G) be the number of all the transitive subgroups T of G with µ(T, G) ≠ 0; then ∃ d, independent of n, such that

$$t(G) \leq (n!)^d$$

We have

$$|\mu(T,G)| \leq \sum_{R \in S_T} |\mu(R,G)| \cdot |g(T,R)|$$

with $S_T = \{R \le G \mid R \text{ transitive on } \Delta_n, R \ge T\}$. Since $\mu(T, G) \ne 0 \Rightarrow \exists R \in S_T$ such that $g(T, R) = \overline{\mu}(T, R) \ne 0$. Then *T* is closed in \mathcal{L}_R , and

$T = R \cap C$

where *R* is 2-transitive, and *C* is Δ_n -closed and transitive in *G*.

- There are at most $(n!)^{\gamma} \Delta_n$ -closed transitive subgroups in G.
- The number of 2-transitive subgroups of *G* can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

= 200

A key step Proof of Theorem 2

We start proving: t(G) be the number of all the transitive subgroups T of G with µ(T, G) ≠ 0; then ∃ d, independent of n, such that

$$t(G) \leq (n!)^d$$

We have

$$|\mu(T,G)| \leq \sum_{R \in S_T} |\mu(R,G)| \cdot |g(T,R)|$$

with $S_T = \{R \leq G \mid R \text{ transitive on } \Delta_n, R \geq T\}$. Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in S_T$ such that $g(T, R) = \overline{\mu}(T, R) \neq 0$. Then *T* is closed in \mathcal{L}_R , and

$T=R\cap C$

where *R* is 2-transitive, and *C* is Δ_n -closed and transitive in *G*.

- There are at most $(n!)^{\gamma} \Delta_n$ -closed transitive subgroups in G.
- The number of 2-transitive subgroups of *G* can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

イロト イポト イヨト イヨト ヨ

E SQA

A key step Proof of Theorem 2

We start proving: t(G) be the number of all the transitive subgroups T of G with µ(T, G) ≠ 0; then ∃ d, independent of n, such that

$$t(G) \leq (n!)^d$$

We have

$$|\mu(T,G)| \leq \sum_{R \in S_T} |\mu(R,G)| \cdot |g(T,R)|$$

with $S_T = \{R \leq G \mid R \text{ transitive on } \Delta_n, R \geq T\}$. Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in S_T$ such that $g(T, R) = \overline{\mu}(T, R) \neq 0$. Then *T* is closed in \mathcal{L}_R , and

$T = R \cap C$

where *R* is 2-transitive, and *C* is Δ_n -closed and transitive in *G*.

- There are at most $(n!)^{\gamma} \Delta_n$ -closed transitive subgroups in G.
- The number of 2-transitive subgroups of *G* can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

イロト イポト イヨト イヨト ヨ

E SQA

A key step Proof of Theorem 2

We start proving: t(G) be the number of all the transitive subgroups T of G with µ(T, G) ≠ 0; then ∃ d, independent of n, such that

$$t(G) \leq (n!)^d$$

We have

$$|\mu(T,G)| \leq \sum_{R \in S_T} |\mu(R,G)| \cdot |g(T,R)|$$

with $S_T = \{R \leq G \mid R \text{ transitive on } \Delta_n, R \geq T\}$. Since $\mu(T, G) \neq 0 \Rightarrow \exists R \in S_T$ such that $g(T, R) = \overline{\mu}(T, R) \neq 0$. Then *T* is closed in \mathcal{L}_R , and

$T = R \cap C$

where *R* is 2-transitive, and *C* is Δ_n -closed and transitive in *G*.

- There are at most $(n!)^{\gamma} \Delta_n$ -closed transitive subgroups in G.
- The number of 2-transitive subgroups of *G* can be bounded by $(n!)^{\delta}$, with δ an absolute constant.

A key step Proof of Theorem 2

$t(G) \leq (n!)^d \qquad \exists d$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$. Let m > 2; there exists an absolute constant f such that:

- if $m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$.
- if $m^f < n!$ (i.e. *m* is very "small"), then any transitive subgroup *T* of *G*, with |G:T| = m, is imprimitive and

 $(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$

where 1 < b < a, ab = n. The number of these subgroups of index *m* can be bounded polynomially on *m*.

Then there exists an absolute constant η such that

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}.$

イロト イポト イヨト イヨト ヨ

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$.

Let m > 2; there exists an absolute constant f such that:

• if
$$m^{f} \geq n! \Rightarrow t_{m}(G) \leq (n!)^{d} \leq m^{fd}$$
.

 if m^f < n! (i.e. m is very "small"), then any transitive subgroup T of G, with |G : T| = m, is imprimitive and

$$(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$$

where 1 < b < a, ab = n. The number of these subgroups of index *m* can be bounded polynomially on *m*

Then there exists an absolute constant η such that

$$t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}.$$

< 口 > < 同 > < 回 > < 回 > 三

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$.

Let m > 2; there exists an absolute constant f such that:

• if
$$m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$$
.

• if $m^f < n!$ (i.e. *m* is very "small"), then any transitive subgroup *T* of *G*, with |G:T| = m, is imprimitive and

$$(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$$

where 1 < b < a, ab = n. The number of these subgroups of index *m* can be bounded polynomially on *m*

Then there exists an absolute constant η such that

$$t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}.$$

イロン イタン イヨン ほ

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$. Let m > 2; there exists an absolute constant f such that:

• if
$$m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$$
.

• if $m^f < n!$ (i.e. *m* is very "small"), then any transitive subgroup *T* of *G*, with |G:T| = m, is imprimitive and

$$(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$$

where 1 < b < a, ab = n. The number of these subgroups of index *m* can be bounded polynomially on *m*.

Then there exists an absolute constant η such that

$$t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}.$$

イロン イ団 とくほ とくほ とうほ

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$. Let m > 2; there exists an absolute constant f such that:

• if $m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$.

• if $m^f < n!$ (i.e. *m* is very "small"), then any transitive subgroup *T* of *G*, with |G:T| = m, is imprimitive and

 $(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$

where 1 < b < a, ab = n. The number of these subgroups

Then there exists an absolute constant η such that

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}.$

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$. Let m > 2; there exists an absolute constant f such that:

- if $m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$.
- if m^f < n! (i.e. m is very "small"), then any transitive subgroup T of G, with |G : T| = m, is imprimitive and

$$(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$$

where 1 < *b* < *a*, *ab* = *n*. The number of these subgroups

of index *m* can be bounded polynomially on *m*.

Then there exists an absolute constant η such that

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}.$

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$. Let m > 2; there exists an absolute constant f such that:

- if $m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$.
- if m^f < n! (i.e. m is very "small"), then any transitive subgroup T of G, with |G : T| = m, is imprimitive and

$$(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$$

where 1 < b < a, ab = n. The number of these subgroups of index *m* can be bounded polynomially on *m*.

Then there exists an absolute constant η such that

 $t_m(G) \leq m^{\eta} \qquad \forall m \in \mathbb{N}.$

A key step Proof of Theorem 2

$$t(G) \leq (n!)^d \quad \exists d$$

Let $m \in \mathbb{N}$; denote by $t_m(G)$ the number of transitive subgroups T of G such that |G:T| = m and $\mu(T,G) \neq 0$. If $m \leq 2$, $t_m(G) \leq 1$. Let m > 2; there exists an absolute constant f such that:

- if $m^f \ge n! \Rightarrow t_m(G) \le (n!)^d \le m^{fd}$.
- if m^f < n! (i.e. m is very "small"), then any transitive subgroup T of G, with |G : T| = m, is imprimitive and

$$(\operatorname{Alt}(a))^b \leq T \leq \operatorname{Sym}(a) \wr \operatorname{Sym}(b)$$

where 1 < b < a, ab = n. The number of these subgroups

of index m can be bounded polynomially on m.

Then there exists an absolute constant η such that

$$t_m(G) \leq m^{\eta} \quad \forall m \in \mathbb{N}.$$

くロット (過) (き) (き) (き) (つ) (つ)

A key step Proof of Theorem 2

$t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}$

Aim: to bound polynomially s, in terms of |G:H|.

s: number of transitive subgroups of *G* containing *H* and with non zero Möbius number.

Then

$$s \leq \sum_{m \leq |G:H|} t_m(G) \leq |G:H|^{\eta+1}.$$

Conclusion

 $|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot |G:H|^{
u} \cdot |G:H|^{\eta+1}$

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)

A key step Proof of Theorem 2

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}$

Aim: to bound polynomially *s*, in terms of |G:H|.

s: number of transitive subgroups of *G* containing *H* and with non zero Möbius number.

Then

$$s \leq \sum_{m \leq |G:H|} t_m(G) \leq |G:H|^{\eta+1}.$$

Conclusion

 $|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot |G:H|^
u \cdot |G:H|^{\eta+1}$

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)

A key step Proof of Theorem 2

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}$

Aim: to bound polynomially *s*, in terms of |G:H|.

s: number of transitive subgroups of *G* containing *H* and with non zero Möbius number.

Then

Conclusion

 $|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot |G:H|^{
u} \cdot |G:H|^{\eta+1}$

Valentina Colombo On the Möbius function in Sym(n) and Alt(n)

A key step Proof of Theorem 2

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}$

Aim: to bound polynomially *s*, in terms of |G:H|.

s: number of transitive subgroups of *G* containing *H* and with non zero Möbius number.

Then

$$s \leq \sum_{m \leq |G:H|} t_m(G) \leq |G:H|^{\eta+1}.$$

Conclusion

 $|\mu(H,G)| \leq 2 \cdot |G:H|^2 \cdot |G:H|^
u \cdot |G:H|^{\eta+1}$

A key step Proof of Theorem 2

 $t_m(G) \leq m^\eta \qquad \forall m \in \mathbb{N}$

Aim: to bound polynomially *s*, in terms of |G:H|.

s: number of transitive subgroups of *G* containing *H* and with non zero Möbius number.

Then

$$s \leq \sum_{m \leq |G:H|} t_m(G) \leq |G:H|^{\eta+1}.$$

Conclusion

 $|\mu(H,G)| \le 2 \cdot |G:H|^2 \cdot |G:H|^{\nu} \cdot |G:H|^{\eta+1}$ (*)

Some remarks

If we consider prime degrees, we are able to improve this result:

Theorem 4

Let p be a prime, with $p \neq 11,23$ and $p \neq (q^d - 1)/(q - 1)$, for any (q, d), with q a prime power and q > 4 if d = 2. If $G \in {Alt(p), Sym(p)}$ and $H \leq G$, then

 $|\mu(H,G)| \leq |G:H|.$

イロト イポト イヨト イヨト ヨ

E SQA

Some remarks

If we consider prime degrees, we are able to improve this result:

Theorem 4

Let p be a prime, with $p \neq 11,23$ and $p \neq (q^d - 1)/(q - 1)$, for any (q, d), with q a prime power and q > 4 if d = 2. If $G \in {Alt(p), Sym(p)}$ and $H \leq G$, then

 $|\mu(H,G)| \leq |G:H|.$

Theorem 4 leads us to formulate

Conjecture

For any $n \in \mathbb{N}$, if $G \in {Alt(n), Sym(n)}$ and $H \leq G$, then

 $|\mu(H,G)| \leq c \cdot |G:H| \quad \exists c$

The reduction theorem Proof of Theorem 1 Key step

The Reduction Theorem

Denote by $\Lambda(G)$ the set of finite monolithic groups *L* such that soc *L* is non abelian and *L* is an epimorphic image of *G*.

Theorem (Lucchini)

Let G be a PFG group. Then the followings are equivalent.

(1) There exist two constants γ_1 and γ_2 such that

 $b_m(G) \leq m^{\gamma_1}$ and $|\mu(H,G)| \leq |G:H|^{\gamma_2}$

for each $m \in \mathbb{N}$ and each open subgroup H of G.

(2) There exist two constants c_1 and c_2 such that

 $b_m(X_L) \leq m^{c_1}$ and $|\mu(Y,X_L)| \leq |X_L:Y|^{c_2}$

for each $L \in \Lambda(G)$, each $m \in \mathbb{N}$ and each $Y \leq X_L$.

The reduction theore Proof of Theorem 1 Key step

Proof of Theorem 1

 $b_m(G)$ is the number of $H \leq G$ with |G : H| = m and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in {Alt(n), Sym(n)}$ and $m \in \mathbb{N}$, then $b_m(G) \leq m^{\alpha}$.

Let $H \le G$ with |G: H| = m and $\mu(H, G) \ne 0$. We apply Lemma 3 with respect to the natural action of G on $\{1, \ldots, n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \leq G \mid T \text{ transitive}, T \geq H\}$. Since $\mu(H, G) \neq 0 \Rightarrow \exists T \in S_H$ such that $\mu(T, G)g(H, T) \neq 0$.

イロト イポト イヨト イヨト ヨ

The reduction theore Proof of Theorem 1 Key step

Proof of Theorem 1

 $b_m(G)$ is the number of $H \leq G$ with |G : H| = m and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in {Alt(n), Sym(n)}$ and $m \in \mathbb{N}$, then $b_m(G) \leq m^{\alpha}$.

Let $H \leq G$ with |G: H| = m and $\mu(H, G) \neq 0$. We apply Lemma 3 with respect to the natural action of G on $\{1, \ldots, n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \le G \mid T \text{ transitive}, T \ge H\}$. Since $\mu(H, G) \ne 0 \Rightarrow \exists T \in S_H$ such that $\mu(T, G)g(H, T) \ne 0$.

Proof of Theorem 1 Key step

Proof of Theorem 1

 $b_m(G)$ is the number of $H \leq G$ with |G : H| = m and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in {Alt(n), Sym(n)}$ and $m \in \mathbb{N}$, then $b_m(G) \leq m^{\alpha}$.

Let $H \leq G$ with |G: H| = m and $\mu(H, G) \neq 0$. We apply Lemma 3 with respect to the natural action of G on $\{1, \ldots, n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \leq G \mid T \text{ transitive}, T \geq H\}$. Since $\mu(H, G) \neq 0 \Rightarrow \exists T \in S_H$ such that $\mu(T, G)g(H, T) \neq 0$.

Proof of Theorem 1 Key step

Proof of Theorem 1

 $b_m(G)$ is the number of $H \leq G$ with |G : H| = m and $\mu(H, G) \neq 0$.

Theorem 1

There exists an absolute constant α such that for any $n \in \mathbb{N}$, if $G \in {Alt(n), Sym(n)}$ and $m \in \mathbb{N}$, then $b_m(G) \leq m^{\alpha}$.

Let $H \leq G$ with |G: H| = m and $\mu(H, G) \neq 0$. We apply Lemma 3 with respect to the natural action of G on $\{1, \ldots, n\}$:

$$\mu(H,G) = \sum_{T \in S_H} \mu(T,G)g(H,T)$$

with $S_H = \{T \le G \mid T \text{ transitive}, T \ge H\}$. Since $\mu(H, G) \ne 0 \Rightarrow \exists T \in S_H$ such that $\mu(T, G)g(H, T) \ne 0$.

The reduction theorer Proof of Theorem 1 Key step

In particular $g(H, T) = \overline{\mu}(H, T) \neq 0$; *H* is closed in \mathcal{L}_T , and

$H=T\cap C$

where T is transitive with $\mu(T, G) \neq 0$, and C is closed in G.

Strategy

To bound $b_m(G)$, we have to find polynomial bounds, in terms of *m*:

- 1) for the number of closed subgroups of G with index dividing m,
- 2) for the number of transitive subgroups of *G* with non zero Möbius number and with index dividing *m*.

< 口 > < 同 > < 回 > < 回 > 三

The reduction theorem Proof of Theorem 1 Key step

In particular $g(H, T) = \overline{\mu}(H, T) \neq 0$; *H* is closed in \mathcal{L}_T , and

$H=T\cap C$

where T is transitive with $\mu(T, G) \neq 0$, and C is closed in G.

Strategy

To bound $b_m(G)$, we have to find polynomial bounds, in terms of *m*:

- 1) for the number of closed subgroups of G with index dividing m,
- 2) for the number of transitive subgroups of *G* with non zero Möbius number and with index dividing *m*.

イロト イポト イヨト イヨト ヨ

E SQA

In particular $g(H, T) = \overline{\mu}(H, T) \neq 0$; *H* is closed in \mathcal{L}_T , and

 $H = T \cap C$

where T is transitive with $\mu(T, G) \neq 0$, and C is closed in G.

Strategy

To bound $b_m(G)$, we have to find polynomial bounds, in terms of *m*:

- 1) for the number of closed subgroups of G with index dividing m,
- 2) for the number of transitive subgroups of *G* with non zero Möbius number and with index dividing *m*.

The reduction theorer Proof of Theorem 1 Key step

Lemma 5

Let $G \in {Alt(n), Sym(n)}$ and denote by $c_m(G)$ the number of subgroups of G with index m and closed in \mathcal{L}_G . Then $c_m(G) \leq m^4$ for each $m \in \mathbb{N}$.

Lemma 6

Let $G \in {Alt(n), Sym(n)}$ and denote by $t_m(G)$ the number of transitive subgroups T of G with |G : T| = m and $\mu(T, G) \neq 0$. Then there exists an absolute constant η such that $t_m(G) \leq m^{\eta}$ for each $m \in \mathbb{N}$.

Let G be transitive on Γ . For any subgroup H of G, define

 $\mathcal{S}_H := \{ K \leq G \, | \, K \text{ transitive on } \Gamma, K \geq H \} \subseteq \mathcal{L}_G.$

Define $f, g : \mathcal{L}_G \times \mathcal{L}_G \to \mathbb{Z}$:

$$f(H, Y) = \begin{cases} \mu(H, Y) & \text{if } Y \in \mathcal{S}_H \\ 0 & \text{otherwise,} \end{cases}$$

 $g(H,X) = \begin{cases} \overline{\mu}(H,X) & \text{if } X \in \mathcal{S}_H \text{ and } H \text{ is closed in } \mathcal{L}_X \\ 0 & \text{otherwise.} \end{cases}$

By the closure theorem of Crapo on \mathcal{L}_X , with $X \in \mathcal{S}_H$,

$$\sum_{\substack{Y \leq X \\ Y \in S_H}} \mu(H, Y) = \begin{cases} \overline{\mu}(H, X) & \text{if } H \text{ is closed in } \mathcal{L}_X \\ 0 & \text{otherwise.} \end{cases}$$

Let G be transitive on Γ . For any subgroup H of G, define

 $\mathcal{S}_H := \{ K \leq G \, | \, K \text{ transitive on } \Gamma, K \geq H \} \subseteq \mathcal{L}_G.$

Define $f, g : \mathcal{L}_G \times \mathcal{L}_G \rightarrow \mathbb{Z}$:

$$f(H, Y) = \begin{cases} \mu(H, Y) & \text{if } Y \in \mathcal{S}_H \\ 0 & \text{otherwise,} \end{cases}$$

 $g(H,X) = \left\{ egin{array}{cc} \overline{\mu}(H,X) & ext{if } X \in \mathcal{S}_H ext{ and } H ext{ is closed in } \mathcal{L}_X \\ 0 & ext{otherwise.} \end{array}
ight.$

By the closure theorem of Crapo on \mathcal{L}_X , with $X \in \mathcal{S}_H$,

$$\sum_{\substack{Y \leq X \\ Y \in S_H}} \mu(H, Y) = \begin{cases} \overline{\mu}(H, X) & \text{if } H \text{ is closed in } \mathcal{L}_X \\ 0 & \text{otherwise.} \end{cases}$$

Appendix The reduction theorem Proof of Theorem 1 Key step

Let G be transitive on Γ . For any subgroup H of G, define

$$\mathcal{S}_H := \{ K \leq G \,|\, K \text{ transitive on } \Gamma, K \geq H \} \subseteq \mathcal{L}_G.$$

Define $f, g : \mathcal{L}_G \times \mathcal{L}_G \rightarrow \mathbb{Z}$:

$$f(H, Y) = \begin{cases} \mu(H, Y) & \text{if } Y \in \mathcal{S}_H \\ 0 & \text{otherwise,} \end{cases}$$

 $g(H,X) = \left\{ egin{array}{cc} \overline{\mu}(H,X) & ext{if } X \in \mathcal{S}_H ext{ and } H ext{ is closed in } \mathcal{L}_X \\ 0 & ext{otherwise.} \end{array}
ight.$

By the closure theorem of Crapo on \mathcal{L}_X , with $X \in \mathcal{S}_H$,

$$\sum_{\substack{Y \leq X \\ Y \in S_H}} \mu(H, Y) = \begin{cases} \overline{\mu}(H, X) & \text{if } H \text{ is closed in } \mathcal{L}_X \\ 0 & \text{otherwise.} \end{cases}$$

Appendix Key step $\sum f(H, Y).$ Then f and g satisfy the relation g(H, X) =Y < XY∈SH

$$f(H, Y) = \sum_{\substack{X \leq Y \\ X \in S_H}} \mu(X, Y)g(H, X).$$

Key step

$$\mu(H,G) = \sum_{K \in S_H} \mu(K,G)g(H,K).$$

The reduction theorer Proof of Theorem 1 Key step

Key step

Then *f* and *g* satisfy the relation
$$g(H, X) = \sum_{\substack{Y \le X \\ Y \in S_H}} f(H, Y).$$

By the Möbius inversion formula, for any $Y \in \mathcal{S}_H$, we have

$$f(H, Y) = \sum_{\substack{X \leq Y \\ X \in S_H}} \mu(X, Y)g(H, X).$$

Setting Y = G, we get:

_emma 3

If H is a subgroup of a transitive permutation group G, then

$$\mu(H,G) = \sum_{K \in S_H} \mu(K,G)g(H,K).$$

The reduction theorem Proof of Theorem 1 Key step

Key step

Then *f* and *g* satisfy the relation
$$g(H, X) = \sum_{\substack{Y \le X \\ Y \in S_H}} f(H, Y).$$

By the Möbius inversion formula, for any $Y \in S_H$, we have

$$f(H, Y) = \sum_{\substack{X \leq Y \\ X \in S_H}} \mu(X, Y)g(H, X).$$

Setting Y = G, we get:

Lemma 3

If H is a subgroup of a transitive permutation group G, then

$$\mu(H,G) = \sum_{K \in S_H} \mu(K,G)g(H,K).$$