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Markov’s problem 1

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Problem 1. [1944]

Does there exist a (countably) infinite non-topologizable group?

Yes (under CH): Shelah, On a problem of Kurosh, Jonsson
groups, and applications. In Word Problems II . (S. I. Adian,
W. W. Boone, and G. Higman, Eds.) (North-Holland,
Amsterdam, 1980), pp.373–394.

Yes (in ZFC): Ol’shanskij, A note on countable
non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat.
Mekh. (1980), no. 3, 103.
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Markov’s problem 2

Definition (Markov)

A subset S of a group G is called:
(a) elementary algebraic if

S = {x ∈ G : a1x
n1a2x

n2a3 . . . amxnm = 1} for some natural
m, integers n1, . . . , nm and elements a1, a2, . . . , am ∈ G .

(b) algebraic, if S is an intersection of finite unions of
elementary algebraic subsets.

(c) unconditionally closed, if S is closed in every Hausdorff
group topology of G .

Every centralizer cG (a) = {x ∈ G : axa−1x−1 = 1} is an
elementary algebraic set, so Z (G ) is an algebraic set.
(a) → (b) → (c)

Problem 2. [1944]

Is (c) → (a) always true ?
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The Zariski topology
EG the family of elementary algebraic sets of G . AG the family of
all algebraic sets of G . The Zariski topology ZG of G has AG as
family of all closed sets.
Bryant, Roger M. The verbal topology of a group. J. Algebra 48
(1977), no. 2, 340–346. Wehrfritz’s MR-review: This paper is
beautiful, short, elementary and startling. It should be read by
every infinite group theorist. The author defines on any group
(by analogy with the Zariski topology) a topology which he
calls the verbal topology. He is mainly interested in groups
whose verbal topology satisfies the minimal condition on closed
sets; for the purposes of this review call such a group a
VZ-group. The author proves that various groups are
VZ-groups. By far the most surprising result is that every
finitely generated abelian-
by-nilpotent-by-finite group is a VZ-group. Less surprisingly,
every abelian-by-finite group is a VZ-group. So is every linear
group. Also, the class of VZ-groups is closed under taking
subgroups and finite direct products.
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The Markov topology and the P-Markov topology
Markov topology MG of G : has as closed sets all unconditionally
closed subsets of G
MG = inf{all Hausdorff group topologies on G}.
(inf taken in the lattice of all topologies on G )
PG = inf{all precompact group topologies on G}
(G , τ) precompact if the completion is compact Clearly,
ZG ⊆ MG ⊆ PG , T1 topologies

Problem 2. [1944]

Is ZG = MG always true ?

Perel′man (unpublished): Yes, for abelian groups

Markov [1944]: Yes, for countable groups.

Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH
Shelah’s example works as well).
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Markov’s first problem through the looking glass of MG

A group G Z-discrete (resp., M-discrete, P-discrete), if ZG (resp.,
MG , resp., PG ) is discrete. Analogously, define Z-compact, etc.

G is Z-discrete if and only if there exist E1, . . . ,En ∈ EG such
that E1 ∪ . . . ∪ En = G \ {eG};
G is M-discrete iff G is non-topologizable. So, G is
non-topologizable whenever G is Z-discrete.

Ol′shanskij proved that for Adian group G = A(n,m) the quotient
G/Z (G )m is a countable Z-discrete group.

Example

(a) Klyachko and Trofimov [2005] constructed a finitely
generated torsion-free Z-discrete group G .

(b) Trofimov [2005] proved that every group H admits an
embedding into a Z-discrete group.
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Example
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Example

(Hesse [1979]) There exists a M-discrete group G that is not
Z-discrete.

Criterion [Shelah]

An uncountable group G is MG -discrete whenever the following two
conditions hold:

(a) there exists m ∈ N such that Am = G for every subset A of G
with |A| = |G |;

(b) for every subgroup H of G with |H| < |G | there exist n ∈ N
and x1, . . . , xn ∈ G such that the intersection

⋂n
i=1 x−1

i Hxi is
finite.

(i) The number n in (b) may depend of H, while in (a) the
number m is the same for all A ∈ [G ]|G |.

(ii) Even the weaker form of (a) (with m depending on A), yields
that every proper subgroup of G has size < |G | (if |G | = ω1,
groups with this property are known as Kurosh groups).
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(iii) Using the above criterion, Shelah produced an example of an
M-discrete group under the assumption of CH. Namely, a
torsion-free group G of size ω1 satisfying (a) with m = 10000
and (b) with n = 2. So G every proper subgroup H of G is
malnormal (i.e., H ∩ x−1Hx = {1}), so G is also simple.

Proof.

Let T be a Hausdorff group topology on G . There exists a
T -neighbourhood V of eG with V 6= G . Choose a
T -neighbourhood W of eG with W m ⊆ V . Now V 6= G and (a)
yield |W | < |G |. Let H = 〈W 〉. Then |H| = |W | · ω < |G |. By (b)
the intersection O =

⋂n
i=1 x−1

i Hxi is finite for some n ∈ N and
elements x1, . . . , xn ∈ G . Since each x−1

i Hxi is a T -neighbourhood
of 1, this proves that 1 ∈ O ∈ T . Since T is Hausdorff, it follows
that {1} is T -open, and therefore T is discrete.
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Z-Noetherian groups
A topological space X is Noetherian, if X satisfies the ascending
chain condition on open sets (or, equivalently, the minimal
condition on closed sets). Obviously, a Noetherian space is
compact, and a subspace of a Noetherian space is Noetherian
itself. Actually, a space is Noetherian iff all its subspaces are
compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

(Bryant) A subgroup of a Z-Noetherian group is Z-Noetherian,

(D.D. - D. Toller) A group G is Z-Noetherian iff every
countable subgroup of G is Z-Noetherian.

Using the fact that linear groups are Z-Noetherian, and the fact
that countable free groups are isomorphic to subgroups of linear
groups, one gets

Theorem (DD - D. Toller)

Every free group is Z-Noetherian.
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The Zariski topology of a direct product
The Zariski topology ZG of the direct product is coarser than the
product topology

∏
i∈I ZGi

.
These two topologies need not coincide (for example ZZ×Z is the
co-finite topology of Z× Z, so neither Z× {0} nor {0} × Z are
Zariski closed in Z× Z, whereas they are closed in ZZ × ZZ).
Item (B) of the next theorem generalizes Bryant’s result.

Theorem (DD - D. Toller)

(A) Direct products of Z-compact groups are Z-compact.
(B) G =

∏
i∈I Gi is Z-Noetherian iff every Gi is Z-Noetherian and

all but finitely many of the groups Gi are abelian.

Corollary

A nilpotent group of nilpotency class 2 need not be Z-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q8.
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M-Hausdroff groups
If {Fi | i ∈ I} is a family of finite groups, and G =

∏
i∈I Fi , then

the product
∏

i∈I ZFi
is a compact Hausdorff group topology, so

ZG ⊆ MG ⊆ PG ⊆
∏
i∈I

ZFi
.

(1) G is Z-Hausdorff if and only if ZG = MG = PG =
∏

i∈I ZFi
.

(2) G is M-Hausdorff if and only if MG = PG =
∏

i∈I ZFi
.

Theorem (DD - D. Toller)

If {Fi | i ∈ I} is a non-empty family of finite center-free groups,
and G =

∏
i∈I Fi , then ZG = MG = PG =

∏
i∈I ZFi

is a Hausdorff
group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X ) of an infinite set X is
M-Hausdorff.

MSym(X ) coincides with the point-wise convergence topology of
Sym(X ). Does MSym(X ) coincide with ZSym(X )?
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∏
i∈I ZFi

is a Hausdorff
group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X ) of an infinite set X is
M-Hausdorff.

MSym(X ) coincides with the point-wise convergence topology of
Sym(X ). Does MSym(X ) coincide with ZSym(X )?
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P-discrete groups
A group G is P-discrete iff G admits no precompact group
topologies (i.e., G is not maximally almost periodic, in terms of
von Neumann).
In parfticular, examples of P-discrete groups are provided by all
minimally almost periodic (again in terms of von Neumann, these
are the groups G such that every homomorphism to a compact
group K is trivial).

Example

(a) (von Neumann and Wiener) SL2(R);
(b) The permutation group Sym(X ) of an infinite set X (as
MSym(X ) is not precompact).

Theorem (DD - D. Toller)

Every divisible solvable non-abelian group is P-discrete.
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Proof.

Let G be a divisible solvable non-abelian group. It suffices to see
that G admits no precompact group topology. To this end we show
that every divisible precompact solvable group must be abelian.
Let G be a divisible precompact solvable group. Then its
completion K is a connected group. On the other hand, K is also
solvable. It is enough to prove that G K is abelian.
Arguing for a contradiction, assume that K 6= Z (K ), is not abelian.
By a theorem of Varopoulos, K/Z (K ) is isomorphic to a direct
product of simple connected compact Lie groups, in particular,
K/Z (K ) cannot be solvable. On the other hand, K/Z (K ) has to
be solvable as a quotient of a solvable group, a contradiction.

Corollary

For every field K with charK = 0 the Heisenberg group

HK =

1 K K
1 K

1

 is P-discrete.
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The Zariski topology of an abelian group: Markov’s problem 3

Definition (Markov)

A subset A of a group G is potentially dense in G if there exists a
Hausdorff group topology T on G such that A is T -dense in G .

Example (Markov)

Every infinite subset of Z is potentially dense in Z.
By Weyl’s uniform disitribution theorem for every infinite A = (an)
in Z there exists α ∈ R such that (anα) is uniform disitributed
modulo 1, so the subset (anα) of R/Z is dense in R/Z (so in α as
well). Now the topology T on Z induced by Z ∼= α ↪→ R/Z works.

Problem 3 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

a potentially dense set is Zarisky-dense;

if G has a countable potentially dense set, then |G | ≤ 2c.
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Theorem (Tkachenko-Yaschenko)

If an Abelian group with |G | ≤ c is either torsion-free or has
exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with |G | ≤ 2c?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE:
(i) A is potentially dense in G,
(ii) there exists a precompact Hausdorff group topology on G such
that A becomes T -dense in G,
(iii) |G | ≤ 2c and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure
by means of (metrizable) precompact group topologies.
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Theorem

Let G be an Abelian group with |G | ≤ c and E be a countable
family in T(G ). Then there exists a metrizable precompact group
topology T on G such that clZG

(S) = clT (S) for all S ∈ E .

The realization of the Zariski closure of uncountably many sets is
impossible in general.

Corollary

For an abelian group G with |G | ≤ 2c the following are equivalent:
(a) every infinite subset of G is potentially dense in G;
(b) G is either almost torsion-free or has exponent p for some
prime p;
(c) every Zariski-closed subset of G is finite.

Corollary

ZG = MG = PG for every abelian group G.
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For n ∈ ω and E ⊆ G let
G [n] = {x ∈ G : nx = 0} and nE = {nx : x ∈ E}.
∀E ∈ EG ,∃a ∈ G , n ∈ ω such that
E = a + G [n] = {x ∈ G : nx = na}.
So EG is stable under finite intersections:
(a + G [n]) ∩ (b + G [m]) = ∅ or c + G [d ]
with d = GCD(m, n).

Lemma

If G is abelian, then AG consists of finite unions of elementary
algebraic sets EG . Moreover:
(a) (G ,ZG ) is Noetherian (hence, compact).
(b) ZG |H = ZH and MG |H = MH or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G
is a countable Z-discrete group).

Example

ZG coincides with the cofinite topology of an abelian group G iff
either rp(G ) < ∞ for all primes p or G has a prime exponent p.
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An algebraic description of the Z-irredducible sets

Definition

A topological space X is irreducible, if X = F1 ∪ F2 with closed
F1,F2 yields X = F1 or X2.

Lemma

For a countably infinite subset A of G TFAE:
(a) A is irreducible;
(b) A carries the cofinite tiopology;
(c) there exists n ∈ N such that for every a ∈ A

(†) E = A− a satisfies nE = 0 and {x ∈ E : dx = h} is finite for
each h ∈ H and every divisor d of n with d 6= n.

Let T(G ) = {E ∈ P(G ) : E is irreducible and 0 ∈ clZG
(E )}. For

every E ∈ T(G ) the set E0 = E ∪ {0} is still irreducible. Let
o(E ) = o(E0) be the number n determined by (†) and let
Tn(G ) = {E ∈ T(G ) : o(E ) = n}. Then T(G ) =

⋃
n Tn(G ),

T1(G ) = ∅ and Tm(G ) ∩ Tn(G ) = ∅ whenever n 6= m.
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E ∈ Tn(G ) iff every infinite subset of E is ZG -dense in G [n].

Example

Let G be an infinite abelian group.
(a) Every countably infinite subset of G is irreducible if G is
torsion-free.
(b) T0(G ) = ∅ iff G is bounded.
(c) Tn(G ) = ∅ for some n > 1 iff there exists a monomorphism⊕

ω Z(n) ↪→ G .

Theorem

Let S be an infinite subset of an abelian group G. Then there exist
a finite F ⊆ S, infinite subsets {Si : i = 1, 2, . . . , s} of S and a
finite set {a1, a2, . . . , s} of G such that
(a) Si − ai ∈ Tni (G ) for some ni ∈ ω \ {1};
(b) S = F ∪

⋃s
i=1 Si ;

(c) clZG
(S) = F ∪

⋃
i clZG

(Si ) and each Si is ZG -dense in G [Ni ].
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