The Markov-Zariski topology of an infinite group

Dikran Dikranjan

ISCHIA GROUP THEORY 2010 Ischia, April 15, 2010

Dikran Dikranjan The Markov-Zariski topology of an infinite group

Dedicated to memory of Maria Silvia Lucido

э

joint work with Daniele Toller and Dmitri Shakhmatov

- 1. Markov's problem 1 and 2
- 2. The three topologies on an infinite group
- 3. Problem 1 and 2 in topological terms
- 4. The Markov-Zariski topology of an abelian group
- 5. Markov's problem 3.

Definition

A group G is *topologizable* if G admits a non-discrete Hausdorff group topology.

Problem 1. [1944]

Does there exist a (countably) infinite non-topologizable group?

- Yes (under CH): Shelah, On a problem of Kurosh, Jonsson groups, and applications. In Word Problems II. (S. I. Adian, W. W. Boone, and G. Higman, Eds.) (North-Holland, Amsterdam, 1980), pp.373–394.
- Yes (in ZFC): Ol'shanskij, A note on countable non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat. Mekh. (1980), no. 3, 103.

/⊒ ▶ < ∃ ▶ <

Definition

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Problem 1. [1944]

Does there exist a (countably) infinite non-topologizable group?

- Yes (under CH): Shelah, On a problem of Kurosh, Jonsson groups, and applications. In Word Problems II. (S. I. Adian, W. W. Boone, and G. Higman, Eds.) (North-Holland, Amsterdam, 1980), pp.373–394.
- Yes (in ZFC): Ol'shanskij, A note on countable non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat. Mekh. (1980), no. 3, 103.

Definition

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Problem 1. [1944]

Does there exist a (countably) infinite non-topologizable group?

- Yes (under CH): Shelah, On a problem of Kurosh, Jonsson groups, and applications. In Word Problems II. (S. I. Adian, W. W. Boone, and G. Higman, Eds.) (North-Holland, Amsterdam, 1980), pp.373–394.
- Yes (in ZFC): Ol'shanskij, A note on countable non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat. Mekh. (1980), no. 3, 103.

・ 一 ・ ・ ・ ・ ・ ・

Definition

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Problem 1. [1944]

Does there exist a (countably) infinite non-topologizable group?

- Yes (under CH): Shelah, On a problem of Kurosh, Jonsson groups, and applications. In Word Problems II. (S. I. Adian, W. W. Boone, and G. Higman, Eds.) (North-Holland, Amsterdam, 1980), pp.373–394.
- Yes (in ZFC): Ol'shanskij, A note on countable non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat. Mekh. (1980), no. 3, 103.

伺 ト イヨト イヨト

Definition

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Problem 1. [1944]

Does there exist a (countably) infinite non-topologizable group?

- Yes (under CH): Shelah, On a problem of Kurosh, Jonsson groups, and applications. In Word Problems II. (S. I. Adian, W. W. Boone, and G. Higman, Eds.) (North-Holland, Amsterdam, 1980), pp.373–394.
- Yes (in ZFC): Ol'shanskij, A note on countable non-topologizable groups. Vestnik Mosk. Gos. Univ. Mat. Mekh. (1980), no. 3, 103.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} =$

m, integers n_1, \ldots, n_m and elements $a_1, a_2, \ldots, a_m \in G$.

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

Is (c) \rightarrow (a) always true ?

(日) (部) (ヨ) (ヨ)

Definition (Markov)

A subset S of a group G is called:

- (a) elementary algebraic if
 - $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$
- (b) algebraic, if *S* is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

Is (c) \rightarrow (a) always true ?

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if

 $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

Is (c) \rightarrow (a) always true ?

(日) (部) (ヨ) (ヨ)

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if

 $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

Is (c) \rightarrow (a) always true ?

ヘロト ヘポト ヘヨト ヘヨト

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if

 $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

ls (c) \rightarrow (a) always true ?

・ 白戸 ト ・ ヨ ト ・ ヨ ト

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if

 $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c) Problem 2. [1944] Is (c) \rightarrow (a) always true ?

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if

 $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

Is (c) \rightarrow (a) always true ?

Definition (Markov)

A subset S of a group G is called:

(a) elementary algebraic if

 $S = \{x \in G : a_1 x^{n_1} a_2 x^{n_2} a_3 \dots a_m x^{n_m} = 1\} \text{ for some natural } m, \text{ integers } n_1, \dots, n_m \text{ and elements } a_1, a_2, \dots, a_m \in G.$

- (b) algebraic, if S is an intersection of finite unions of elementary algebraic subsets.
- (c) unconditionally closed, if S is closed in *every* Hausdorff group topology of G.

Every centralizer $c_G(a) = \{x \in G : axa^{-1}x^{-1} = 1\}$ is an elementary algebraic set, so Z(G) is an algebraic set. (a) \rightarrow (b) \rightarrow (c)

Problem 2. [1944]

Is (c) \rightarrow (a) always true ?

< 11 → <

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The Zariski topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The Zariski topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The *Zariski* topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The *Zariski* topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The *Zariski* topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

Bryant, Roger M. The verbal topology of a group. J. Algebra 48 (1977), no. 2, 340–346. Wehrfritz's MR-review: This paper is

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The *Zariski* topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

Bryant, Roger M. The verbal topology of a group. J. Algebra 48 (1977), no. 2, 340–346. Wehrfritz's MR-review: This paper is beautiful, short, elementary and startling. It should be read by every infinite group theorist. The author defines on any group (by analogy with the Zariski topology) a topology which he calls the verbal topology. He is mainly interested in groups whose verbal topology satisfies the minimal condition on closed sets; for the purposes of this review call such a group a VZ-group. The author proves that various groups are VZ-groups. By far the most surprising result is that every

 \mathfrak{E}_G the family of elementary algebraic sets of G. \mathfrak{A}_G the family of all algebraic sets of G. The *Zariski* topology \mathfrak{Z}_G of G has \mathfrak{A}_G as family of all closed sets.

Bryant, Roger M. The verbal topology of a group. J. Algebra 48 (1977), no. 2, 340–346. Wehrfritz's MR-review: This paper is beautiful, short, elementary and startling. It should be read by every infinite group theorist. The author defines on any group (by analogy with the Zariski topology) a topology which he calls the verbal topology. He is mainly interested in groups whose verbal topology satisfies the minimal condition on closed sets; for the purposes of this review call such a group a VZ-group. The author proves that various groups are VZ-groups. By far the most surprising result is that every finitely generated abelian-

The Markov topology and the \mathfrak{P} -Markov topology Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_{G} = \inf\{\text{all Hausdorff group topologies on } G\}.$ (inf taken in the lattice of all topologies on G) $\mathfrak{P}_{G} = \inf\{\text{all precompact group topologies on } G\}$ (G, τ) precompact if the completion is compact Clearly $\mathfrak{Z}_{G} \subseteq \mathfrak{M}_{G} \subseteq \mathfrak{P}_{G}, T_{1}$ topologies

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

向下 イヨト イヨ

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\}.$ (inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_G = \inf\{\text{all precompact group topologies on } G\}$ (G, τ) precompact if the completion is compact Clearly $\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G, T_1$ topologies

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

伺 と く ヨ と く ヨ と

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\}.$

(inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_{G} = \inf\{\text{all precompact group topologies on } G\}$

 (G, τ) precompact if the completion is compact Clearly,

 $\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G, T_1$ topologies

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

同 ト イヨ ト イヨ ト

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_{G} = \inf\{\text{all Hausdorff group topologies on } G\}.$

(inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_{G} = \inf\{\text{all precompact group topologies on } G\}$

 (G, τ) precompact if the completion is compact Clearly,

 $\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G, \ T_1 \text{ topologies}$

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

・ 同 ト ・ ヨ ト ・ ヨ ト

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\}.$

(inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_{G} = \inf\{\text{all precompact group topologies on } G\}$

 (G, τ) precompact if the completion is compact Clearly,

 $\mathfrak{Z}_{G} \subseteq \mathfrak{M}_{G} \subseteq \mathfrak{P}_{G}, \ T_{1} \text{ topologies}$

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

同 ト イヨ ト イヨ ト

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\}.$

(inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_G = \inf\{\text{all precompact group topologies on } G\}$

 (G, τ) precompact if the completion is compact Clearly,

 $\mathfrak{Z}_{G} \subseteq \mathfrak{M}_{G} \subseteq \mathfrak{P}_{G}, \ T_{1} \text{ topologies}$

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

• Perel'man (unpublished): Yes, for abelian groups

- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

伺 ト イ ヨ ト イ ヨ ト

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\}.$

(inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_{G} = \inf\{\text{all precompact group topologies on } G\}$

 (G, τ) precompact if the completion is compact Clearly,

 $\mathfrak{Z}_{G} \subseteq \mathfrak{M}_{G} \subseteq \mathfrak{P}_{G}, \ T_{1} \text{ topologies}$

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

伺 ト イ ヨ ト イ ヨ ト

Markov topology \mathfrak{M}_G of G: has as closed sets all unconditionally closed subsets of G

 $\mathfrak{M}_G = \inf\{\text{all Hausdorff group topologies on } G\}.$

(inf taken in the lattice of all topologies on G)

 $\mathfrak{P}_{G} = \inf\{\text{all precompact group topologies on } G\}$

 (G, τ) precompact if the completion is compact Clearly,

 $\mathfrak{Z}_{G} \subseteq \mathfrak{M}_{G} \subseteq \mathfrak{P}_{G}, \ T_{1} \text{ topologies}$

Problem 2. [1944]

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ always true ?

- Perel'man (unpublished): Yes, for abelian groups
- Markov [1944]: Yes, for countable groups.
- Hesse [1979]: No in ZFC (Sipacheva [2006]: under CH Shelah's example works as well).

伺 ト イ ヨ ト イ ヨ ト

Markov's first problem through the looking glass of \mathfrak{M}_{G}

A group *G* **3**-discrete (resp., \mathfrak{M} -discrete, \mathfrak{P} -discrete), if \mathfrak{Z}_G (resp., \mathfrak{M}_G , resp., \mathfrak{P}_G) is discrete. Analogously, define 3-compact, etc.

- *G* is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is *M*-discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is 3-discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free 3-discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a 3-discrete group.

< ロ > < 同 > < 回 > < 回 >

- G is 3-discrete if and only if there exist E₁,..., E_n ∈ 𝔅_G such that E₁ ∪ ... ∪ E_n = G \ {e_G};
- *G* is *M*-discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is 3-discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free 3-discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a 3-discrete group.

- G is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is *M*-discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is 3-discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free 3-discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a 3-discrete group.

- G is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is \mathfrak{M} -discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is \mathfrak{Z} -discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free \mathfrak{Z} -discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a \mathfrak{Z} -discrete group.

< 日 > < 同 > < 三 > < 三 >

- G is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is \mathfrak{M} -discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is \mathfrak{Z} -discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free \mathfrak{Z} -discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a 3-discrete group.

< 日 > < 同 > < 三 > < 三 >
Markov's first problem through the looking glass of \mathfrak{M}_G A group *G* 3-discrete (resp., \mathfrak{M} -discrete, \mathfrak{P} -discrete), if \mathfrak{Z}_G (resp., \mathfrak{M}_G , resp., \mathfrak{P}_G) is discrete. Analogously, define 3-compact, etc.

- G is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is \mathfrak{M} -discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is \mathfrak{Z} -discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free \mathfrak{Z} -discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a \mathfrak{Z} -discrete group.

Markov's first problem through the looking glass of \mathfrak{M}_G A group *G* 3-discrete (resp., \mathfrak{M} -discrete, \mathfrak{P} -discrete), if \mathfrak{Z}_G (resp., \mathfrak{M}_G , resp., \mathfrak{P}_G) is discrete. Analogously, define 3-compact, etc.

- G is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is \mathfrak{M} -discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is \mathfrak{Z} -discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free \mathfrak{Z} -discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a 3-discrete group.

< ロ > < 同 > < 回 > < 回 >

Markov's first problem through the looking glass of \mathfrak{M}_G A group *G* 3-discrete (resp., \mathfrak{M} -discrete, \mathfrak{P} -discrete), if \mathfrak{Z}_G (resp., \mathfrak{M}_G , resp., \mathfrak{P}_G) is discrete. Analogously, define 3-compact, etc.

- G is 3-discrete if and only if there exist $E_1, \ldots, E_n \in \mathfrak{E}_G$ such that $E_1 \cup \ldots \cup E_n = G \setminus \{e_G\}$;
- *G* is \mathfrak{M} -discrete iff *G* is non-topologizable. So, *G* is non-topologizable whenever *G* is \mathfrak{Z} -discrete.

Ol'shanskij proved that for Adian group G = A(n, m) the quotient $G/Z(G)^m$ is a countable 3-discrete group.

Example

- (a) Klyachko and Trofimov [2005] constructed a finitely generated torsion-free \mathfrak{Z} -discrete group G.
- (b) Trofimov [2005] proved that every group H admits an embedding into a 3-discrete group.

< ロ > < 同 > < 回 > < 回 >

(Hesse [1979]) There exists a $\mathfrak{M}\text{-discrete}$ group G that is not $\mathfrak{Z}\text{-discrete}.$

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

- (a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;
- (b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.
- (i) The number *n* in (b) may depend of *H*, while in (a) the number *m* is the same for all $A \in [G]^{|G|}$.
- (ii) Even the weaker form of (a) (with *m* depending on *A*), yields that every proper subgroup of *G* has size $\langle |G|$ (if $|G| = \omega_1$, groups with this property are known as *Kurosh groups*).

(Hesse [1979]) There exists a $\mathfrak{M}\text{-discrete}$ group G that is not $\mathfrak{Z}\text{-discrete}.$

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

- (a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;
- (b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.
- (i) The number n in (b) may depend of H, while in (a) the number m is the same for all A ∈ [G]^{|G|}.
- (ii) Even the weaker form of (a) (with *m* depending on *A*), yields that every proper subgroup of *G* has size $\langle |G|$ (if $|G| = \omega_1$, groups with this property are known as *Kurosh groups*).

(Hesse [1979]) There exists a $\mathfrak{M}\text{-discrete}$ group G that is not $\mathfrak{Z}\text{-discrete}.$

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

(a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;

(b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.

- (i) The number *n* in (b) may depend of *H*, while in (a) the number *m* is the same for all $A \in [G]^{|G|}$.
- (ii) Even the weaker form of (a) (with *m* depending on *A*), yields that every proper subgroup of *G* has size < |G| (if $|G| = \omega_1$, groups with this property are known as *Kurosh groups*).

(Hesse [1979]) There exists a $\mathfrak{M}\text{-discrete}$ group G that is not $\mathfrak{Z}\text{-discrete}.$

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

- (a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;
- (b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.
- (i) The number *n* in (b) may depend of *H*, while in (a) the number *m* is the same for all $A \in [G]^{|G|}$.
- (ii) Even the weaker form of (a) (with *m* depending on *A*), yields that every proper subgroup of *G* has size $\langle |G|$ (if $|G| = \omega_1$, groups with this property are known as *Kurosh groups*).

(Hesse [1979]) There exists a $\mathfrak{M}\text{-discrete}$ group G that is not $\mathfrak{Z}\text{-discrete}.$

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

- (a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;
- (b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.
- (i) The number *n* in (b) may depend of *H*, while in (a) the number *m* is the same for all $A \in [G]^{|G|}$.

(ii) Even the weaker form of (a) (with *m* depending on *A*), yields that every proper subgroup of *G* has size < |*G*| (if |*G*| = ω₁, groups with this property are known as *Kurosh groups*).

(Hesse [1979]) There exists a $\mathfrak{M}\text{-discrete}$ group G that is not $\mathfrak{Z}\text{-discrete}.$

Criterion [Shelah]

An uncountable group G is \mathfrak{M}_G -discrete whenever the following two conditions hold:

- (a) there exists $m \in \mathbb{N}$ such that $A^m = G$ for every subset A of G with |A| = |G|;
- (b) for every subgroup H of G with |H| < |G| there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in G$ such that the intersection $\bigcap_{i=1}^n x_i^{-1} H x_i$ is finite.
- (i) The number *n* in (b) may depend of *H*, while in (a) the number *m* is *the same* for all $A \in [G]^{|G|}$.
- (ii) Even the weaker form of (a) (with *m* depending on *A*), yields that every proper subgroup of *G* has size < |G| (if $|G| = \omega_1$, groups with this property are known as *Kurosh groups*).

(iii) Using the above criterion, Shelah produced an example of an \mathfrak{M} -discrete group under the assumption of CH. Namely, a torsion-free group G of size ω_1 satisfying (a) with m = 10000 and (b) with n = 2. So G every proper subgroup H of G is malnormal (i.e., $H \cap x^{-1}Hx = \{1\}$), so G is also simple.

Proof.

Let \mathcal{T} be a Hausdorff group topology on G. There exists a \mathcal{T} -neighbourhood V of e_G with $V \neq G$. Choose a \mathcal{T} -neighbourhood W of e_G with $W^m \subseteq V$. Now $V \neq G$ and (a) yield |W| < |G|. Let $H = \langle W \rangle$. Then $|H| = |W| \cdot \omega < |G|$. By (b) the intersection $O = \bigcap_{i=1}^n x_i^{-1} H x_i$ is finite for some $n \in \mathbb{N}$ and elements $x_1, \ldots, x_n \in G$. Since each $x_i^{-1} H x_i$ is a \mathcal{T} -neighbourhood of 1, this proves that $1 \in O \in \mathcal{T}$. Since \mathcal{T} is Hausdorff, it follows that $\{1\}$ is \mathcal{T} -open, and therefore \mathcal{T} is discrete.

伺 ト イ ヨ ト イ ヨ

(iii) Using the above criterion, Shelah produced an example of an \mathfrak{M} -discrete group under the assumption of CH. Namely, a torsion-free group G of size ω_1 satisfying (a) with m = 10000 and (b) with n = 2. So G every proper subgroup H of G is malnormal (i.e., $H \cap x^{-1}Hx = \{1\}$), so G is also simple.

Proof.

Let \mathcal{T} be a Hausdorff group topology on G. There exists a \mathcal{T} -neighbourhood V of e_G with $V \neq G$. Choose a \mathcal{T} -neighbourhood W of e_G with $W^m \subseteq V$. Now $V \neq G$ and (a) yield |W| < |G|. Let $H = \langle W \rangle$. Then $|H| = |W| \cdot \omega < |G|$. By (b) the intersection $O = \bigcap_{i=1}^{n} x_i^{-1} H x_i$ is finite for some $n \in \mathbb{N}$ and elements $x_1, \ldots, x_n \in G$. Since each $x_i^{-1} H x_i$ is a \mathcal{T} -neighbourhood of 1, this proves that $1 \in O \in \mathcal{T}$. Since \mathcal{T} is Hausdorff, it follows that $\{1\}$ is \mathcal{T} -open, and therefore \mathcal{T} is discrete.

・ 戸 ト ・ ヨ ト ・ ヨ

(iii) Using the above criterion, Shelah produced an example of an \mathfrak{M} -discrete group under the assumption of CH. Namely, a torsion-free group G of size ω_1 satisfying (a) with m = 10000 and (b) with n = 2. So G every proper subgroup H of G is malnormal (i.e., $H \cap x^{-1}Hx = \{1\}$), so G is also simple.

Proof.

Let \mathcal{T} be a Hausdorff group topology on G. There exists a \mathcal{T} -neighbourhood V of e_G with $V \neq G$. Choose a \mathcal{T} -neighbourhood W of e_G with $W^m \subseteq V$. Now $V \neq G$ and (a) yield |W| < |G|. Let $H = \langle W \rangle$. Then $|H| = |W| \cdot \omega < |G|$. By (b) the intersection $O = \bigcap_{i=1}^n x_i^{-1} Hx_i$ is finite for some $n \in \mathbb{N}$ and elements $x_1, \ldots, x_n \in G$. Since each $x_i^{-1} Hx_i$ is a \mathcal{T} -neighbourhood of 1, this proves that $1 \in O \in \mathcal{T}$. Since \mathcal{T} is Hausdorff, it follows that $\{1\}$ is \mathcal{T} -open, and therefore \mathcal{T} is discrete.

伺 ト イ ヨ ト イ ヨ ト

A topological space X is Noetherian, if X satisfies the ascending chain condition on open sets (or, equivalently, the minimal condition on closed sets). Obviously, a Noetherian space is compact, and a subspace of a Noetherian space is Noetherian itself. Actually, a space is Noetherian iff all its subspaces are compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

- (Bryant) A subgroup of a 3-Noetherian group is 3-Noetherian,
- (D.D. D. Toller) A group G is 3-Noetherian iff every countable subgroup of G is 3-Noetherian.

Using the fact that linear groups are 3-Noetherian, and the fact that countable free groups are isomorphic to subgroups of linear groups, one gets

Theorem (DD - D. Toller)

Every free group is 3-Noetherian.

A topological space X is Noetherian, if X satisfies the ascending chain condition on open sets (or, equivalently, the minimal condition on closed sets). Obviously, a Noetherian space is compact, and a subspace of a Noetherian space is Noetherian itself. Actually, a space is Noetherian iff all its subspaces are compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

(Bryant) A subgroup of a 3-Noetherian group is 3-Noetherian,
(D.D. - D. Toller) A group G is 3-Noetherian iff every countable subgroup of G is 3-Noetherian.

Using the fact that linear groups are 3-Noetherian, and the fact that countable free groups are isomorphic to subgroups of linear groups, one gets

Theorem (DD - D. Toller)

Every free group is 3-Noetherian.

A topological space X is Noetherian, if X satisfies the ascending chain condition on open sets (or, equivalently, the minimal condition on closed sets). Obviously, a Noetherian space is compact, and a subspace of a Noetherian space is Noetherian itself. Actually, a space is Noetherian iff all its subspaces are compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

- (Bryant) A subgroup of a 3-Noetherian group is 3-Noetherian,
- (D.D. D. Toller) A group G is 3-Noetherian iff every countable subgroup of G is 3-Noetherian.

Using the fact that linear groups are 3-Noetherian, and the fact that countable free groups are isomorphic to subgroups of linear groups, one gets

Theorem (DD - D. Toller)

Every free group is 3-Noetherian.

A topological space X is Noetherian, if X satisfies the ascending chain condition on open sets (or, equivalently, the minimal condition on closed sets). Obviously, a Noetherian space is compact, and a subspace of a Noetherian space is Noetherian itself. Actually, a space is Noetherian iff all its subspaces are compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

- (Bryant) A subgroup of a 3-Noetherian group is 3-Noetherian,
- (D.D. D. Toller) A group G is 3-Noetherian iff every countable subgroup of G is 3-Noetherian.

Using the fact that linear groups are 3-Noetherian, and the fact that countable free groups are isomorphic to subgroups of linear groups, one gets

Theorem (DD - D. Toller)

Every free group is 3-Noetherian.

A topological space X is Noetherian, if X satisfies the ascending chain condition on open sets (or, equivalently, the minimal condition on closed sets). Obviously, a Noetherian space is compact, and a subspace of a Noetherian space is Noetherian itself. Actually, a space is Noetherian iff all its subspaces are compact (so an infinite Noetherian spaces are never Hausdorff).

Theorem

- (Bryant) A subgroup of a 3-Noetherian group is 3-Noetherian,
- (D.D. D. Toller) A group G is 3-Noetherian iff every countable subgroup of G is 3-Noetherian.

Using the fact that linear groups are 3-Noetherian, and the fact that countable free groups are isomorphic to subgroups of linear groups, one gets

Theorem (DD - D. Toller)

Every free group is 3-Noetherian.

The Zariski topology of a direct product The Zariski topology \mathfrak{Z}_G of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_i}$.

These two topologies need not coincide (for example $\mathfrak{Z}_{\mathbb{Z}\times\mathbb{Z}}$ is the co-finite topology of $\mathbb{Z}\times\mathbb{Z}$, so neither $\mathbb{Z}\times\{0\}$ nor $\{0\}\times\mathbb{Z}$ are Zariski closed in $\mathbb{Z}\times\mathbb{Z}$, whereas they are closed in $\mathfrak{Z}_{\mathbb{Z}}\times\mathfrak{Z}_{\mathbb{Z}}$). Item (B) of the next theorem generalizes Bryant's result.

Theorem (DD - D. Toller)

(A) Direct products of 3-compact groups are 3-compact. (B) $G = \prod_{i \in I} G_i$ is 3-Noetherian iff every G_i is 3-Noetherian and all but finitely many of the groups G_i are abelian.

Corollary

A nilpotent group of nilpotency class 2 need not be 3-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q_8 .

< ロ > < 同 > < 回 > < 回 >

The Zariski topology \mathfrak{Z}_G of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_i}$.

These two topologies need not coincide (for example $\mathfrak{Z}_{\mathbb{Z}\times\mathbb{Z}}$ is the co-finite topology of $\mathbb{Z}\times\mathbb{Z}$, so neither $\mathbb{Z}\times\{0\}$ nor $\{0\}\times\mathbb{Z}$ are Zariski closed in $\mathbb{Z}\times\mathbb{Z}$, whereas they are closed in $\mathfrak{Z}_{\mathbb{Z}}\times\mathfrak{Z}_{\mathbb{Z}}$).

Item (B) of the next theorem generalizes Bryant's result.

Theorem (DD - D. Toller)

(A) Direct products of 3-compact groups are 3-compact. (B) $G = \prod_{i \in I} G_i$ is 3-Noetherian iff every G_i is 3-Noetherian and all but finitely many of the groups G_i are abelian.

Corollary

A nilpotent group of nilpotency class 2 need not be 3-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q_8 .

イロト イボト イヨト イヨト

The Zariski topology \mathfrak{Z}_G of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_i}$.

These two topologies need not coincide (for example $\mathfrak{Z}_{\mathbb{Z}\times\mathbb{Z}}$ is the co-finite topology of $\mathbb{Z}\times\mathbb{Z}$, so neither $\mathbb{Z}\times\{0\}$ nor $\{0\}\times\mathbb{Z}$ are Zariski closed in $\mathbb{Z}\times\mathbb{Z}$, whereas they are closed in $\mathfrak{Z}_{\mathbb{Z}}\times\mathfrak{Z}_{\mathbb{Z}}$). Item (B) of the next theorem generalizes Bryant's result.

Theorem (DD - D. Toller)

(A) Direct products of 3-compact groups are 3-compact. (B) $G = \prod_{i \in I} G_i$ is 3-Noetherian iff every G_i is 3-Noetherian and all but finitely many of the groups G_i are abelian.

Corollary

A nilpotent group of nilpotency class 2 need not be 3-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q_8 .

イロト イポト イラト イラト

The Zariski topology \mathfrak{Z}_G of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_i}$.

These two topologies need not coincide (for example $\mathfrak{Z}_{\mathbb{Z}\times\mathbb{Z}}$ is the co-finite topology of $\mathbb{Z}\times\mathbb{Z}$, so neither $\mathbb{Z}\times\{0\}$ nor $\{0\}\times\mathbb{Z}$ are Zariski closed in $\mathbb{Z}\times\mathbb{Z}$, whereas they are closed in $\mathfrak{Z}_{\mathbb{Z}}\times\mathfrak{Z}_{\mathbb{Z}}$). Item (B) of the next theorem generalizes Bryant's result.

Theorem (DD - D. Toller)

(A) Direct products of 3-compact groups are 3-compact. (B) $G = \prod_{i \in I} G_i$ is 3-Noetherian iff every G_i is 3-Noetherian and all but finitely many of the groups G_i are abelian.

Corollary

A nilpotent group of nilpotency class 2 need not be 3-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q_8 .

イロト イポト イラト イラト

The Zariski topology \mathfrak{Z}_G of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_i}$.

These two topologies need not coincide (for example $\mathfrak{Z}_{\mathbb{Z}\times\mathbb{Z}}$ is the co-finite topology of $\mathbb{Z}\times\mathbb{Z}$, so neither $\mathbb{Z}\times\{0\}$ nor $\{0\}\times\mathbb{Z}$ are Zariski closed in $\mathbb{Z}\times\mathbb{Z}$, whereas they are closed in $\mathfrak{Z}_{\mathbb{Z}}\times\mathfrak{Z}_{\mathbb{Z}}$). Item (B) of the next theorem generalizes Bryant's result.

Theorem (DD - D. Toller)

(A) Direct products of 3-compact groups are 3-compact. (B) $G = \prod_{i \in I} G_i$ is 3-Noetherian iff every G_i is 3-Noetherian and all but finitely many of the groups G_i are abelian.

Corollary

A nilpotent group of nilpotency class 2 need not be 3-Noetherian.

Take an infinite power of finite nilpotent group, e.g., Q_8 .

- 4 E 6 4 E 6

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so

$$\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}.$$

(1) *G* is 3-Hausdorff if and only if $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$. (2) *G* is \mathfrak{M} -Hausdorff if and only if $\mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$.

Theorem (DD - D. Toller)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

M_{Sym(X)} coincides with the point-wise convergence topology of Sym(X). Does Mice you coincide with Bernet (무관 소문) 소문가 주는 것 Dikran Dikranjan The Markov-Zariski topology of an infinite group

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so

$$\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}.$$

G is 3-Hausdorff if and only if 3_G = 𝔅_G = 𝔅_G = ∏_{i∈I} 3_{Fi}.
 G is 𝔅-Hausdorff if and only if 𝔅_G = 𝔅_G = ∏_{i∈I} 3_{Fi}.

Theorem (DD - D. Toller)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so

$$\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}.$$

(1) *G* is 3-Hausdorff if and only if $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$. (2) *G* is \mathfrak{M} -Hausdorff if and only if $\mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$.

Theorem (DD - D. Toller)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

 $\mathfrak{M}_{Sym(X)}$ coincides with the point-wise convergence topology of Sym(X). Does $\mathfrak{M}_{Sym}(X)$ by $\mathfrak{$

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so

$$\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}.$$

G is 3-Hausdorff if and only if 3_G = M_G = P_G = ∏_{i∈I} 3_{Fi}.
 G is M-Hausdorff if and only if M_G = P_G = ∏_{i∈I} 3_{Fi}.

Theorem (DD - D. Toller)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

 $\mathfrak{M}_{Sym(X)}$ coincides with the point-wise convergence topology of Sym(X). Does $\mathfrak{M}_{Sym(X)}$ coincide with $\mathfrak{Z}_{Sym}(X)$. $\mathfrak{M}_{Sym}(X)$ of $\mathfrak{M}_{Sym}(X)$ coincide with $\mathfrak{Z}_{Sym}(X)$. The Markov-Zariski topology of an infinite group

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so

$$\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}.$$

G is 3-Hausdorff if and only if 3_G = M_G = P_G = ∏_{i∈I} 3_{Fi}.
 G is M-Hausdorff if and only if M_G = P_G = ∏_{i∈I} 3_{Fi}.

Theorem (DD - D. Toller)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

 $\mathfrak{M}_{Sym(X)}$ coincides with the point-wise convergence topology of Sym(X). Does $\mathfrak{M}_{Sym(X)}$ coincide with $\mathfrak{B}_{Sym(X)}$ $\mathfrak{P}_{\mathcal{F}} \to \mathfrak{F} \to \mathfrak{F}$ Dikran Dikranjan The Markov-Zariski topology of an infinite group

If $\{F_i \mid i \in I\}$ is a family of finite groups, and $G = \prod_{i \in I} F_i$, then the product $\prod_{i \in I} \mathfrak{Z}_{F_i}$ is a compact Hausdorff group topology, so

$$\mathfrak{Z}_G \subseteq \mathfrak{M}_G \subseteq \mathfrak{P}_G \subseteq \prod_{i \in I} \mathfrak{Z}_{F_i}.$$

G is 3-Hausdorff if and only if 3_G = M_G = P_G = ∏_{i∈I} 3_{Fi}.
 G is M-Hausdorff if and only if M_G = P_G = ∏_{i∈I} 3_{Fi}.

Theorem (DD - D. Toller)

If $\{F_i \mid i \in I\}$ is a non-empty family of finite center-free groups, and $G = \prod_{i \in I} F_i$, then $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G = \prod_{i \in I} \mathfrak{Z}_{F_i}$ is a Hausdorff group topology on G.

Theorem (Gaughan 1966)

The permutation group Sym(X) of an infinite set X is \mathfrak{M} -Hausdorff.

 $\mathfrak{M}_{Sym(X)}$ coincides with the point-wise convergence topology of Svm(X). Does $\mathfrak{M}_{Sym(X)}$ coincide with $\mathfrak{Z}_{Sym(X)}$ \mathfrak{T} \mathfrak

A group G is \mathfrak{P} -discrete iff G admits no precompact group topologies (i.e., G is not maximally almost periodic, in terms of von Neumann).

In particular, examples of \mathfrak{P} -discrete groups are provided by all minimally almost periodic (again in terms of von Neumann, these are the groups G such that every homomorphism to a compact group K is trivial).

Example

(a) (von Neumann and Wiener) SL₂(ℝ);
(b) The permutation group Sym(X) of an infinite set X (as
𝔐_{Sym(X)} is not precompact).

Theorem (DD - D. Toller)

Every divisible solvable non-abelian group is \$\$-discrete.

A group G is \mathfrak{P} -discrete iff G admits no precompact group topologies (i.e., G is not maximally almost periodic, in terms of von Neumann).

In particular, examples of \mathfrak{P} -discrete groups are provided by all minimally almost periodic (again in terms of von Neumann, these are the groups G such that every homomorphism to a compact group K is trivial).

Example

(a) (von Neumann and Wiener) SL₂(ℝ);
(b) The permutation group Sym(X) of an infinite set X (as *M*_{Sym(X)} is not precompact).

Theorem (DD - D. Toller)

Every divisible solvable non-abelian group is \$-discrete.

《口》 《聞》 《臣》 《臣》

A group G is \mathfrak{P} -discrete iff G admits no precompact group topologies (i.e., G is not maximally almost periodic, in terms of von Neumann).

In particular, examples of \mathfrak{P} -discrete groups are provided by all minimally almost periodic (again in terms of von Neumann, these are the groups G such that every homomorphism to a compact group K is trivial).

Example

(a) (von Neumann and Wiener) $SL_2(\mathbb{R})$;

(b) The permutation group $\mathit{Sym}(X)$ of an infinite set X (as

 $\mathfrak{M}_{Sym(X)}$ is not precompact).

Theorem (DD - D. Toller)

Every divisible solvable non-abelian group is \$-discrete.

< ロ > < 同 > < 回 > < 回 >

A group G is \mathfrak{P} -discrete iff G admits no precompact group topologies (i.e., G is not maximally almost periodic, in terms of von Neumann).

In particular, examples of \mathfrak{P} -discrete groups are provided by all minimally almost periodic (again in terms of von Neumann, these are the groups G such that every homomorphism to a compact group K is trivial).

Example

(a) (von Neumann and Wiener) SL₂(ℝ);
(b) The permutation group Sym(X) of an infinite set X (as *M*_{Sym(X)} is not precompact).

Theorem (DD - D. Toller)

Every divisible solvable non-abelian group is \mathfrak{P} -discrete.

< ロ > < 同 > < 回 > < 回 >

A group G is \mathfrak{P} -discrete iff G admits no precompact group topologies (i.e., G is not maximally almost periodic, in terms of von Neumann).

In particular, examples of \mathfrak{P} -discrete groups are provided by all minimally almost periodic (again in terms of von Neumann, these are the groups G such that every homomorphism to a compact group K is trivial).

Example

(a) (von Neumann and Wiener) SL₂(ℝ);
(b) The permutation group Sym(X) of an infinite set X (as M_{Sym(X)} is not precompact).

Theorem (DD - D. Toller)

Every divisible solvable non-abelian group is \mathfrak{P} -discrete.

A (1) > (1) = (1) (1)

Proof.

Let G be a divisible solvable non-abelian group. It suffices to see that G admits no precompact group topology. To this end we show that every divisible precompact solvable group must be abelian.

Corollary

For every field K with charK = 0 the Heisenberg group $H_{K} = \begin{pmatrix} 1 & K \\ 1 & K \\ & 1 \end{pmatrix}$ is \mathfrak{P} -discrete.

Proof.

Let G be a divisible solvable non-abelian group. It suffices to see that G admits no precompact group topology. To this end we show that every divisible precompact solvable group must be abelian. Let G be a divisible precompact solvable group. Then its completion K is a connected group. On the other hand, K is also solvable. It is enough to prove that G K is abelian.

Arguing for a contradiction, assume that $K \neq Z(K)$, is not abelian. By a theorem of Varopoulos, K/Z(K) is isomorphic to a direct product of simple connected compact Lie groups, in particular, K/Z(K) cannot be solvable. On the other hand, K/Z(K) has to be solvable as a quotient of a solvable group, a contradiction.

Corollary

For every field K with charK = 0 the Heisenberg group $H_{K} = \begin{pmatrix} 1 & K & K \\ & 1 & K \\ & & 1 \end{pmatrix}$ is \mathfrak{P} -discrete.

Proof.

Let G be a divisible solvable non-abelian group. It suffices to see that G admits no precompact group topology. To this end we show that every divisible precompact solvable group must be abelian. Let G be a divisible precompact solvable group. Then its completion K is a connected group. On the other hand, K is also solvable. It is enough to prove that G K is abelian. Arguing for a contradiction, assume that $K \neq Z(K)$, is not abelian. By a theorem of Varopoulos, K/Z(K) is isomorphic to a direct product of simple connected compact Lie groups, in particular, K/Z(K) cannot be solvable. On the other hand, K/Z(K) has to be solvable as a quotient of a solvable group, a contradiction.

Corollary

For every field K with charK = 0 the Heisenberg group $H_{K} = \begin{pmatrix} 1 & K & K \\ & 1 & K \\ & & 1 \end{pmatrix}$ is \mathfrak{P} -discrete.
Proof.

Let G be a divisible solvable non-abelian group. It suffices to see that G admits no precompact group topology. To this end we show that every divisible precompact solvable group must be abelian. Let G be a divisible precompact solvable group. Then its completion K is a connected group. On the other hand, K is also solvable. It is enough to prove that G K is abelian. Arguing for a contradiction, assume that $K \neq Z(K)$, is not abelian. By a theorem of Varopoulos, K/Z(K) is isomorphic to a direct product of simple connected compact Lie groups, in particular, K/Z(K) cannot be solvable. On the other hand, K/Z(K) has to be solvable as a quotient of a solvable group, a contradiction.

Corollary

For every field K with charK = 0 the Heisenberg group $H_{K} = \begin{pmatrix} 1 & K & K \\ & 1 & K \\ & & 1 \end{pmatrix}$ is \mathfrak{P} -discrete.

Definition (Markov)

A subset A of a group G is potentially dense in G if there exists a Hausdorff group topology \mathcal{T} on G such that A is \mathcal{T} -dense in G.

Example (Markov)

Every infinite subset of \mathbb{Z} is potentially dense in \mathbb{Z} . By Weyl's uniform disitribution theorem for every infinite $A = (a_n)$ in \mathbb{Z} there exists $\alpha \in \mathbb{R}$ such that $(a_n \alpha)$ is uniform disitributed modulo 1, so the subset $(a_n \overline{\alpha})$ of \mathbb{R}/\mathbb{Z} is dense in \mathbb{R}/\mathbb{Z} (so in $\overline{\alpha}$ as well). Now the topology \mathcal{T} on \mathbb{Z} induced by $\mathbb{Z} \cong \overline{\alpha} \hookrightarrow \mathbb{R}/\mathbb{Z}$ works.

Problem 3 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

- a potentially dense set is Zarisky-dense;
- if G has a countable potentially dense set, then $|G| \leq 2^{c}$.

Definition (Markov)

A subset A of a group G is potentially dense in G if there exists a Hausdorff group topology \mathcal{T} on G such that A is \mathcal{T} -dense in G.

Example (Markov)

Every infinite subset of \mathbb{Z} is potentially dense in \mathbb{Z} .

By Weyl's uniform disitribution theorem for every infinite $A = (a_n)$ in \mathbb{Z} there exists $\alpha \in \mathbb{R}$ such that $(a_n \alpha)$ is uniform disitributed modulo 1, so the subset $(a_n \overline{\alpha})$ of \mathbb{R}/\mathbb{Z} is dense in \mathbb{R}/\mathbb{Z} (so in $\overline{\alpha}$ as well). Now the topology \mathcal{T} on \mathbb{Z} induced by $\mathbb{Z} \cong \overline{\alpha} \hookrightarrow \mathbb{R}/\mathbb{Z}$ works.

Problem 3 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

- a potentially dense set is Zarisky-dense;
- if G has a countable potentially dense set, then $|G| \leq 2^{c}$.

Definition (Markov)

A subset A of a group G is potentially dense in G if there exists a Hausdorff group topology \mathcal{T} on G such that A is \mathcal{T} -dense in G.

Example (Markov)

Every infinite subset of \mathbb{Z} is potentially dense in \mathbb{Z} . By Weyl's uniform disitribution theorem for every infinite $A = (a_n)$ in \mathbb{Z} there exists $\alpha \in \mathbb{R}$ such that $(a_n \alpha)$ is uniform disitributed modulo 1, so the subset $(a_n \overline{\alpha})$ of \mathbb{R}/\mathbb{Z} is dense in \mathbb{R}/\mathbb{Z} (so in $\overline{\alpha}$ as well). Now the topology \mathcal{T} on \mathbb{Z} induced by $\mathbb{Z} \cong \overline{\alpha} \hookrightarrow \mathbb{R}/\mathbb{Z}$ works.

Problem 3 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

- a potentially dense set is Zarisky-dense;
- if G has a countable potentially dense set, then $|G| \leq 2^{\mathfrak{c}}$.

Definition (Markov)

A subset A of a group G is potentially dense in G if there exists a Hausdorff group topology \mathcal{T} on G such that A is \mathcal{T} -dense in G.

Example (Markov)

Every infinite subset of \mathbb{Z} is potentially dense in \mathbb{Z} . By Weyl's uniform disitribution theorem for every infinite $A = (a_n)$ in \mathbb{Z} there exists $\alpha \in \mathbb{R}$ such that $(a_n \alpha)$ is uniform disitributed modulo 1, so the subset $(a_n \overline{\alpha})$ of \mathbb{R}/\mathbb{Z} is dense in \mathbb{R}/\mathbb{Z} (so in $\overline{\alpha}$ as well). Now the topology \mathcal{T} on \mathbb{Z} induced by $\mathbb{Z} \cong \overline{\alpha} \hookrightarrow \mathbb{R}/\mathbb{Z}$ works.

Problem 3 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

- a potentially dense set is Zarisky-dense;
- if G has a countable potentially dense set, then $|G| \leq 2^{\mathfrak{c}}$.

200

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{\circ}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE: (i) A is potentially dense in G, (ii) there exists a precompact Hausdorff group topology on G such that A becomes T-dense in G, (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies.

イロト イポト イヨト イヨト

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{\circ}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE: (i) A is potentially dense in G, (ii) there exists a precompact Hausdorff group topology on G such that A becomes T-dense in G, (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies.

コト ・ 同ト ・ ヨト ・ ヨト

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{c}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE: (i) A is potentially dense in G, (ii) there exists a precompact Hausdorff group topology on G such that A becomes T-dense in G, (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies.

- 4 回 > - 4 回 > - 4 回 >

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{\mathfrak{c}}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE: (i) A is potentially dense in G, (ii) there exists a precompact Hausdorff group topology on G such that A becomes T-dense in G, (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies.

同 ト イヨ ト イヨ ト

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{\mathfrak{c}}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE: (i) A is potentially dense in G, (ii) there exists a precompact Hausdorff group topology on G such that A becomes T-dense in G, (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies.

▲圖 → ▲ 国 → ▲ 国 → …

3

If an Abelian group with $|G| \le c$ is either torsion-free or has exponent p, then every infinite set of G is potentially dense.

Question[Tkachenko-Yaschenko]

Can this be extended to groups with $|G| \leq 2^{\mathfrak{c}}$?

The answer is (more than) positive:

Theorem (DD - D. Shakhmatov)

For a countably infinite subset A of an Abelian group G TFAE: (i) A is potentially dense in G, (ii) there exists a precompact Hausdorff group topology on G such that A becomes T-dense in G, (iii) $|G| \leq 2^{c}$ and A is Zarisky dense in G.

The proof if based on a realization theorem for the Zariski closure by means of (metrizable) precompact group topologies.

Let G be an Abelian group with $|G| \leq c$ and \mathcal{E} be a countable family in $\mathfrak{T}(G)$. Then there exists a metrizable precompact group topology \mathcal{T} on G such that $cl_{3_G}(S) = cl_{\mathcal{T}}(S)$ for all $S \in \mathcal{E}$.

The realization of the Zariski closure of uncountably many sets is impossible in general.

Corollary

For an abelian group G with $|G| \le 2^{\circ}$ the following are equivalent: (a) every infinite subset of G is potentially dense in G; (b) G is either almost torsion-free or has exponent p for some prime p;

(c) every Zariski-closed subset of G is finite.

Corollary

 $\mathfrak{Z}_G=\mathfrak{M}_G=\mathfrak{P}_G$ for every abelian group G.

Image: A mathematical states and a mathem

Let G be an Abelian group with $|G| \leq c$ and \mathcal{E} be a countable family in $\mathfrak{T}(G)$. Then there exists a metrizable precompact group topology \mathcal{T} on G such that $cl_{3_G}(S) = cl_{\mathcal{T}}(S)$ for all $S \in \mathcal{E}$.

The realization of the Zariski closure of uncountably many sets is impossible in general.

Corollary

For an abelian group G with $|G| \le 2^{c}$ the following are equivalent: (a) every infinite subset of G is potentially dense in G; (b) G is either almost torsion-free or has exponent p for some prime p;

(c) every Zariski-closed subset of G is finite.

Corollary

 $\mathfrak{Z}_G=\mathfrak{M}_G=\mathfrak{P}_G$ for every abelian group G.

Let G be an Abelian group with $|G| \leq c$ and \mathcal{E} be a countable family in $\mathfrak{T}(G)$. Then there exists a metrizable precompact group topology \mathcal{T} on G such that $cl_{\mathfrak{Z}_G}(S) = cl_{\mathcal{T}}(S)$ for all $S \in \mathcal{E}$.

The realization of the Zariski closure of uncountably many sets is impossible in general.

Corollary

For an abelian group G with $|G| \le 2^{c}$ the following are equivalent: (a) every infinite subset of G is potentially dense in G; (b) G is either almost torsion-free or has exponent p for some prime p;

(c) every Zariski-closed subset of G is finite.

Corollary

 $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G$ for every abelian group G.

Let G be an Abelian group with $|G| \leq c$ and \mathcal{E} be a countable family in $\mathfrak{T}(G)$. Then there exists a metrizable precompact group topology \mathcal{T} on G such that $cl_{\mathfrak{Z}_G}(S) = cl_{\mathcal{T}}(S)$ for all $S \in \mathcal{E}$.

The realization of the Zariski closure of uncountably many sets is impossible in general.

Corollary

For an abelian group G with $|G| \le 2^{c}$ the following are equivalent: (a) every infinite subset of G is potentially dense in G; (b) G is either almost torsion-free or has exponent p for some prime p;

(c) every Zariski-closed subset of G is finite.

Corollary $\Im_G = \mathfrak{M}_G = \mathfrak{P}_G$ for every abelian group G. $\square \vdash \square \vdash \square$ Dikran Dikranjan The Markov-Zariski topology of an infinite group

Let G be an Abelian group with $|G| \leq c$ and \mathcal{E} be a countable family in $\mathfrak{T}(G)$. Then there exists a metrizable precompact group topology \mathcal{T} on G such that $cl_{\mathfrak{Z}_G}(S) = cl_{\mathcal{T}}(S)$ for all $S \in \mathcal{E}$.

The realization of the Zariski closure of uncountably many sets is impossible in general.

Corollary

For an abelian group G with $|G| \le 2^{c}$ the following are equivalent: (a) every infinite subset of G is potentially dense in G; (b) G is either almost torsion-free or has exponent p for some prime p;

(c) every Zariski-closed subset of G is finite.

Corollary

 $\mathfrak{Z}_G = \mathfrak{M}_G = \mathfrak{P}_G$ for every abelian group G.

< 日 > < 同 > < 三 > < 三 >

For $n \in \omega$ and $E \subseteq G$ let $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$. $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that $E = a + G[n] = \{x \in G : nx = na\}$. So \mathfrak{E}_G is stable under finite intersections: $(a + G[n]) \cap (b + G[m]) = \emptyset$ or c + G[d]with d = GCD(m, n).

.emma

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when *G* is a countable 3-discrete group).

Example

For $n \in \omega$ and $E \subseteq G$ let $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$. $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that $E = a + G[n] = \{x \in G : nx = na\}$. So \mathfrak{E}_G is stable under finite intersections: $(a + G[n]) \cap (b + G[m]) = \emptyset$ or c + G[d]with d = GCD(m, n).

.emma

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when *G* is a countable 3-discrete group).

Example

For $n \in \omega$ and $E \subseteq G$ let $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$. $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that $E = a + G[n] = \{x \in G : nx = na\}$. So \mathfrak{E}_G is stable under finite intersections: $(a + G[n]) \cap (b + G[m]) = \emptyset$ or c + G[d]

with d = GCD(m, n).

_emma

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G is a countable 3-discrete group).

Example

For
$$n \in \omega$$
 and $E \subseteq G$ let
 $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$.
 $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that
 $E = a + G[n] = \{x \in G : nx = na\}$.
So \mathfrak{E}_G is stable under finite intersections:
 $(a + G[n]) \cap (b + G[m]) = \emptyset$ or $c + G[d]$
with $d = GCD(m, n)$.

emma

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G is a countable 3-discrete group).

Example

For
$$n \in \omega$$
 and $E \subseteq G$ let
 $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$.
 $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that
 $E = a + G[n] = \{x \in G : nx = na\}$.
So \mathfrak{E}_G is stable under finite intersections:
 $(a + G[n]) \cap (b + G[m]) = \emptyset$ or $c + G[d]$
with $d = GCD(m, n)$.

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover:

(a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when *G* is a countable 3-discrete group).

Example

For
$$n \in \omega$$
 and $E \subseteq G$ let
 $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$.
 $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that
 $E = a + G[n] = \{x \in G : nx = na\}$.
So \mathfrak{E}_G is stable under finite intersections:
 $(a + G[n]) \cap (b + G[m]) = \emptyset$ or $c + G[d]$
with $d = GCD(m, n)$.

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G is a countable \mathfrak{Z} -discrete group).

Example

For
$$n \in \omega$$
 and $E \subseteq G$ let
 $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$.
 $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that
 $E = a + G[n] = \{x \in G : nx = na\}$.
So \mathfrak{E}_G is stable under finite intersections:
 $(a + G[n]) \cap (b + G[m]) = \emptyset$ or $c + G[d]$
with $d = GCD(m, n)$.

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G is a countable \mathfrak{Z} -discrete group).

Example

For
$$n \in \omega$$
 and $E \subseteq G$ let
 $G[n] = \{x \in G : nx = 0\}$ and $nE = \{nx : x \in E\}$.
 $\forall E \in \mathfrak{E}_G, \exists a \in G, n \in \omega$ such that
 $E = a + G[n] = \{x \in G : nx = na\}$.
So \mathfrak{E}_G is stable under finite intersections:
 $(a + G[n]) \cap (b + G[m]) = \emptyset$ or $c + G[d]$
with $d = GCD(m, n)$.

If G is abelian, then \mathfrak{A}_G consists of finite unions of elementary algebraic sets \mathfrak{E}_G . Moreover: (a) (G, \mathfrak{Z}_G) is Noetherian (hence, compact). (b) $\mathfrak{Z}_G|_H = \mathfrak{Z}_H$ and $\mathfrak{M}_G|_H = \mathfrak{M}_H$ or every subgroup H of G.

All these propertirs are false in the non-abelian case (e.g., when G is a countable 3-discrete group).

Example

 \mathfrak{Z}_G coincides with the cofinite topology of an abelian group G iff either $r_p(G) < \infty$ for all primes p or G has a prime exponent p.

200

Definition

A topological space X is irreducible, if $X = F_1 \cup F_2$ with closed F_1, F_2 yields $X = F_1$ or X_2 .

_emma

For a countably infinite subset A of G TFAE:

- (a) A is irreducible;
- (b) A carries the cofinite tiopology;
- (c) there exists $n \in \mathbb{N}$ such that for every $a \in A$
- (†) E = A a satisfies nE = 0 and $\{x \in E : dx = h\}$ is finite for each $h \in H$ and every divisor d of n with $d \neq n$.

Let $\mathfrak{T}(G) = \{E \in \mathcal{P}(G) : E \text{ is irreducible and } 0 \in cl_{\mathfrak{I}_G}(E)\}$. For every $E \in \mathfrak{T}(G)$ the set $E_0 = E \cup \{0\}$ is still irreducible. Let $o(E) = o(E_0)$ be the number n determined by (\dagger) and let $\mathfrak{T}_n(G) = \{E \in \mathfrak{T}(G) : o(E) = n\}$. Then $\mathfrak{T}(G) = \bigcup_n \mathfrak{T}_n(G)$, $\mathfrak{T}_1(G) = \emptyset$ and $\mathfrak{T}_m(G) \cap \mathfrak{T}_n(G) = \emptyset$ whenever $n \notin \mathfrak{T}_n \mathfrak{T$

Definition

A topological space X is irreducible, if $X = F_1 \cup F_2$ with closed F_1, F_2 yields $X = F_1$ or X_2 .

_emma

For a countably infinite subset A of G TFAE:

(a) A is irreducible;

(b) A carries the cofinite tiopology;

(c) there exists $n \in \mathbb{N}$ such that for every $a \in A$

(†) E = A - a satisfies nE = 0 and $\{x \in E : dx = h\}$ is finite for each $h \in H$ and every divisor d of n with $d \neq n$.

Let $\mathfrak{T}(G) = \{E \in \mathcal{P}(G) : E \text{ is irreducible and } 0 \in d_{\mathfrak{Z}_G}(E)\}$. For every $E \in \mathfrak{T}(G)$ the set $E_0 = E \cup \{0\}$ is still irreducible. Let $o(E) = o(E_0)$ be the number *n* determined by (†) and let $\mathfrak{T}_n(G) = \{E \in \mathfrak{T}(G) : o(E) = n\}$. Then $\mathfrak{T}(G) = \bigcup_n \mathfrak{T}_n(G)$, $\mathfrak{T}_1(G) = \emptyset$ and $\mathfrak{T}_m(G) \cap \mathfrak{T}_n(G) = \emptyset$ whenever $n \notin \mathfrak{T}_n \mathfrak{T}_n$

Definition

A topological space X is irreducible, if $X = F_1 \cup F_2$ with closed F_1, F_2 yields $X = F_1$ or X_2 .

Lemma

For a countably infinite subset A of G TFAE:
(a) A is irreducible;
(b) A carries the cofinite tiopology;
(c) there exists n ∈ N such that for every a ∈ A
(†) E = A - a satisfies nE = 0 and {x ∈ E : dx = h} is finite for each h ∈ H and every divisor d of n with d ≠ n.

Let $\mathfrak{T}(G) = \{E \in \mathcal{P}(G) : E \text{ is irreducible and } 0 \in d_{\mathfrak{Z}_G}(E)\}$. For every $E \in \mathfrak{T}(G)$ the set $E_0 = E \cup \{0\}$ is still irreducible. Let $o(E) = o(E_0)$ be the number *n* determined by (†) and let $\mathfrak{T}_n(G) = \{E \in \mathfrak{T}(G) : o(E) = n\}$. Then $\mathfrak{T}(G) = \bigcup_n \mathfrak{T}_n(G)$, $\mathfrak{T}_1(G) = \emptyset$ and $\mathfrak{T}_m(G) \cap \mathfrak{T}_n(G) = \emptyset$ whenever $\eta \neq \mathfrak{T}_n$.

Definition

A topological space X is irreducible, if $X = F_1 \cup F_2$ with closed F_1, F_2 yields $X = F_1$ or X_2 .

Lemma

For a countably infinite subset A of G TFAE:
(a) A is irreducible;
(b) A carries the cofinite tiopology;
(c) there exists n ∈ N such that for every a ∈ A
(†) E = A - a satisfies nE = 0 and {x ∈ E : dx = h} is finite for each h ∈ H and every divisor d of n with d ≠ n.

Let $\mathfrak{T}(G) = \{E \in \mathcal{P}(G) : E \text{ is irreducible and } 0 \in cl_{\mathfrak{Z}_G}(E)\}$. For every $E \in \mathfrak{T}(G)$ the set $E_0 = E \cup \{0\}$ is still irreducible. Let $o(E) = o(E_0)$ be the number *n* determined by (†) and let $\mathfrak{T}_n(G) = \{E \in \mathfrak{T}(G) : o(E) = n\}$. Then $\mathfrak{T}(G) = \bigcup_n \mathfrak{T}_n(G)$, $\mathfrak{T}_1(G) = \emptyset$ and $\mathfrak{T}_m(G) \cap \mathfrak{T}_n(G) = \emptyset$ whenever $n \neq m$.

Example

Let G be an infinite abelian group. (a) Every countably infinite subset of G is irreducible if G is torsion-free. (b) $\mathcal{T}_{n}(G) = \emptyset$ iff G is bounded

(b) $\mathfrak{L}_0(G) = \emptyset$ iff G is bounded. (c) $\mathfrak{T}_n(G) = \emptyset$ for some n > 1 iff there exists a mon

 $igea_{\omega}\mathbb{Z}(n)\hookrightarrow 0$

Theorem

Let *S* be an infinite subset of an abelian group *G*. Then there exist a finite $F \subseteq S$, infinite subsets $\{S_i : i = 1, 2, ..., s\}$ of *S* and a finite set $\{a_1, a_2, ..., s\}$ of *G* such that (a) $S_i - a_i \in \mathfrak{T}_{n_i}(G)$ for some $n_i \in \omega \setminus \{1\}$; (b) $S = F \cup \bigcup_{i=1}^s S_i$; (c) $cl_{3_G}(S) = F \cup \bigcup_i cl_{3_G}(S_i)$ and each S_i is \mathfrak{Z}_G -dense in $G[N_i]$.

/□ ▶ < 글 ▶ < 글

Example

Let *G* be an infinite abelian group. (a) Every countably infinite subset of *G* is irreducible if *G* is torsion-free. (b) $\mathfrak{T}_0(G) = \emptyset$ iff *G* is bounded.

(c) $\mathfrak{T}_n(G) = \emptyset$ for some n > 1 iff there exists a monomorphism $\bigoplus_{\omega} \mathbb{Z}(n) \hookrightarrow G$.

Theorem

Let *S* be an infinite subset of an abelian group *G*. Then there exist a finite $F \subseteq S$, infinite subsets $\{S_i : i = 1, 2, ..., s\}$ of *S* and a finite set $\{a_1, a_2, ..., s\}$ of *G* such that (a) $S_i - a_i \in \mathfrak{T}_{n_i}(G)$ for some $n_i \in \omega \setminus \{1\}$; (b) $S = F \cup \bigcup_{i=1}^s S_i$; (c) $cl_{3_G}(S) = F \cup \bigcup_i cl_{3_G}(S_i)$ and each S_i is \mathfrak{Z}_G -dense in $G[N_i]$.

伺 ト く ヨ ト く ヨ ト

Example

Let G be an infinite abelian group.

(a) Every countably infinite subset of G is irreducible if G is torsion-free.

(b) $\mathfrak{T}_0(G) = \emptyset$ iff G is bounded.

(c) $\mathfrak{T}_n(G) = \emptyset$ for some n > 1 iff there exists a monomorphism $\bigoplus_{\omega} \mathbb{Z}(n) \hookrightarrow G$.

Theorem

Let *S* be an infinite subset of an abelian group *G*. Then there exist a finite $F \subseteq S$, infinite subsets $\{S_i : i = 1, 2, ..., s\}$ of *S* and a finite set $\{a_1, a_2, ..., s\}$ of *G* such that (a) $S_i - a_i \in \mathfrak{T}_{n_i}(G)$ for some $n_i \in \omega \setminus \{1\}$; (b) $S = F \cup \bigcup_{i=1}^s S_i$; (c) $cl_{\mathfrak{Z}_G}(S) = F \cup \bigcup_i cl_{\mathfrak{Z}_G}(S_i)$ and each S_i is \mathfrak{Z}_G -dense in $G[N_i]$.

直 ト イヨ ト イヨ ト

Example

Let G be an infinite abelian group.

(a) Every countably infinite subset of G is irreducible if G is torsion-free.

(b) $\mathfrak{T}_0(G) = \emptyset$ iff G is bounded.

(c) $\mathfrak{T}_n(G) = \emptyset$ for some n > 1 iff there exists a monomorphism $\bigoplus_{\omega} \mathbb{Z}(n) \hookrightarrow G$.

Theorem

Let S be an infinite subset of an abelian group G. Then there exist a finite $F \subseteq S$, infinite subsets $\{S_i : i = 1, 2, ..., s\}$ of S and a finite set $\{a_1, a_2, ..., s\}$ of G such that (a) $S_i - a_i \in \mathfrak{T}_{n_i}(G)$ for some $n_i \in \omega \setminus \{1\}$; (b) $S = F \cup \bigcup_{i=1}^s S_i$; (c) $cl_{\mathfrak{Z}_G}(S) = F \cup \bigcup_i cl_{\mathfrak{Z}_G}(S_i)$ and each S_i is \mathfrak{Z}_G -dense in $G[N_i]$.