Uniform conciseness of outer commutator words

Gustavo A. Fernández-Alcober (jointly with Marta Morigi)
University of the Basque Country, Bilbao
Ischia Group Theory 2010
April 16th, 2010

A question of Philip Hall

A question of Philip Hall

Hall's question

Let ω be a group word, and let G be a group. If ω takes finitely many values in G, is the verbal subgroup $\omega(G)$ finite?

A question of Philip Hall

Hall's question

Let ω be a group word, and let G be a group. If ω takes finitely many values in G, is the verbal subgroup $\omega(G)$ finite?

Recall that $\omega(G)$ is the subgroup generated by all values of ω in G.

A question of Philip Hall

Hall's question

Let ω be a group word, and let G be a group. If ω takes finitely many values in G, is the verbal subgroup $\omega(G)$ finite?

Recall that $\omega(G)$ is the subgroup generated by all values of ω in G.

Definition

We say that ω is concise if the answer to Hall's question is positive for that word.

A question of Philip Hall

Hall's question

Let ω be a group word, and let G be a group. If ω takes finitely many values in G, is the verbal subgroup $\omega(G)$ finite?

Recall that $\omega(G)$ is the subgroup generated by all values of ω in G.

Definition

We say that ω is concise if the answer to Hall's question is positive for that word.

So Hall's question amounts to asking: are all words concise?

Some concise words

Some concise words

The following words are concise:

Some concise words

The following words are concise:

- Words lying outside the commutator subgroup of the free group.
(P. Hall, 1950's?)

Some concise words

The following words are concise:

- Words lying outside the commutator subgroup of the free group.
(P. Hall, 1950's?)
- The lower central words $\gamma_{i}=\left[x_{1}, x_{2}, \ldots, x_{i}\right]$. (P. Hall, 1950's?)

The following words are concise:

- Words lying outside the commutator subgroup of the free group.
(P. Hall, 1950's?)
- The lower central words $\gamma_{i}=\left[x_{1}, x_{2}, \ldots, x_{i}\right]$. (P. Hall, 1950's?)
- The derived words δ_{i}, defined recursively by $\delta_{0}=x_{1}$ and

$$
\delta_{i}=\left[\delta_{i-1}\left(x_{1}, \ldots, x_{2^{i-1}}\right), \delta_{i-1}\left(x_{2^{i-1}+1}, \ldots, x_{2^{i}}\right)\right]
$$

(Turner-Smith, 1964)
For example, $\delta_{1}=\left[x_{1}, x_{2}\right]$ and $\delta_{2}=\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]$. The corresponding verbal subgroups are the derived subgroups $G^{(i)}$.

Outer commutator words

Outer commutator words

Definition

An outer commutator word is a word which is formed by nesting commutators, but using always different indeterminates.

Outer commutator words

Definition

An outer commutator word is a word which is formed by nesting commutators, but using always different indeterminates.

- The lower central words and the derived words are outer commutator words. For convenience, we also consider indeterminates as outer commutator words (zero commutators).

Outer commutator words

Definition

An outer commutator word is a word which is formed by nesting commutators, but using always different indeterminates.

- The lower central words and the derived words are outer commutator words. For convenience, we also consider indeterminates as outer commutator words (zero commutators).
- $\left[\left[x_{1}, x_{2}\right],\left[\left[x_{3}, x_{4}\right],\left[x_{5}, x_{6}\right]\right], x_{7}\right]$ is an outer commutator word, but the Engel word $[x, y, y, y]$ is not.

Outer commutator words

Definition

An outer commutator word is a word which is formed by nesting commutators, but using always different indeterminates.

- The lower central words and the derived words are outer commutator words. For convenience, we also consider indeterminates as outer commutator words (zero commutators).
- $\left[\left[x_{1}, x_{2}\right],\left[\left[x_{3}, x_{4}\right],\left[x_{5}, x_{6}\right]\right], x_{7}\right]$ is an outer commutator word, but the Engel word $[x, y, y, y]$ is not.
- Every outer commutator word ω (other than an indeterminate) can be written as $\omega=[\alpha, \beta]$ with α, β also outer commutator words.

Outer commutator words

Definition

An outer commutator word is a word which is formed by nesting commutators, but using always different indeterminates.

- The lower central words and the derived words are outer commutator words. For convenience, we also consider indeterminates as outer commutator words (zero commutators).
- $\left[\left[x_{1}, x_{2}\right],\left[\left[x_{3}, x_{4}\right],\left[x_{5}, x_{6}\right]\right], x_{7}\right]$ is an outer commutator word, but the Engel word $[x, y, y, y]$ is not.
- Every outer commutator word ω (other than an indeterminate) can be written as $\omega=[\alpha, \beta]$ with α, β also outer commutator words.

Theorem (Jeremy Wilson, 1974)

All outer commutator words are concise.

Outer commutator words

Definition

An outer commutator word is a word which is formed by nesting commutators, but using always different indeterminates.

- The lower central words and the derived words are outer commutator words. For convenience, we also consider indeterminates as outer commutator words (zero commutators).
- $\left[\left[x_{1}, x_{2}\right],\left[\left[x_{3}, x_{4}\right],\left[x_{5}, x_{6}\right]\right], x_{7}\right]$ is an outer commutator word, but the Engel word $[x, y, y, y]$ is not.
- Every outer commutator word ω (other than an indeterminate) can be written as $\omega=[\alpha, \beta]$ with α, β also outer commutator words.

Theorem (Jeremy Wilson, 1974)

All outer commutator words are concise.

However, not all words are concise. (Ivanov, 1989)

Quantitative conciseness via ultraproducts

Quantitative conciseness via ultraproducts

Let ω be a concise word. Is there a function f such that, whenever ω takes m values in a group G, we have $|\omega(G)| \leq f(m)$?

Quantitative conciseness via ultraproducts

Let ω be a concise word. Is there a function f such that, whenever ω takes m values in a group G, we have $|\omega(G)| \leq f(m)$?

One can see that the answer is positive by way of contradiction: assume there exists a family $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ of groups such that

- ω takes at most m values in every G_{n}.
- $\lim _{n \rightarrow \infty}\left|\omega\left(G_{n}\right)\right|=\infty$.

Quantitative conciseness via ultraproducts

Let ω be a concise word. Is there a function f such that, whenever ω takes m values in a group G, we have $|\omega(G)| \leq f(m)$?

One can see that the answer is positive by way of contradiction: assume there exists a family $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ of groups such that

- ω takes at most m values in every G_{n}.
- $\lim _{n \rightarrow \infty}\left|\omega\left(G_{n}\right)\right|=\infty$.

Then the ultraproduct U of these groups with respect to a non-principal ultrafilter has at most m values of ω, but $|\omega(U)|=\infty$.

Quantitative conciseness via ultraproducts

Let ω be a concise word. Is there a function f such that, whenever ω takes m values in a group G, we have $|\omega(G)| \leq f(m)$?

One can see that the answer is positive by way of contradiction: assume there exists a family $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ of groups such that

- ω takes at most m values in every G_{n}.
- $\lim _{n \rightarrow \infty}\left|\omega\left(G_{n}\right)\right|=\infty$.

Then the ultraproduct U of these groups with respect to a non-principal ultrafilter has at most m values of ω, but $|\omega(U)|=\infty$.

However, neither the ultraproduct argument nor Jeremy Wilson's proof provide an explicit expression for the order of $\omega(G)$ when ω is an outer commutator word.

Outer commutator words are uniformly concise

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)
Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)

Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

- If G is soluble, $|\omega(G)| \leq 2^{m-1}$.

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)

Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

- If G is soluble, $|\omega(G)| \leq 2^{m-1}$.
- If G is not soluble, $|\omega(G)| \leq[(m-1)(m-2)]^{m-1}$.

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)

Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

- If G is soluble, $|\omega(G)| \leq 2^{m-1}$.
- If G is not soluble, $|\omega(G)| \leq[(m-1)(m-2)]^{m-1}$.
- Theorem A was essentially obtained by Brazil, Krasilnikov and Shumyatsky for lower central words and for derived words.

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)

Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

- If G is soluble, $|\omega(G)| \leq 2^{m-1}$.
- If G is not soluble, $|\omega(G)| \leq[(m-1)(m-2)]^{m-1}$.
- Theorem A was essentially obtained by Brazil, Krasilnikov and Shumyatsky for lower central words and for derived words.
- The most important thing in Theorem A is that the bounds are independent of the outer commutator word. This is why we say that outer commutator words are uniformly concise.

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)

Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

- If G is soluble, $|\omega(G)| \leq 2^{m-1}$.
- If G is not soluble, $|\omega(G)| \leq[(m-1)(m-2)]^{m-1}$.
- Theorem A was essentially obtained by Brazil, Krasilnikov and Shumyatsky for lower central words and for derived words.
- The most important thing in Theorem A is that the bounds are independent of the outer commutator word. This is why we say that outer commutator words are uniformly concise.
- Theorem A does not depend on ultraproducts.

Outer commutator words are uniformly concise

Theorem A (F-A, Morigi)

Let ω be an outer commutator word and let G be a group in which ω takes m different values. Then:

- If G is soluble, $|\omega(G)| \leq 2^{m-1}$.
- If G is not soluble, $|\omega(G)| \leq[(m-1)(m-2)]^{m-1}$.
- Theorem A was essentially obtained by Brazil, Krasilnikov and Shumyatsky for lower central words and for derived words.
- The most important thing in Theorem A is that the bounds are independent of the outer commutator word. This is why we say that outer commutator words are uniformly concise.
- Theorem A does not depend on ultraproducts.
- Our proof of Theorem A is also independent of Wilson's result about the conciseness of outer commutator words.

About the proof of Theorem A

About the proof of Theorem A

The proof relies on the following result, which does not require the finiteness of the set of ω-values. It was proved by Brazil, Krasilnikov and Shumyatsky for derived words.

About the proof of Theorem A

The proof relies on the following result, which does not require the finiteness of the set of ω-values. It was proved by Brazil, Krasilnikov and Shumyatsky for derived words.

Theorem B (F-A, Morigi)

Let ω be an outer commutator word, and let G be a soluble group. Then there exists a series of subgroups from 1 to $\omega(G)$ such that:

About the proof of Theorem A

The proof relies on the following result, which does not require the finiteness of the set of ω-values. It was proved by Brazil, Krasilnikov and Shumyatsky for derived words.

Theorem B (F-A, Morigi)

Let ω be an outer commutator word, and let G be a soluble group. Then there exists a series of subgroups from 1 to $\omega(G)$ such that:

- All subgroups of the series are normal in G.
- Every section of the series is abelian and can be generated by values of ω all of whose powers are again values of ω (in the section).

Representation of outer commutator words by trees

Representation of outer commutator words by trees

We can associate a binary tree to every outer commutator word ω by recursion:

Representation of outer commutator words by trees

We can associate a binary tree to every outer commutator word ω by recursion:

- If ω is a single indeterminate, then consider an isolated vertex.

Representation of outer commutator words by trees

We can associate a binary tree to every outer commutator word ω by recursion:

- If ω is a single indeterminate, then consider an isolated vertex.
- Otherwise, if $\omega=[\alpha, \beta]$, draw the tree of ω by connecting the trees of α and β with a new vertex below them.

Representation of outer commutator words by trees

We can associate a binary tree to every outer commutator word ω by recursion:

- If ω is a single indeterminate, then consider an isolated vertex.
- Otherwise, if $\omega=[\alpha, \beta]$, draw the tree of ω by connecting the trees of α and β with a new vertex below them.

Representation of outer commutator words by trees

We can associate a binary tree to every outer commutator word ω by recursion:

- If ω is a single indeterminate, then consider an isolated vertex.
- Otherwise, if $\omega=[\alpha, \beta]$, draw the tree of ω by connecting the trees of α and β with a new vertex below them.

Some examples

Some examples

The following are the trees of γ_{2}, γ_{3}, and γ_{4} :

Some examples

The following are the trees of γ_{2}, γ_{3}, and γ_{4} :

Some examples

The following are the trees of γ_{2}, γ_{3}, and γ_{4} :

Some examples

The following are the trees of γ_{2}, γ_{3}, and γ_{4} :

and of δ_{2} and δ_{3} :

Some examples

The following are the trees of γ_{2}, γ_{3}, and γ_{4} :

and of δ_{2} and δ_{3} :

Some examples

The following are the trees of γ_{2}, γ_{3}, and γ_{4} :

and of δ_{2} and δ_{3} :

Height and defect

Height and defect

Definition

Let ω be an outer commutator word. Then:

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Observe that the derived word δ_{h} has height h and its tree is the 'complete' binary tree of height h.

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Observe that the derived word δ_{h} has height h and its tree is the 'complete' binary tree of height h.

- The defect of ω is the number of vertices that we need to add to its tree in order to obtain the tree of δ_{h}.

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Observe that the derived word δ_{h} has height h and its tree is the 'complete' binary tree of height h.

- The defect of ω is the number of vertices that we need to add to its tree in order to obtain the tree of δ_{h}.

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Observe that the derived word δ_{h} has height h and its tree is the 'complete' binary tree of height h.

- The defect of ω is the number of vertices that we need to add to its tree in order to obtain the tree of δ_{h}.

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Observe that the derived word δ_{h} has height h and its tree is the 'complete' binary tree of height h.

- The defect of ω is the number of vertices that we need to add to its tree in order to obtain the tree of δ_{h}.

[[$\left.\left.\gamma_{3}, \gamma_{2}\right], \delta_{2}\right]$

Height and defect

Definition

Let ω be an outer commutator word. Then:

- The height h of ω is the height of its tree.

Observe that the derived word δ_{h} has height h and its tree is the 'complete' binary tree of height h.

- The defect of ω is the number of vertices that we need to add to its tree in order to obtain the tree of δ_{h}.

[$\left.\left[\gamma_{3}, \gamma_{2}\right], \delta_{2}\right]$
The word $\left[\left[\gamma_{3}, \gamma_{2}\right], \delta_{2}\right]$ has height 4 and defect 14 .

Strategy for the proof of Theorem B

Strategy for the proof of Theorem B

Theorem B

Let ω be an outer commutator word, and G a soluble group. Then there is a series of subgroups from 1 to $\omega(G)$, all normal in G, such that every section of the series is abelian and can be generated by values of ω all of whose powers are values of ω.

Strategy for the proof of Theorem B

Abstract

Theorem B Let ω be an outer commutator word, and G a soluble group. Then there is a series of subgroups from 1 to $\omega(G)$, all normal in G, such that every section of the series is abelian and can be generated by values of ω all of whose powers are values of ω.

If a series of normal subgroups of G satisfies the last condition, we call it a PCG-series (power-closed generated) w.r.t. ω.

Strategy for the proof of Theorem B

Abstract

Theorem B Let ω be an outer commutator word, and G a soluble group. Then there is a series of subgroups from 1 to $\omega(G)$, all normal in G, such that every section of the series is abelian and can be generated by values of ω all of whose powers are values of ω.

If a series of normal subgroups of G satisfies the last condition, we call it a PCG-series (power-closed generated) w.r.t. ω.
Thus we need to a PCG-series from 1 to $\omega(G)$ w.r.t. ω.

Strategy for the proof of Theorem B

Theorem B

Let ω be an outer commutator word, and G a soluble group. Then there is a series of subgroups from 1 to $\omega(G)$, all normal in G, such that every section of the series is abelian and can be generated by values of ω all of whose powers are values of ω.

If a series of normal subgroups of G satisfies the last condition, we call it a PCG-series (power-closed generated) w.r.t. ω.
Thus we need to a PCG-series from 1 to $\omega(G)$ w.r.t. ω.

- Argue by induction on the height h and the defect d of ω. If $h=0$ or $d=0$ (derived word), the result holds.

Strategy for the proof of Theorem B

Theorem B

Let ω be an outer commutator word, and G a soluble group. Then there is a series of subgroups from 1 to $\omega(G)$, all normal in G, such that every section of the series is abelian and can be generated by values of ω all of whose powers are values of ω.

If a series of normal subgroups of G satisfies the last condition, we call it a PCG-series (power-closed generated) w.r.t. ω.
Thus we need to a PCG-series from 1 to $\omega(G)$ w.r.t. ω.

- Argue by induction on the height h and the defect d of ω. If $h=0$ or $d=0$ (derived word), the result holds.
- By the induction hypothesis, for every word φ of height h and defect $<d$, there is a PCG-series from 1 to $\varphi(G)$ w.r.t. φ.

Strategy for the proof of Theorem B

Theorem B

Let ω be an outer commutator word, and G a soluble group. Then there is a series of subgroups from 1 to $\omega(G)$, all normal in G, such that every section of the series is abelian and can be generated by values of ω all of whose powers are values of ω.

If a series of normal subgroups of G satisfies the last condition, we call it a PCG-series (power-closed generated) w.r.t. ω.
Thus we need to a PCG-series from 1 to $\omega(G)$ w.r.t. ω.

- Argue by induction on the height h and the defect d of ω. If $h=0$ or $d=0$ (derived word), the result holds.
- By the induction hypothesis, for every word φ of height h and defect $<d$, there is a PCG-series from 1 to $\varphi(G)$ w.r.t. φ.
- If every value of φ in G is also a value of ω, this is also a PCG-series w.r.t. ω, and we may assume $\varphi(G)=1$.

Extension of words

Extension of words

Definition

Let φ and ω be two outer commutator words. We say that φ is an extension of ω, if the tree of φ is an upward extension of the tree of ω.

Extension of words

Definition

Let φ and ω be two outer commutator words. We say that φ is an extension of ω, if the tree of φ is an upward extension of the tree of ω.

Extension of words

Definition

Let φ and ω be two outer commutator words. We say that φ is an extension of ω, if the tree of φ is an upward extension of the tree of ω.

An extension of $\left[\gamma_{4}, \delta_{2}\right]$: $\left[\left[\gamma_{3}, \gamma_{3}\right],\left[\delta_{2}, \gamma_{3}\right]\right]$.

Extension of words

Definition

Let φ and ω be two outer commutator words. We say that φ is an extension of ω, if the tree of φ is an upward extension of the tree of ω.

An extension of $\left[\gamma_{4}, \delta_{2}\right]$: $\left[\left[\gamma_{3}, \gamma_{3}\right],\left[\delta_{2}, \gamma_{3}\right]\right]$.

Making an extension φ of ω corresponds to replacing some indeterminates of ω by other outer commutator words. Hence every value of φ is also a value of ω.

Gustavo A. Fernández-Alcober (jointly with Marta Morigi) Uniform conciseness of outer commutator words

- Let Φ be the (finite) set of all outer commutator words of height h which are a proper extension of ω.
- Let Φ be the (finite) set of all outer commutator words of height h which are a proper extension of ω.
- We may assume that $\varphi(G)=1$ for every $\varphi \in \Phi$.
- Let Φ be the (finite) set of all outer commutator words of height h which are a proper extension of ω.
- We may assume that $\varphi(G)=1$ for every $\varphi \in \Phi$.
- Let now $g \in G$ be a value of ω. If $\omega=[\alpha, \beta]$, we can write $g=[a, b]$, where a is a value of α and b is a value β. Then:
- Let Φ be the (finite) set of all outer commutator words of height h which are a proper extension of ω.
- We may assume that $\varphi(G)=1$ for every $\varphi \in \Phi$.
- Let now $g \in G$ be a value of ω. If $\omega=[\alpha, \beta]$, we can write $g=[a, b]$, where a is a value of α and b is a value β. Then:

$$
g^{n} \equiv\left[a^{n}, b\right](\bmod [\omega(G), \alpha(G)])
$$

Taking powers inside ω

- Let Φ be the (finite) set of all outer commutator words of height h which are a proper extension of ω.
- We may assume that $\varphi(G)=1$ for every $\varphi \in \Phi$.
- Let now $g \in G$ be a value of ω. If $\omega=[\alpha, \beta]$, we can write $g=[a, b]$, where a is a value of α and b is a value β. Then:

$$
g^{n} \equiv\left[a^{n}, b\right](\bmod [\omega(G), \alpha(G)])
$$

- If $[\omega(G), \alpha(G)]$ is contained in $\prod_{\varphi \in \Phi} \varphi(G)$, then $[\omega(G), \alpha(G)]=1$, and $g^{n}=\left[a^{n}, b\right]$, and we have taken the power 'inside the first commutator'.

Taking powers inside ω

- Let Φ be the (finite) set of all outer commutator words of height h which are a proper extension of ω.
- We may assume that $\varphi(G)=1$ for every $\varphi \in \Phi$.
- Let now $g \in G$ be a value of ω. If $\omega=[\alpha, \beta]$, we can write $g=[a, b]$, where a is a value of α and b is a value β. Then:

$$
g^{n} \equiv\left[a^{n}, b\right](\bmod [\omega(G), \alpha(G)])
$$

- If $[\omega(G), \alpha(G)]$ is contained in $\prod_{\varphi \in \Phi} \varphi(G)$, then $[\omega(G), \alpha(G)]=1$, and $g^{n}=\left[a^{n}, b\right]$, and we have taken the power 'inside the first commutator'.
- By applying the induction to α (a word of smaller height), we can take the power inside to the position of an indeterminate, and g^{n} is a value of ω.

Gustavo A. Fernández-Alcober (jointly with Marta Morigi) Uniform conciseness of outer commutator words

The three subgroup lemma

The three subgroup lemma

If $L, M, N \unlhd G$, then $[L, M, N] \leq[M, N, L][N, L, M]$.

The three subgroup lemma

The three subgroup lemma

If $L, M, N \unlhd G$, then $[L, M, N] \leq[M, N, L][N, L, M]$.

- Thus, if $\omega=[\alpha, \beta]$ and φ are outer commutator words,

$$
[\omega(G), \varphi(G)] \leq \pi^{(1)}(G) \pi^{(2)}(G)
$$

where $\pi^{(1)}=[[\alpha, \varphi], \beta]$ and $\pi^{(2)}=[\alpha,[\beta, \varphi]]$.

The three subgroup lemma

The three subgroup lemma

If $L, M, N \unlhd G$, then $[L, M, N] \leq[M, N, L][N, L, M]$.

- Thus, if $\omega=[\alpha, \beta]$ and φ are outer commutator words,

$$
[\omega(G), \varphi(G)] \leq \pi^{(1)}(G) \pi^{(2)}(G)
$$

where $\pi^{(1)}=[[\alpha, \varphi], \beta]$ and $\pi^{(2)}=[\alpha,[\beta, \varphi]]$.

- The tree of $\pi^{(1)}$ is very similar to that of ω : replace the tree on top of vertex α with the tree of $[\alpha, \varphi]$. For example:

The three subgroup lemma

The three subgroup lemma

If $L, M, N \unlhd G$, then $[L, M, N] \leq[M, N, L][N, L, M]$.

- Thus, if $\omega=[\alpha, \beta]$ and φ are outer commutator words,

$$
[\omega(G), \varphi(G)] \leq \pi^{(1)}(G) \pi^{(2)}(G)
$$

where $\pi^{(1)}=[[\alpha, \varphi], \beta]$ and $\pi^{(2)}=[\alpha,[\beta, \varphi]]$.

- The tree of $\pi^{(1)}$ is very similar to that of ω : replace the tree on top of vertex α with the tree of $[\alpha, \varphi]$. For example:

$\left[\gamma_{3}, \gamma_{3}\right]$

[[$\left.\left.\gamma_{3}, \gamma_{2}\right], \gamma_{3}\right]$

The three subgroup lemma

The three subgroup lemma

If $L, M, N \unlhd G$, then $[L, M, N] \leq[M, N, L][N, L, M]$.

- Thus, if $\omega=[\alpha, \beta]$ and φ are outer commutator words,

$$
[\omega(G), \varphi(G)] \leq \pi^{(1)}(G) \pi^{(2)}(G)
$$

where $\pi^{(1)}=[[\alpha, \varphi], \beta]$ and $\pi^{(2)}=[\alpha,[\beta, \varphi]]$.

- The tree of $\pi^{(1)}$ is very similar to that of ω : replace the tree on top of vertex α with the tree of $[\alpha, \varphi]$. For example:

- Thus $\pi^{(1)}$ is obtained from the vertex α and $\pi^{(2)}$ comes from β.

Iterating to sections

Iterating to sections

Now the idea is to iterate the process of the previous slide in order to reach higher vertices of the tree. Which are the sets of vertices that we get to? In which subgroup will the commutator $[\omega(G), \varphi(G)]$ then be embedded?

Iterating to sections

Now the idea is to iterate the process of the previous slide in order to reach higher vertices of the tree. Which are the sets of vertices that we get to? In which subgroup will the commutator $[\omega(G), \varphi(G)]$ then be embedded?

By a section we mean a set of vertices which is obtained when we cut the tree from side to side:

A section S of $\left[\left[\gamma_{3}, \gamma_{3}\right], \delta_{2}\right]$.

The tree subgroup lemma. Conclusion

The tree subgroup lemma. Conclusion
The tree subgroup lemma
Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

The tree subgroup lemma. Conclusion
The tree subgroup lemma
Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.
Then $[\omega(G), \varphi(G)] \leq \prod_{v \in S} \pi^{(v)}(G)$.

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.
Then $[\omega(G), \varphi(G)] \leq \prod_{v \in S} \pi^{(v)}(G)$.

Now there are a section S of the tree of ω and a word δ_{i} such that:

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.
Then $[\omega(G), \varphi(G)] \leq \prod_{v \in S} \pi^{(v)}(G)$.

Now there are a section S of the tree of ω and a word δ_{i} such that:

- $\alpha(G) \leq \delta_{i}(G)$, and so $[\omega(G), \alpha(G)] \leq\left[\omega(G), \delta_{i}(G)\right]$.

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.
Then $[\omega(G), \varphi(G)] \leq \prod_{v \in S} \pi^{(v)}(G)$.

Now there are a section S of the tree of ω and a word δ_{i} such that:

- $\alpha(G) \leq \delta_{i}(G)$, and so $[\omega(G), \alpha(G)] \leq\left[\omega(G), \delta_{i}(G)\right]$.
- If we take $\varphi=\delta_{i}$ in the Tree Subgroup Lemma, then $\pi^{(v)}(G) \leq \rho^{(v)}(G)$ for some words $\rho^{(v)} \in \Phi$.

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.
Then $[\omega(G), \varphi(G)] \leq \prod_{v \in S} \pi^{(v)}(G)$.

Now there are a section S of the tree of ω and a word δ_{i} such that:

- $\alpha(G) \leq \delta_{i}(G)$, and so $[\omega(G), \alpha(G)] \leq\left[\omega(G), \delta_{i}(G)\right]$.
- If we take $\varphi=\delta_{i}$ in the Tree Subgroup Lemma, then $\pi^{(v)}(G) \leq \rho^{(v)}(G)$ for some words $\rho^{(v)} \in \Phi$.
- Thus $[\omega(G), \alpha(G)] \leq \prod_{\varphi \in \Phi} \varphi(G)$ and we are done.

The tree subgroup lemma. Conclusion

The tree subgroup lemma

Let ω and φ be two outer commutator words, and let S be a section of the tree T of ω. For every $v \in S$, we define:

- T_{v} is the subtree of T on top of v, and ω_{v} is the corresponding word.
- $\pi^{(v)}$ is the word obtained from T by replacing T_{v} with the tree of $\left[\omega_{v}, \varphi\right]$.
Then $[\omega(G), \varphi(G)] \leq \prod_{v \in S} \pi^{(v)}(G)$.

Now there are a section S of the tree of ω and a word δ_{i} such that:

- $\alpha(G) \leq \delta_{i}(G)$, and so $[\omega(G), \alpha(G)] \leq\left[\omega(G), \delta_{i}(G)\right]$.
- If we take $\varphi=\delta_{i}$ in the Tree Subgroup Lemma, then $\pi^{(v)}(G) \leq \rho^{(v)}(G)$ for some words $\rho^{(v)} \in \Phi$.
- Thus $[\omega(G), \alpha(G)] \leq \prod_{\varphi \in \Phi} \varphi(G)$ and we are done.

The existence of S and δ_{i} is obtained again from the tree of ω.

