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I. Introduction.

We start with the basic definition.

Definition. A group G is called a

Camina group

if G′ 6= G, and for each x ∈ G \ G′ the following

equation holds:

xG = x{G′} ,

where xG = {xg | g ∈ G} is the conjugacy class

of x in G and x{G′} denotes the set {xg′ | g′ ∈ G′}.

It is well known that in an arbitrary group

xG ⊆ x{G′} for each x ∈ G .

In Camina groups the equality

xG = x{G′}

holds for each
x ∈ G \ G′ .
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The class of finite Camina groups was introduced

by Alan Camina in 1978 and it had been extensively

studied and used since then, in particular by

I. D. MacDonald, D. Chillag, C. M. Scoppola,

A. Mann, I. M. Isaacs and R. Dark.

Most of these authors considered a more general

situation, the so-called ”Camina-Pairs”.

As far as we know,

infinite Camina groups,

which are the topic of this lecture, had not been

investigated before.
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II. Finite Camina groups.

Camina proved in his 1978 paper that if G is a

finite Camina group, then one of the following holds:

• G is a Frobenius group with an abelian
complement;

• G′ is a p-group for some prime p;

• G/G′ is a p-group for some prime p.

In 1984, Chillag and MacDonald proved that

if G is a finite Camina group and G′ is a p-group,

then also G/G′ is a p-group.
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The complete description of finite Camina

groups was obtained by Dark and Scoppola in 1996:

Theorem 1. A finite nonabelian group G is a

Camina group if and only if one of the following

holds.

• G is a Camina p-group of nilpotence class 2 or 3.

• G is a Frobenius group with cyclic complements.

• G is a Frobenius group with complements

isomorphic to the quaternion group of order 8.

In particular, finite Camina groups are solvable,

of Fitting length at most 2.
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III. Examples of
infinite Camina groups.

There are many examples of infinite nonabelian

Camina groups.

They can be much more complicated than the

comparatively simple finite Camina groups.

In particular, as will be shown below, there exist

nonsolvable infinite Camina groups.

We are grateful to Professor A. Ol’shanskii

for the nonsolvable examples.

We continue with examples of families of

infinite Camina groups.
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Example 1.

• Infinite groups G satisfying |G′| = p, a prime

and G′ = Z(G).

Indeed, if

x ∈ G \ G′ = G \ Z(G),

then

{x} ⊂ xG ⊆ x{G′} and |xG| divides |x{G′}| = p.

Hence

xG = x{G′} for each x ∈ G \ G′ .

Thus these groups are infinite Camina groups.

They are of course nilpotent groups of class 2.

In particular, the infinite extraspecial p-groups

are Camina groups.
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Example 2.

• Semidirect products

G = A〈x〉,

where

A2 = A is an infinite group, |x| = 2

and
ax = a−1 for each a ∈ A .

Indeed, A is abelian, G′ ≤ A and

[a, x] = a−1ax = a−2 for each a ∈ A .

Since A2 = A, each b ∈ A satisfies

b = a−2 = [a, x] for some a ∈ A .

This implies that A ≤ G′, yielding

G′ = A and G \ G′ = Ax .
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In order to show that G is a Camina group,

we must show that

x{A} = x{G′} = xG .

Let a ∈ A. Since A = A2, it follows that

a = u2 for some u ∈ A

and hence

xa = xu2 = (xu)u = u−1xu = xu .

Thus x{A} ⊆ xG, yielding our claim.

If A is the Prüfer group of type 2∞, then G

is an infinite Camina group which is solvable,

but it is neither nilpotent nor Frobenius.

Let p denote a prime. An infinite abelian group

is called a Prüfer group of type p∞, if it is

isomorphic to the p-primary component of Q/Z.
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Example 3.

• It is possible to modify the construction
given by Ol’shanskii in his book

”Geometry of Defining Relations in Groups”

of infinite groups of a finite prime exponent p
(where p is big enough), in which
all subgroups of order p are conjugate,

and to construct

infinite nonsolvable groups G

of exponent p with G′ 6= G,

such that

all subgroups of order p not contained in G′

are conjugate.

These groups are Camina groups.
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In order to prove that such G is a Camina group,

we must show that if x ∈ G \ G′ and a ∈ G′,

then
xa = xg for some g ∈ G .

Since x, xa ∈ G \ G′, if follows by the properties of

G that

〈xa〉 = 〈x〉g for some g ∈ G .

Thus

xa = (xg)n for some integer n

and it follows from

xG′ = (xa)G′ = (xg)nG′ = (x[x, g])nG′ = xnG′

and from |x| = p that n ≡ 1 (mod p).

Hence
xa = (xg)n = xg,

as required.

As mentioned above, we are grateful to Professor

Ol’shanskii for this important information.
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IV. Preliminary results.

First we mention a basic lemma.

Lemma 2. Let G be a nonabelian Camina group.

Then the following statements hold.

(1) If N E G and N ≤ G′, then also G/N

is a Camina group.

(2) Z(G) ≤ G′ and G/Z(G) is a Camina group.

(3) Either G is nilpotent or Z∞(G) ≤ G′ and

G/Z∞(G) is a Camina group.
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Proof of (2). Suppose that there exists

x ∈ Z(G) \ G′ .

Since G is a Camina group, we have

xG = x{G′} .

But then
1 = |xG| = |G′|

and G is abelian, a contradiction.

Hence Z(G) ≤ G′ and by (1) G/Z(G) is a

Camina group. �
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The next corollary deals with the influence

of the structure of G/Z(G) on the structure

of a nonabelian Camina group G.

Corollary 3. Let G be a nonabelian Camina group.

Then the following statements hold.

(1) If G/Z(G) is finite, then also G is finite.

(2) If G/Z(G) is a locally finite π-group,

where π is a set of primes, then also

G is a locally finite π-group.

(3) If G/Z(G) is a Černikov group, then also

G is a Černikov group.

A group is called a Černikov group if it is an

extension of a finite direct product of Prüfer

groups by a finite group.
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Proof of (2). Since G/Z(G) is a locally finite

π-group, it follows by the Corollary on page 102

of Derek Robinson’s book ”Finiteness Conditions

and Generalized Soluble Groups”, part 1,

that also G′ is a locally finite π-group. Since,

by Lemma 2(2), Z(G) ≤ G′, it follows that Z(G),

and hence also G, are locally finite π-groups. �

15



We conclude this section with results concerning

Camina groups with a finite commutator

subgroup.

We begin with the following basic theorem.

Theorem 4. Let G be a nonabelian group with

G′ finite. Then G is a Camina group if and only

if one of the following holds.

(1) G is a finite Camina group.

(2) G is an infinite nilpotent p-group of class 2

and of exponent p or p2, with Z(G) = G′,

and for any maximal subgroup H of G′,

G/H is an extraspecial group.
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Theorem 4 yields the following corollary.

Corollary 5. Let G be a nonabelian finitely

generated Camina group with G′ finite.

Then G is a finite group.

Proof. Supose that G is an infinite group.

Then, by Theorem 4, G is a finitely generated

torsion nilpotent group, hence finite,

a contradiction. �
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V. Main results.

First we consider locally finite Camina groups.

Theorem 6. Let G be a nonabelian locally finite

Camina group. Then one of the following holds.

(1) G/G′ is a p-group, for a suitable prime p.

(2) G′ is a nilpotent group, and either G′ is a

p-group (p a prime), or G/G′ is a locally

cyclic group.
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Next we deal with residually finite Camina

groups.

Theorem 7. Let G be a nonabelian residually finite

Camina group. Then one of the following holds.

(1) G is a finite p-group of nilpotency class ≤ 3.

(2) G is an infinite nilpotent p-group of class 2

and of exponent p or p2, with G′ = Z(G).

(3) G is a Frobenius group with the Frobenius

kernel G′ of nilpotency class h, where h

is a number depending only on |G/G′|,

and with finite cyclic Frobenius complements.

(4) G is a Frobenius group with an abelian

Frobenius kernel and with Frobenius

complements isomorphic to the quaternion

group Q8.

In any case G is solvable.
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Theorem 7 yields the following corollary.

Corollary 8. Let G be a nonabelian

polycyclic-by-finite Camina group. Then

G/G′ is finite.

Proof. Clearly G is finitely generated. Moreover,

G being polycyclic-by-finite implies, by an

extension of a result of Hirsh (see Exercises on

page 157 of D. Robinson’s book ”A Course in the

Group Theory”), that G is also residually finite.

Hence the corollary follows by Theorem 7, since

case (2) of that theorem is impossible, in view of

G being finitely generated. �
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We now state our major result concerning

finitely generated infinite Camina groups.

Theorem 9. Let G be a nonabelian finitely

generated infinite Camina group. Then

G is nonsolvable.

Equivalently, Theorem 9 implies that:

A nonabelian finitely generated solvable

Camina group if finite.

The proof of Theorem 9 is quite complicated.

We shall mention here only one preliminary result.
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The following proposition served as a step

in the proof of Theorem 9.

Proposition 10. Let G be a nonabelian finitely

generated solvable Camina group.

Then G/G′ is finite.

Proof. If G is nilpotent, then G is polycyclic and

G/G′ is finite by Corollary 8. So we may assume

that G is non-nilpotent. Then by Theorem 10.51

of Robinson’s book ”Finiteness Conditions and

Generalized Soluble Groups”, part 1, there exists

a normal subgroup N of G such that G/N is finite

and non-nilpotent.
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Thus N ∩ G′ < G′ and by Lemma 2(1),

G/(N ∩ G′) is a

finitely generated non-abelian Camina group

with the commutator subgroup

(G/(N ∩ G′))′ = G′/(N ∩ G′) ' G′N/N

which is isomorphic to a subgroup of G/N , and

hence finite. Consequently, by Corollary 5,

G/(N ∩ G′) is finite, which implies that

G/G′ is finite, as required. �
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Theorem 9 yields the following corollary.

Corollary 11. Let G be a finitely generated

nonabelian Camina group. Then the following

statements hold.

(1) If G is residually finite, then it is finite.

(2) If G is a linear group, then it is finite.

Proof of (1). Since G is residually finite, it

follows by Theorem 7 that G is solvable and hence

it is finite by Theorem 9. �
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Our last topic in this talk are periodic solvable

Camina groups G, with an infinite commutator

subgroup G′ satisfying one of the following

condition:

1. G′ satisfies the min-condition.

2. G′ is of a finite Prüfer rank.
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We start with the appropriate definitions.

Definitions.

(1) We say that a group G satisfies the min

condition if G satisfies the minimal

condition on subgroups.

(2) We say that a group G has a finite Prüfer

rank r if every finitely generated subgroup

of G can be generated by r elements and r is

the least such integer.

We also mention the following fact.

Proposition 12. A solvable group has a finite

Prüfer rank if and only if it has a series of finite

length whose factors are either infinite cyclic or

isomorphic to subgroups of Q/Z.
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We obtained the following results concerning

periodic solvable Camina groups G, with an

infinite commutator subgroup G′.

Theorem 13. Let G be a periodic solvable Camina

group and suppose that G′ is an infinite group.

Then the following statements hold.

(1) If G′ satisfies the min condition, then G/G′

is finite.

(2) If G′ is of finite Prüfer rank, then G/G′

is finite.
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In addition to Theorem 13, we also obtained

a complete characterization of the corresponding

groups.

We shall describe here only one of these

characterizations.

Theorem 21. Let G be a periodic solvable group

and assume that G′ is an infinite group, of finite

Prüfer rank. If G is a Camina group, then G/G′

is finite and one of the following holds.

(1) G is a Camina p-group satisfying the min

condition.

(2) G is a Frobenius group, with complements

which are either cyclic or isomorphic to the

quaternion group Q8.
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(3) G = AoK, where K is a finite abelian group,

A is direct product of finitely many Prüfer

pi-groups (where pi are primes, not

necessarily distinct), and CA(k) is finite for

any k ∈ K \ {1}.

(4) G = (B×C)oK, where K is a finite abelian

group, B × C is a nilpotent group, C o K is

a Frobenius group with the kernel C, B is a

direct product of finitely many Prüfer

pi-groups (pi primes), and CB(k) is finite

for any k ∈ K \ {1}.
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(5) G = (B × C)K, where B × C is normal in

G, K is a finite p-group (p a prime), C is

a p′-group, B is the direct product of finitely

many Prüfer p-groups, G/B is a Frobenius

group with the kernel (B × C)/B and with

complements which are either cyclic or

isomorphic to the quaternion group, and

CB(y) is finite for any y ∈ K \ B.

Conversely, if (1), (2), (3), (4) or (5) holds,

then G is a Camina group.

THE END
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