Twisted conjugacy in certain Artin Groups and Coxeter Groups

Arye Juhász

Department of Mathematics Technion, Israel Institute of Technology Haifa 32000, Israel

Dedicated to the memory of Karl Gruenberg

(1.1) Decision Problems

Let G be a group. Two of the basic decision problems are the

- (i) Word Problem (W.P.): given elements $g_1, g_2 \in G$, decide whether $g_1 = g_2$ in G (or $g_1g_2^{-1} = 1$). Undecidable, in general.
- (ii) The Conjugacy Problem (C.P.): given elements g_1 and g_2 in G, decide whether an element $h \in G$ exists such that $h^{-1}g_1h = g_2$. The element h is a conjugator.

(1.2) Decision Problems in embedded subgroups

Let K_1 be a group, α an embedding of K_1 into G. Let $K = \alpha(K_1)$. If G has solvable W.P. then clearly K has. However, it is possible that G has solvable C.P. but K has unsolvable C.P. (Example due to Don Collins and Charles Miller, Proc. London. 34(3)).

Definition

 α is a *Frattini embedding* if for every $u, v \in K$ they are conjugate by an element of G if and only if they are conjugate by an element of K. α is a Frattini embedding \Longrightarrow if G has solvable C.P. then K_1 has a solvable C.P.

(1.3) Twisted Conjugacy Problem (T.C.P.)

Let $\sigma \in Aut(G)$. Let $a, b \in G$.

- (i) T.C.P.: Decide whether an element $h \in G$ exists such that $h^{-1}a(h)^{\sigma} = b$. We call $h \neq \sigma$ -conjugator of a to b.
- (ii) Let K be a σ-invariant subgroup of G. K is σ-Frattini embedded in G if for every u, v ∈ K, they are σ-conjugate by an element of G if and only if they are σ-conjugate by an element of K.

(1.4) Artin Groups

- (i) Standard Presentation of G. $\langle x_1, \ldots, x_n | R_{ij}, 1 \leq i < j \leq n \rangle$, where either $R_{ij} = 1$ or $|R_{ij}| = 2n_{ij}$ and $R_{ij} : U = V$, where U is an initial subword of $(x_i x_j)^{n_{ij}}$ and V is an initial subword of $(x_j x_i)^{n_{ij}}$ of length n_{ij} .
- (ii) Associated graph Γ : vertices x_1, \ldots, x_n , if $R_{ij} \neq 1$ then x_i and x_j are connected by an edge labeled n_{ij} .

The main result

Our main result relies heavily on the precise description of the automorphism group of the class of Artin groups with which we deal, due to John Crisp: "Automorphisms and abstract commen-surators of 2-dimensional Artin groups." Geometry and Topology 9 (2005) 1381-1441. The Main Result is the following

Theorem Let G be an Artin group generated by at least 3 generators. Assume that Γ_G satisfies each of the following:

- 1) Γ_G is connected;
- 2) $m_{ij} \ge 3;$
- 3) Γ_G has no triangles.

Let $\sigma \in Aut(G)$. Then each of the following holds:

- a) G has solvable TCP;
- b) Let u, v ∈ G be presented by reduced words U and V,
 respectively. If u and v are σ-conjugate then there exists
 a σ-conjugator h presented by a reduced word H, such that

 $|H| \le \max\{|R||U| + |\sigma|, |R||V| + |\sigma|\}, \text{ where } R \text{ is the longest}$ relator and $|\sigma| = \max\{\sigma(x)|x = x_1, \dots, x_n\}.$

- c) G has infinite number of σ -conjugate classes;
- d) Let P be a σ-invariant parabolic subgroup of G. Then P is σ-Frattini embedded in G;
- e) Let S be the submonoid of G generated by x₁,..., x_n. If S is σ-invariant then S is weakly Frattini embedded in G, in the sense that if u, v ∈ S and u and v are σ-conjugate in G then there exists an element s ∈ S, presented by a reduced positive word T with |T| ≤ max{|R||U| + |σ|, |R||V| + |σ|}, such that either sv = u(s)^σ or su = v(s)^σ.

The proof is by a careful analysis of annular cancellation diagrams of the extension $G\sigma = \langle G, t | t^{-1}x_i t = x_i^{\sigma_i} = 1, \dots, n \rangle$ of G.