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Decision Problems

Let G be a group. Two of the basic decision problems are the

Word Problem (W.P.): given elements g1, go € G, decide
whether g; = g2 in G (or gig; ' = 1). Undecidable, in gen-

eral.

The Conjugacy Problem (C.P.): given elements ¢g; and go
in GG, decide whether an element ~ € G exists such that

h=tgih = go. The element h is a conjugator.

Decision Problems in embedded subgroups

Let K7 be a group, a an embedding of K; into G. Let K =
a(Kq). If G has solvable W.P. then clearly K has. However,
it is possible that G has solvable C.P. but K has unsolvable
C.P. (Example due to Don Collins and Charles Miller, Proc.

London. 34(3)).
Definition

a is a Frattine embedding if for every u,v € K they are
conjugate by an element of GG if and only if they are conjugate
by an element of K. « is a Frattini embedding = if G has
solvable C.P. then K7 has a solvable C.P.
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(1.3) Twisted Conjugacy Problem (T.C.P.)
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(1)

(1.4)

(i)

Let 0 € Aut(G). Let a,b € G.

T.C.P.: Decide whether an element h € G exists such that

h~la(h)” = b. We call h a o-conjugator of a to b.

Let K be a o-invariant subgroup of G. K is o-Frattini em-
bedded in G if for every u,v € K, they are o-conjugate by
an element of GG if and only if they are o-conjugate by an

element of K.
Artin Groups

Standard Presentation of G. < xy,...,xy|Rij, 1<i<j<
n >, where either R;; =1 or |R;;| = 2n;j and R;; : U =V,
where U is an initial subword of (z;x;)™ and V' is an initial

subword of (z;z;)" of length n;;.

Associated graph I': vertices xy,...,xy, if R;; # 1 then x;

and z; are connected by an edge labeled n;;.



The main result

Our main result relies heavily on the precise description of the
automorphism group of the class of Artin groups with which
we deal, due to John Crisp: "Automorphisms and abstract
commen-surators of 2-dimensional Artin groups." Geometry
and Topology 9 (2005) 1381-1441. The Main Result is the

following

Theorem Let G be an Artin group generated by at least 3

generators. Assume that I'q satisfies each of the following:
1) I'g is connected,
2) mi; > 3;
3) I'c has no triangles.
Let 0 € Aut(G). Then each of the following holds:
a) G has solvable TCP;

b) Let u,v € G be presented by reduced words U and V,
respectively. If u and v are o-conjugate then there exists

a o-conjugator h presented by a reduced word H, such that



c)

d)

|H| < max{|R||U|+|o|, |R||V|+]|o|}, where R is the longest

relator and |o| = max{o(x)|x = x1,..., 2, }.
G has infinite number of o-conjugate classes;

Let P be a o-invariant parabolic subgroup of G. Then P is

o-Frattint embedded in G;

Let S be the submonoid of G generated by x1,...,x,. If S is
o-invariant then S 1s weakly Frattini embedded in G, in the
sense that if u,v € S and u and v are o-conjugate in G
then there exists an element s € S, presented by a reduced
positive word T with |T| < maz{|R||U|+ |o|, |R||V|+]|c]|},

g

such that either sv = u(s)? or su = v(s)°.

The proof is by a careful analysis of annular cancellation dia-
grams of the extension Go =< G, t|t let =27 =1,...,n >

of (3.



