

Lifts and generalized vertices for Brauer characters of solvable groups

Mark L. Lewis

Kent State University

April 14, 2010

Ischia Group Theory Conference 2010

(Joint work with J. P. Cossey – University of Akron)

Mark L. Lewis

Kent State University

• Throughout G will be a finite group and p will be a prime.

Kent State University

Image: Image:

- Throughout G will be a finite group and p will be a prime.
- IBr(G) is the set of irreducible *p*-Brauer characters of *G*.

- Throughout G will be a finite group and p will be a prime.
- IBr(G) is the set of irreducible *p*-Brauer characters of *G*.
- G^{o} denotes the *p*-regular elements of *G*. If χ is a character of *G*, then we use χ^{o} to denote the restriction of χ to G^{o} .

- Throughout G will be a finite group and p will be a prime.
- $\operatorname{IBr}(G)$ is the set of irreducible *p*-Brauer characters of *G*.
- G^o denotes the p-regular elements of G. If χ is a character of G, then we use χ^o to denote the restriction of χ to G^o.

Definition

Given a *p*-Brauer character $\varphi \in \operatorname{IBr}(G)$, we say $\chi \in \operatorname{Irr}(G)$ is a *lift* of φ if $\chi^{\circ} = \varphi$.

Image: Image:

- ∢ ≣ →

Kent State University

Mark L. Lewis

- Throughout G will be a finite group and p will be a prime.
- $\operatorname{IBr}(G)$ is the set of irreducible *p*-Brauer characters of *G*.
- G^o denotes the p-regular elements of G. If χ is a character of G, then we use χ^o to denote the restriction of χ to G^o.

Definition

Given a *p*-Brauer character $\varphi \in \operatorname{IBr}(G)$, we say $\chi \in \operatorname{Irr}(G)$ is a *lift* of φ if $\chi^{o} = \varphi$.

• When G is p-solvable, the Fong-Swan theorem implies that φ has a lift.

Image: A math a math

Kent State University

Mark L. Lewis

• Much of the study of lifts has focused on particular canonical sets of lifts.

Image: Image:

- Much of the study of lifts has focused on particular canonical sets of lifts.
- J. P. Cossey has initiated the study of all lifts of φ. For example, when |G| is odd, he has shown that the number of lifts of φ can be bounded in terms of a vertex for φ.

- Much of the study of lifts has focused on particular canonical sets of lifts.
- J. P. Cossey has initiated the study of all lifts of φ. For example, when |G| is odd, he has shown that the number of lifts of φ can be bounded in terms of a vertex for φ.
- We will show that the oddness hypothesis in Cossey's results can be removed in certain cases.

Image: Image:

Kent State University

In a p-solvable group G, we say Q is a vertex for φ ∈ IBr(G) if there is a subgroup U so that φ is induced from a p-Brauer character of U having p'-degree and Q is a Sylow p-subgroup of U.

- In a p-solvable group G, we say Q is a vertex for φ ∈ IBr(G) if there is a subgroup U so that φ is induced from a p-Brauer character of U having p'-degree and Q is a Sylow p-subgroup of U.
- It is known that all of the vertices for φ are conjugate in G.

- In a p-solvable group G, we say Q is a vertex for φ ∈ IBr(G) if there is a subgroup U so that φ is induced from a p-Brauer character of U having p'-degree and Q is a Sylow p-subgroup of U.
- It is known that all of the vertices for φ are conjugate in G.
- Cossey showed that if |G| is odd and Q is a vertex for φ, then the number of lifts of φ is at most |Q : Q'|.

Image: Image:

- ∢ ≣ →

We now remove the hypothesis that |G| is odd.

However, we do need to add some hypotheses:

- G is p-solvable
- *p* is an odd prime
- Q is abelian

< □ > < 同 >

We now remove the hypothesis that |G| is odd.

However, we do need to add some hypotheses:

- G is p-solvable
- *p* is an odd prime
- Q is abelian

Theorem

Let G be a p-solvable group and let p be an odd prime. If $\varphi \in \operatorname{IBr}(G)$ has abelian vertex Q, then the number of lifts of φ is at most |Q|.

Mark L. Lewis

We use the generalized vertices defined by Cossey. To do this, we need p-factored characters.

< □ > < 同 >

We use the generalized vertices defined by Cossey. To do this, we need p-factored characters.

A character χ ∈ Irr(G) is p-factored if χ = αβ where α is p-special and β is p'-special.

< □ > < 同 >

We use the generalized vertices defined by Cossey. To do this, we need p-factored characters.

- A character χ ∈ Irr(G) is p-factored if χ = αβ where α is p-special and β is p'-special.
- Let χ ∈ Irr(G). Then (Q, δ) is a generalized vertex for χ if there is a subgroup U with a p-factored character ψ ∈ Irr(U) and Sylow p-subgroup Q of U so that ψ^G = χ and δ is the restriction to Q of the p-special factor of ψ.

< D > < A > < B >

Kent State University

Since any primitive irreducible character of a *p*-solvable group is p-factored and p-special characters restrict irreducibly to a Sylow *p*-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

Mark I Lewis

Since any primitive irreducible character of a *p*-solvable group is *p*-factored and *p*-special characters restrict irreducibly to a Sylow *p*-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

Theorem

(Cossey) Suppose |G| is odd and $\chi \in Irr(G)$. Let (Q, δ) be a generalized vertex for χ . If $\chi^0 \in IBr(G)$, then

Kent State University

Mark L. Lewis

Since any primitive irreducible character of a *p*-solvable group is *p*-factored and *p*-special characters restrict irreducibly to a Sylow *p*-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

Theorem

(Cossey) Suppose |G| is odd and $\chi \in Irr(G)$. Let (Q, δ) be a generalized vertex for χ . If $\chi^0 \in IBr(G)$, then

() δ is linear

Mark L. Lewis

Kent State University

Since any primitive irreducible character of a *p*-solvable group is *p*-factored and *p*-special characters restrict irreducibly to a Sylow *p*-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

Theorem

(Cossey) Suppose |G| is odd and $\chi \in Irr(G)$. Let (Q, δ) be a generalized vertex for χ . If $\chi^0 \in IBr(G)$, then

- **1** δ is linear
- 2 all generalized vertices for χ are conjugate to (Q, δ) .

Mark L. Lewis

Again, we will remove the hypothesis that |G| is odd.

We do need to assume that p is odd.

Mark L. Lewis

Kent State University

Again, we will remove the hypothesis that |G| is odd.

We do need to assume that p is odd.

To get δ linear, we use a recent theorem of Navarro:

Theorem

(Navarro) Let G be a p-solvable group for odd prime p. Let $\chi \in Irr(G)$ be p-special. If $\chi(1) > 1$, then χ° is not in IBr(G).

Image: A math a math

Again, we will remove the hypothesis that |G| is odd.

We do need to assume that p is odd.

To get δ linear, we use a recent theorem of Navarro:

Theorem

(Navarro) Let G be a p-solvable group for odd prime p. Let $\chi \in Irr(G)$ be p-special. If $\chi(1) > 1$, then χ° is not in IBr(G).

A B > A B >

Kent State University

Note: this theorem is not true if p = 2.

As a corollary to Navarro's result, we obtain the following:

Corollary

Let G be a p-solvable group where p is an odd prime. If $\chi \in Irr(G)$ satisfies $\chi^o \in IBr(G)$ and has generalized vertex (Q, δ) , then δ is linear.

Mark L. Lewis

As a corollary to Navarro's result, we obtain the following:

Corollary

Let G be a p-solvable group where p is an odd prime. If $\chi \in Irr(G)$ satisfies $\chi^o \in IBr(G)$ and has generalized vertex (Q, δ) , then δ is linear.

Kent State University

Notice that Q is now a vertex for χ^o .

Mark L. Lewis

As a corollary to Navarro's result, we obtain the following:

Corollary

Let G be a p-solvable group where p is an odd prime. If $\chi \in Irr(G)$ satisfies $\chi^o \in IBr(G)$ and has generalized vertex (Q, δ) , then δ is linear.

Notice that Q is now a vertex for χ^o .

If p = 2, this corollary is not true. In $GL_2(3)$, there is a counterexample.

Image: Image:

-∢ ≣ ▶

Kent State University

Counting li

Generalized vertices

We now prove:

Theorem

Let G be a p-solvable group and p an odd prime. If $\chi \in Irr(G)$ with $\chi^{o} \in IBr(G)$, then all the generalized vertices for χ are conjugate.

Mark L. Lewis

Kent State University

Counting li

< 何

Kent State University

Generalized vertices

We now prove:

Theorem

Let G be a p-solvable group and p an odd prime. If $\chi \in Irr(G)$ with $\chi^o \in IBr(G)$, then all the generalized vertices for χ are conjugate.

When p = 2, the theorem is not true.

Mark L. Lewis

Now, we return to our original question of counting the number of lifts of a given Brauer character $\varphi \in \text{IBr}(G)$.

-

Now, we return to our original question of counting the number of lifts of a given Brauer character $\varphi \in \text{IBr}(G)$.

The main work is to count the number of lifts of φ with a given generalized vertex.

Image: Image:

- ∢ ≣ →

Now, we return to our original question of counting the number of lifts of a given Brauer character $\varphi \in \text{IBr}(G)$.

The main work is to count the number of lifts of φ with a given generalized vertex.

Theorem

Assume that G is a p-solvable group and p is an odd prime. Suppose that $\varphi \in \operatorname{IBr}(G)$ has vertex subgroup Q that is abelian, and let $\delta \in \operatorname{Irr}(Q)$. Then $|L_{\varphi}(Q, \delta)| \leq |N_G(Q) : N_G(Q, \delta)|$.

Mark L. Lewis

Image: A math a math

< □ > < 同 >

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

Image: Image:

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is *G*-conjugate to (Q, δ_i) for some *i*. Thus, $|L_{\varphi}| = \sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)|$.

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is *G*-conjugate to (Q, δ_i) for some *i*. Thus, $|L_{\varphi}| = \sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)|$.

Applying the count for the generalized vertices: $\sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)| \leq \sum_{i=1}^{k} |N_G(Q) : N_G(Q, \delta_i)|.$ We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is *G*-conjugate to (Q, δ_i) for some *i*. Thus, $|L_{\varphi}| = \sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)|$.

Applying the count for the generalized vertices: $\sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)| \leq \sum_{i=1}^{k} |N_{\mathcal{G}}(Q) : N_{\mathcal{G}}(Q, \delta_i)|.$

Finally, counting the sizes of the orbits of $N_G(Q)$ on the linear characters of Q, we obtain $\sum_{i=1}^{k} |N_G(Q) : N_G(Q, \delta_i)| = |Q|$.

Image: A math a math

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is *G*-conjugate to (Q, δ_i) for some *i*. Thus, $|L_{\varphi}| = \sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)|$.

Applying the count for the generalized vertices: $\sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)| \leq \sum_{i=1}^{k} |N_{\mathcal{G}}(Q) : N_{\mathcal{G}}(Q, \delta_i)|.$

Finally, counting the sizes of the orbits of $N_G(Q)$ on the linear characters of Q, we obtain $\sum_{i=1}^{k} |N_G(Q) : N_G(Q, \delta_i)| = |Q|$.

Combining: $|L_{arphi}| \leq |Q|$. (As desired.)

Mark L. Lewis

Kent State University

A B > 4
 B > 4
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

< □ > < 同 >

- The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .
- We review the proof of the number of lifts with a given vertex. Our proof is an inductive argument.

Mark L. Lewis

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

We review the proof of the number of lifts with a given vertex. Our proof is an inductive argument.

Let $\chi \in Irr(G)$ be a lift of φ with vertex (Q, δ) . Let N be maximal so that N is normal in G and the irreducible constituents of χ_N are factored.

Image: A math a math

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

We review the proof of the number of lifts with a given vertex. Our proof is an inductive argument.

Let $\chi \in Irr(G)$ be a lift of φ with vertex (Q, δ) . Let N be maximal so that N is normal in G and the irreducible constituents of χ_N are factored.

Let $\alpha\beta$ be an irreducible constituent of χ_N where α is p'-special and β is p-special.

Let T be the stabilizer of α in G.

Kent State University

< □ > < 同 >

Let T be the stabilizer of α in G.

There is a unique Brauer character η on T so that $\eta^{G} = \varphi$ and α^{o} is a constituent of η_{N} .

< □ > < 同 >

Let T be the stabilizer of α in G.

There is a unique Brauer character η on T so that $\eta^{G} = \varphi$ and α^{o} is a constituent of η_{N} .

By replacing α with a *G*-conjugate if necessary, we may assume that $Q \leq T$ and Q is a vertex for η .

-∢ ≣⇒

Let T be the stabilizer of α in G.

There is a unique Brauer character η on T so that $\eta^{G} = \varphi$ and α^{o} is a constituent of η_{N} .

By replacing α with a *G*-conjugate if necessary, we may assume that $Q \leq T$ and Q is a vertex for η .

Let $\delta_1, \ldots, \delta_l$ be representatives for the orbits of the action $N_T(Q)$ on the $N_G(Q)$ -orbit of δ .

Mark L. Lewis

Kent State University

-

So, $|L_{\varphi}(Q, \delta)| = \sum_{i=1}^{n} |L_{\eta}(Q, \delta_i)|.$

Mark L. Lewis

Kent State University

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.∋...>

So,
$$|L_{\varphi}(Q,\delta)| = \sum_{i=1}^{n} |L_{\eta}(Q,\delta_i)|.$$

If T < G, then $|L_{\eta}(Q, \delta_i) \leq |N_T(Q) : N_T(Q, \delta_i)|$ for all i.

Kent State University

Image: A math a math

Lifts and generalized vertices for Brauer characters of solvable groups

Mark L. Lewis

So,
$$|L_{\varphi}(Q,\delta)| = \sum_{i=1}^{n} |L_{\eta}(Q,\delta_i)|.$$

If T < G, then $|L_{\eta}(Q, \delta_i) \leq |N_T(Q) : N_T(Q, \delta_i)|$ for all i.

Also, $\sum_{i=1}^{n} |N_T(Q) : N_T(Q, \delta_i)| = |N_G(Q) : N_G(Q, \delta)|.$

Image: A math a math

So,
$$|L_{\varphi}(Q,\delta)| = \sum_{i=1}^{n} |L_{\eta}(Q,\delta_i)|.$$

If T < G, then $|L_{\eta}(Q, \delta_i) \leq |N_T(Q) : N_T(Q, \delta_i)|$ for all i.

Also, $\sum_{i=1}^{n} |N_T(Q) : N_T(Q, \delta_i)| = |N_G(Q) : N_G(Q, \delta)|.$

Combining, we obtain: $|L_{\varphi}(Q, \delta)| \leq |N_{G}(Q) : N_{G}(Q, \delta)|.$

So,
$$|L_{\varphi}(Q,\delta)| = \sum_{i=1}^{n} |L_{\eta}(Q,\delta_i)|.$$

If T < G, then $|L_{\eta}(Q, \delta_i) \leq |N_T(Q) : N_T(Q, \delta_i)|$ for all i.

Also, $\sum_{i=1}^{n} |N_T(Q) : N_T(Q, \delta_i)| = |N_G(Q) : N_G(Q, \delta)|.$

Combining, we obtain: $|L_{\varphi}(Q, \delta)| \leq |N_{G}(Q) : N_{G}(Q, \delta)|.$

Kent State University

Thus, T = G and α is G-invariant.

However, when we go to use the inductive hypothesis on $\beta,$ things do not work as well.

-

However, when we go to use the inductive hypothesis on β , things do not work as well.

Suppose *I*, the stabilizer of β in *G*, is chosen so that $Q \leq I$ and ζ_1, \ldots, ζ_m are the characters in $\operatorname{IBr}(I)$ with vertex *Q* that induce φ .

.∋...>

However, when we go to use the inductive hypothesis on β , things do not work as well.

Suppose *I*, the stabilizer of β in *G*, is chosen so that $Q \leq I$ and ζ_1, \ldots, ζ_m are the characters in IBr(I) with vertex *Q* that induce φ .

Image: A math a math

Kent State University

We can show that $|L_{\varphi}(Q, \delta)|$ equals $\sum_{i=1}^{m} |L_{\zeta_i}(Q, \delta)|$.

Mark L. Lewis

Kent State University

Image: A matrix and a matrix

That is, $|L_{\zeta_i}(Q, \delta)|$ is at most $|N_I(Q) : N_I(Q, \delta)|$.

Kent State University

Image: A math a math

Lifts and generalized vertices for Brauer characters of solvable groups

Mark L. Lewis

That is, $|L_{\zeta_i}(Q, \delta)|$ is at most $|N_I(Q) : N_I(Q, \delta)|$.

With this, we deduce $|L_{\varphi}(Q, \delta)|$ is at most $m|N_{I}(Q) : N_{I}(Q, \delta)|$.

(日) (日) (日) (日)

That is, $|L_{\zeta_i}(Q, \delta)|$ is at most $|N_I(Q) : N_I(Q, \delta)|$.

With this, we deduce $|L_{\varphi}(Q, \delta)|$ is at most $m|N_{I}(Q) : N_{I}(Q, \delta)|$.

A B > A B >

Kent State University

To prove the result, we need $m \leq |N_G(Q) : N_I(Q)|$.

Mark L. Lewis

Mark L. Lewis

Kent State University

・ロン ・回 と ・ ヨン

We then have the Frattini argument available to see that $G = N N_G(Q)$.

Mark L. Lewis

• • • • • • • •

We then have the Frattini argument available to see that $G = N N_G(Q)$.

It follows $|G:I| = |N_G(Q):N_I(Q)|$.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.∋...>

We then have the Frattini argument available to see that $G = N N_G(Q)$.

It follows $|G:I| = |N_G(Q):N_I(Q)|$.

Also, $\varphi(1) = |G:I|\zeta_1(1)$ and $\varphi(1) \geq \sum_{i=1}^m \zeta_i(1) = m\zeta_1(1)$.

Image: A math a math

Kent State University

Mark L. Lewis

We then have the Frattini argument available to see that $G = N N_G(Q)$.

It follows $|G:I| = |N_G(Q):N_I(Q)|$.

Also, $\varphi(1) = |G:I|\zeta_1(1)$ and $\varphi(1) \geq \sum_{i=1}^m \zeta_i(1) = m\zeta_1(1)$.

We conclude that $m \leq |G:I|$.

Mark L. Lewis

Lifts and generalized vertices for Brauer characters of solvable groups

Kent State University

Image: A math the second se

Thus, when Q is abelian, we may assume β is G-invariant.

Mark L. Lewis

Kent State University

A D > A D > A

Thus, when Q is abelian, we may assume β is G-invariant.

Now, α and β both *G*-invariant implies N = G.

Mark L. Lewis

Kent State University

< < >> < <</>

3

Image: A mathematical states and a mathem

Kent State University

Thus, when Q is abelian, we may assume β is G-invariant.

Now, α and β both *G*-invariant implies N = G.

The result is immediate when G = N.

Mark L. Lewis

Thus, when Q is abelian, we may assume β is G-invariant.

Now, α and β both *G*-invariant implies N = G.

The result is immediate when G = N.

When Q is not abelian, there is no reason to believe that $Q \leq N$.

・ロン ・回 と ・ ヨン

Kent State University

Mark L. Lewis

Mark L. Lewis

Kent State University

A B > 4
 B > 4
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question:

Mark I Lewis

Let G be a p-solvable group. Suppose $\varphi \in \text{IBr}(G)$ has vertex Q. Suppose $Q \leq I \leq G$. Is it true that the number of characters in IBr(I) with vertex Q that induce φ is at most $|N_G(Q) : N_I(Q)|$?

Question:

Let G be a p-solvable group. Suppose $\varphi \in \text{IBr}(G)$ has vertex Q. Suppose $Q \leq I \leq G$. Is it true that the number of characters in IBr(I) with vertex Q that induce φ is at most $|N_G(Q) : N_I(Q)|$?

If the answer is yes, when p is odd, then we can remove the hypothesis that Q is abelian.

Question:

Let G be a p-solvable group. Suppose $\varphi \in \text{IBr}(G)$ has vertex Q. Suppose $Q \leq I \leq G$. Is it true that the number of characters in IBr(I) with vertex Q that induce φ is at most $|N_G(Q) : N_I(Q)|$?

If the answer is yes, when p is odd, then we can remove the hypothesis that Q is abelian.

We have not been able to settle this question at this time.

Interestingly, the question does have a positive answer when |G| is odd or when p = 2.

Interestingly, the question does have a positive answer when |G| is odd or when p = 2.

Also, when p is odd, we can prove that if G is a minimal counterexample, then I is a maximal subgroup, |G:I| is a power of 2, and φ restricts homogeneously to every normal subgroup of G contained in I. Furthermore, writing N for the core of I in G and M for a normal subgroup of G so that M/N is a chief factor of G, if α is the irreducible constituent of φ_N , then α^M has a unique irreducible constituent.

Image: A math a math

Kent State University