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Frobenius group

Definition. A Frobenius group FH with kernel F and complement H is a
semidirect product of a normal (finite) subgroup F on which H acts by
automorphisms so that CF (h) = 1 for every h ∈ H \ {1}.

Properties
H acts faithfully on every non-trivial H-invariant subgroup of F . It
follows that all abelian subgroups of H are cyclic.

If F is cyclic then H is cyclic.

By Thompson’s theorem (1959) a finite group admitting a
fixed-point-free automorphism of prime order is nilpotent. Hence
F is nilpotent.

By Higman’s theorem (1957) the nilpotency class of a finite group
admitting a fixed-point-free automorphism of prime order p is
bounded in terms of p. Hence the nilpotency class of F is
bounded in terms of the least prime divisor of |H|.

An explicit upper bound for nilpotency class is given by Kreknin
and Kostrikin (1963).
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Double Frobenius groups

Definition. If a Frobenius group FH acts on a group G in such a
manner that GF is also a Frobenius group, then the product GFH is
called a double Frobenius group.

Theorem (Mazurov, 2002)

If GFH is a double Frobenius group such that CG(H) is abelian and H
is of order 2 or 3, then G is nilpotent of class at most 2.

Mazurov’s Problem (Kourovka Notebook, Problem 17.72).
Let GFH be a double Frobenius group.

Part (a). Can the nilpotency class of G be bounded in terms of |H|
and the class of CG(H)?

Part (b). Can the exponent of G be bounded in terms of |H| and
the exponent of CG(H)?
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Double Frobenius groups

Theorem (Khukhro, 2008)

If GFH is a double Frobenius group GFH with complement H of order
q and CG(H) is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)
If GFH is a double Frobenius group with complement H of order q and
CG(H) is nilpotent of class c, then G is nilpotent of (c,q)-bounded
class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a
Frobenius group of automorphisms FH with cyclic kernel F of prime
order.

Natalia MAKARENKO (Mulhouse–Novosibirsk) Frobenius groups of automorphisms Ischia Group Theory, 2010 4 / 22



Double Frobenius groups

Theorem (Khukhro, 2008)
If GFH is a double Frobenius group GFH with complement H of order
q and CG(H) is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)
If GFH is a double Frobenius group with complement H of order q and
CG(H) is nilpotent of class c, then G is nilpotent of (c,q)-bounded
class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a
Frobenius group of automorphisms FH with cyclic kernel F of prime
order.

Natalia MAKARENKO (Mulhouse–Novosibirsk) Frobenius groups of automorphisms Ischia Group Theory, 2010 4 / 22



Double Frobenius groups

Theorem (Khukhro, 2008)
If GFH is a double Frobenius group GFH with complement H of order
q and CG(H) is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)

If GFH is a double Frobenius group with complement H of order q and
CG(H) is nilpotent of class c, then G is nilpotent of (c,q)-bounded
class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a
Frobenius group of automorphisms FH with cyclic kernel F of prime
order.

Natalia MAKARENKO (Mulhouse–Novosibirsk) Frobenius groups of automorphisms Ischia Group Theory, 2010 4 / 22



Double Frobenius groups

Theorem (Khukhro, 2008)
If GFH is a double Frobenius group GFH with complement H of order
q and CG(H) is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)
If GFH is a double Frobenius group with complement H of order q and
CG(H) is nilpotent of class c, then G is nilpotent of (c,q)-bounded
class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a
Frobenius group of automorphisms FH with cyclic kernel F of prime
order.

Natalia MAKARENKO (Mulhouse–Novosibirsk) Frobenius groups of automorphisms Ischia Group Theory, 2010 4 / 22



Double Frobenius groups

Theorem (Khukhro, 2008)
If GFH is a double Frobenius group GFH with complement H of order
q and CG(H) is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)
If GFH is a double Frobenius group with complement H of order q and
CG(H) is nilpotent of class c, then G is nilpotent of (c,q)-bounded
class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a
Frobenius group of automorphisms FH with cyclic kernel F of prime
order.

Natalia MAKARENKO (Mulhouse–Novosibirsk) Frobenius groups of automorphisms Ischia Group Theory, 2010 4 / 22



Double Frobenius groups

Theorem (Khukhro, 2008)
If GFH is a double Frobenius group GFH with complement H of order
q and CG(H) is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)
If GFH is a double Frobenius group with complement H of order q and
CG(H) is nilpotent of class c, then G is nilpotent of (c,q)-bounded
class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a
Frobenius group of automorphisms FH with cyclic kernel F of prime
order.

Natalia MAKARENKO (Mulhouse–Novosibirsk) Frobenius groups of automorphisms Ischia Group Theory, 2010 4 / 22



Double Frobenius groups: reduction

Let GFH be a double Frobenius group with complement H of order q.
Assume that CG(H) is nilpotent of class c.

The group F has no non-cyclic subgroups of order p2 for any prime p.

Hence the Sylow subgroups of F are cyclic or generalized Quaternion.
(Zassenhaus, 1936).

Being the Frobenius kernel of FH, the group F is nilpotent (Tompson
1959).

It follows that the Sylow 2-subgroup of F is trivial, for otherwise its
center would contain a non-trivial fixed point for H.

Thus, F is cyclic.
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Let F1 be a subgroup of F of prime order p.

The hypothesis of the theorem is inherited by GF1H.

Therefore we can replace F by F1 and assume that F has prime
order p.

So: the result follows from the following Theorem.

Theorem B.
Let a finite group G admit a Frobenius group of automorphisms FH
with cyclic kernel F of prime order and complement H.

If CG(F ) = 1 and CG(H) is nilpotent of class c, then the nilpotency
class of G is bounded in terms of |H| and c.
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Conjectures

Let G be a finite group. A Frobenius group FH with kernel F acts on
G by automorphisms. Assume that CG(F ) = 1.

General idea. Principal properties (nilpotency class, exponent, order,
rank) of G are completely determined by H and the action of H on G
(and do not depend on F ).
Conjectures:

Order. The order of G is bounded in terms of |H| and |CG(H)|.

Rank. The rank of G is bounded in terms of |H| and the rank of
CG(H).

Nilpotence. If CG(H) is nilpotent then G is also nilpotent.

Nilpotency class. The nilpotency class of G is bounded in terms of
|H| and the nilpotency class of CG(H).

Exponent. The exponent of G is bounded in terms of |H| and the
exponent of CG(H).
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Order, rank, nilpotence

Theorem C (Kh, M, Sh, 2010).
Suppose that a finite group G admits a Frobenius group of
automorphisms FH with kernel F and complement H and CG(F ) = 1.
Then the following statements hold.

|G| = |CG(H)||H|.

The rank of G is bounded in terms of |H| and the rank of CG(H).

If CG(H) is nilpotent, then G is also nilpotent.
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Fixed points of Frobenius complements

Theorem (Khukhro, 2009)
Suppose that a finite group G admits a Frobenius group of
automorphisms FH with kernel F and complement H. If N is a
FH-invariant normal subgroup of G such that CN(F ) = 1, then
CG/N(H) = CG(H)N/N.

Well known fact. If (|G|, |H|) = 1 and N is a normal H-invariant
subgroups of G then

CG/N(H) = CG(H)N/N.

In general case if we do not assume that (|G|, |H|) = 1, this equality
may no longer be true.
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Bounding nilpotency class

Let G be a finite group acted by a Frobenius group with cyclic kernel F
and complement H.

H is cyclic also as Frobenius complement.

Suppose that CG(F ) = 1 and CG(H) is nilpotent of class c.

The aim is to bound the nilpotency class (derived length?) of G in
terms of |H| and c.

If |F | = p is prime, then the nilpotency class of G is bounded in terms
of |H| and c (Theorem B).

If |F | is not prime the problem is more difficult.

Long standing conjecture. If a finite group G admits a fixed-point-free
automorphism of finite order n then G is soluble of n-bounded derived
length.

Remark. There is a reduction to nilpotent groups.
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In our situation we have a stronger hypothesis:

a cyclic group F of finite order acts fixed-point-freely on G;

The Frobenius group FH ≤ Aut G.

CG(H) is nilpotent of class c.

The aim is different: to obtain the bounds depending only on |H| and
on the nilpotency class of CG(H).

Theorem D (Kh, M, Sh, 2010).
Let a finite group G admit a Frobenius group of automorphisms FH
with cyclic kernel F of order n and complement H of order q. Suppose
that CG(F ) = 1, CG(H) is nilpotent of class c.

If n has no divisors ≤ f (c,q), then the nilpotency class of G is bounded
in terms of q and c.
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Bounding nilpotency class. |F | is not prime. Lie rings.

Lie ring Theorems

Theorem E.
Let a Lie ring L admit a Frobenius group of automorphisms FH with
cyclic kernel F of finite order and complement H of order q.

If CL(F ) = 0 and CL(H) is nilpotent of class c, then the derived length
of L is bounded in terms of q and c.

Theorem D’.
If |F | has no divisors ≤ f (c,q), then the ring L is nilpotent of
(c,q)-bounded class.
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Exponent

Theorem F.
Suppose that a finite group G admits a Frobenius group of
automorphisms FH with cyclic kernel F and complement H.

If CG(F ) = 1, then the exponent of G is bounded in terms of |FH| and
the exponent of CG(H).

Proof.
Lie ring methods: Lazard Lie algebra constructed from the
Jennings–Zassenhaus filtration.

Powerful p-groups.
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Bounding nilpotence class. |F | = p. Proof.

Particular case. F is cyclic of prime order p. G admits a Frobenius
group of automorphisms FH with kernel F and complement H.

Reduction to Lie rings.

Let L(G) be the associated Lie ring of the group G:

L(G) =
n⊕

i=1

γi/γi+1,

where n is the nilpotency class of G and the γi are the terms of the
lower central series of G.

The nilpotency class of G coincides with that of L(G).

The action of the group FH on G naturally induces an action of FH on
L(G).

It can be proved that CL(F ) = 0 and CL(H) is nilpotent of class c.
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|F | = p is prime. Lie ring Theorem.

Theorem B’.
Let a Lie ring G admit a Frobenius group of automorphisms FH with
cyclic kernel F of prime order and complement H.

If CG(L) = 0 and CG(H) is nilpotent of class c, then the nilpotency
class of L is bounded in terms of |H| and c.

Proof of Theorem B’.

Step 1: reduction to a Z/pZ-graded Lie ring with L0 = 0.

Let |F | = p, |H| = q. Let ω be a pth primitive root of 1.

We extend the ground ring by ω setting L̃ = L⊗Z Z[ω].

The group FH acts in a natural way on L̃ and the action satisfies the
conditions that CL̃(F ) = 0 and CL̃(H) is nilpotent of class c.
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|F | = p is prime. Lie ring Theorem.

Let φ be a generator of F . For each i = 0, . . . ,p − 1 we define

Li = {x ∈ L̃ | xφ = ωix}.
One can verify that

[Li ,Lj ] ≤ L(i+j)mod p.

For each a ∈ L̃ and for each i = 0, . . . ,p − 1 we set

ai =

p−1∑
s=0

ω−isaφ
s
.

Direct calculations show that

aφi = ωiai ,

whence ai ∈ Li , and
p−1∑
i=0

ai = pa
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It follows that

pL̃ ≤
p−1∑
i=0

Li .

Since L admits a fixed-point-free automorphism of order p, there can
be no p-torsion in L.

Hence
∑p−1

i=0 Li is the direct sum of Li .

So
∑p−1

i=0 Li is naturally endowed with a Z/pZ-grading such that L0 = 0.

One can prove that

cl (
p−1∑
i=0

Li) = cl (L̃) = cl (L).

Thus, it is sufficient to show that a Z/pZ-graded Lie ring L with L0 = 0
and nilpotent CL(H) of nilpotency class c is nilpotent of (c,q)-bounded
class.
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|F | = p is prime. Lie ring Theorem

Step 2: Combinatorial condition

Definition.
Let q,p, r be positive integers such that p is prime, q divides p − 1,
1 ≤ r ≤ p− 1 and r is primitive qth root of 1 in Fp. Let a1, . . . ,ak be not
necessarily distinct elements of Fp. We say that the sequence
(a1, . . . ,ak ) is r -dependent if and only if there exist
i1, . . . , im ∈ {1,2, . . . , k} and α1, . . . , αm ∈ {1,2, . . . ,q − 1} such that

ai1 + · · ·+ aim = rα1ai1 + · · ·+ rαmaim .

If the sequence (a1, . . . ,ak ) is not r -dependent, we will call it
r -independent.

Example: q = 2, p = 13, r = −1. We take, for example, (1,1,2,3).
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The sequence (1,1,2,3) is r -independent, because we cannot find
i1, . . . , im ∈ {1,2,3,4} such that

ai1 + · · ·+ aim = −ai1 + · · · − aim(mod 13).
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|F | = p is prime. Lie ring Theorem. Combinatorial
condition

Proposition.
Let q,p, r , c be positive integers such that p is prime, q divides p − 1,
1 ≤ r ≤ p − 1 and r is primitive qth root of 1 in Fp.

Let

L =

p−1∑
i=0

Li

be a Z/nZ-graded Lie ring such that L0 = 0 and

[xd1 , xd2 , . . . , xdc+1 ] = 0 whenever (d1, . . . ,dc+1) is r -independent,

where xd1 , xd2 , . . . , xdc+1 are homogeneous elements xdi ∈ Ldi .
Then L is nilpotent of (c,q)-bounded derived length.
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Example
q = 2, p = 13, c = 3, r = −1.

We take, for example, x1 ∈ L1, y1 ∈ L1, z2 ∈ L2,q3 ∈ L3.

The sequence (1,1,2,3) is r -independent.

It follows that
[x1, y1, z2,q3] = 0

and consequently
[L1,L1,L2,L3] = 0.

By the same reasons we have, for example,

[L1,L1,L1,L1] = 0, [L2,L2,L2,L2] = 0,

[L1,L2,L3,L1] = 0, etc.
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|F | = p is prime. Lie ring Theorem. Combinatorial
condition

Step 3: Proof of the Proposition.

The proof is technical and rather intricate.

We use induction on c.

Eventually the proof reduces to Theorem of Shalev (1993) on
Z/pZ-graded Lie rings with few non-trivial homogeneous components.

Some ideas of the work of Khukhro on Lie ring with few number of
commuting components are also used.
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