Groups and Lie rings with Frobenius groups of automorphisms

Natalia MAKARENKO

Université de Haute Alsace, Mulhouse Institute of Mathematics, Novosibirsk

Ischia Group Theory, 2010

Natalia MAKARENKO (Mulhouse–Novosibirs Frobenius

Frobenius groups of automorphisms

Ischia Group Theory, 2010 1 / 22

The second se

< 6 k

Definition. A Frobenius group *FH* with kernel *F* and complement *H* is a semidirect product of a normal (finite) subgroup *F* on which *H* acts by automorphisms so that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$.

Definition. A Frobenius group *FH* with kernel *F* and complement *H* is a semidirect product of a normal (finite) subgroup *F* on which *H* acts by automorphisms so that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$.

Properties

• *H* acts faithfully on every non-trivial *H*-invariant subgroup of *F*. It follows that all abelian subgroups of *H* are cyclic.

Definition. A Frobenius group *FH* with kernel *F* and complement *H* is a semidirect product of a normal (finite) subgroup *F* on which *H* acts by automorphisms so that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$.

Properties

- *H* acts faithfully on every non-trivial *H*-invariant subgroup of *F*. It follows that all abelian subgroups of *H* are cyclic.
- If *F* is cyclic then *H* is cyclic.

Definition. A Frobenius group *FH* with kernel *F* and complement *H* is a semidirect product of a normal (finite) subgroup *F* on which *H* acts by automorphisms so that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$.

Properties

- *H* acts faithfully on every non-trivial *H*-invariant subgroup of *F*. It follows that all abelian subgroups of *H* are cyclic.
- If *F* is cyclic then *H* is cyclic.
- By Thompson's theorem (1959) a finite group admitting a fixed-point-free automorphism of prime order is nilpotent. Hence *F* is nilpotent.

イロト 不得 トイヨト イヨト

Definition. A Frobenius group *FH* with kernel *F* and complement *H* is a semidirect product of a normal (finite) subgroup *F* on which *H* acts by automorphisms so that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$.

Properties

- *H* acts faithfully on every non-trivial *H*-invariant subgroup of *F*. It follows that all abelian subgroups of *H* are cyclic.
- If *F* is cyclic then *H* is cyclic.
- By Thompson's theorem (1959) a finite group admitting a fixed-point-free automorphism of prime order is nilpotent. Hence *F* is nilpotent.
- By Higman's theorem (1957) the nilpotency class of a finite group admitting a fixed-point-free automorphism of prime order p is bounded in terms of p. Hence the nilpotency class of F is bounded in terms of the least prime divisor of |H|.

Definition. A Frobenius group *FH* with kernel *F* and complement *H* is a semidirect product of a normal (finite) subgroup *F* on which *H* acts by automorphisms so that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$.

Properties

- *H* acts faithfully on every non-trivial *H*-invariant subgroup of *F*. It follows that all abelian subgroups of *H* are cyclic.
- If *F* is cyclic then *H* is cyclic.
- By Thompson's theorem (1959) a finite group admitting a fixed-point-free automorphism of prime order is nilpotent. Hence *F* is nilpotent.
- By Higman's theorem (1957) the nilpotency class of a finite group admitting a fixed-point-free automorphism of prime order p is bounded in terms of p. Hence the nilpotency class of F is bounded in terms of the least prime divisor of |H|.

Natalia MAKARENKO (Mulhouse-Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 3 / 22

Definition. If a Frobenius group FH acts on a group G in such a manner that GF is also a Frobenius group, then the product GFH is called a double Frobenius group.

< ロ > < 同 > < 回 > < 回 >

Definition. If a Frobenius group FH acts on a group G in such a manner that GF is also a Frobenius group, then the product GFH is called a double Frobenius group.

Theorem (Mazurov, 2002)

A (10) > A (10) > A (10)

Definition. If a Frobenius group FH acts on a group G in such a manner that GF is also a Frobenius group, then the product GFH is called a double Frobenius group.

Theorem (Mazurov, 2002)

If *GFH* is a double Frobenius group such that $C_G(H)$ is abelian and *H* is of order 2 or 3, then *G* is nilpotent of class at most 2.

Definition. If a Frobenius group FH acts on a group G in such a manner that GF is also a Frobenius group, then the product GFH is called a double Frobenius group.

Theorem (Mazurov, 2002)

If *GFH* is a double Frobenius group such that $C_G(H)$ is abelian and *H* is of order 2 or 3, then *G* is nilpotent of class at most 2.

Mazurov's Problem (Kourovka Notebook, Problem 17.72). Let *GFH* be a double Frobenius group.

< ロ > < 同 > < 回 > < 回 >

Definition. If a Frobenius group FH acts on a group G in such a manner that GF is also a Frobenius group, then the product GFH is called a double Frobenius group.

Theorem (Mazurov, 2002)

If *GFH* is a double Frobenius group such that $C_G(H)$ is abelian and *H* is of order 2 or 3, then *G* is nilpotent of class at most 2.

Mazurov's Problem (Kourovka Notebook, Problem 17.72). Let *GFH* be a double Frobenius group.

 Part (a). Can the nilpotency class of G be bounded in terms of |H| and the class of C_G(H)?

Definition. If a Frobenius group FH acts on a group G in such a manner that GF is also a Frobenius group, then the product GFH is called a double Frobenius group.

Theorem (Mazurov, 2002)

If *GFH* is a double Frobenius group such that $C_G(H)$ is abelian and *H* is of order 2 or 3, then *G* is nilpotent of class at most 2.

Mazurov's Problem (Kourovka Notebook, Problem 17.72). Let *GFH* be a double Frobenius group.

- Part (a). Can the nilpotency class of G be bounded in terms of |H| and the class of C_G(H)?
- Part (b). Can the exponent of G be bounded in terms of |H| and the exponent of C_G(H)?

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Theorem (Khukhro, 2008)

Natalia MAKARENKO (Mulhouse–Novosibirsk

Frobenius groups of automorphisms

Ischia Group Theory, 2010 4 / 22

A (10) × (10)

Theorem (Khukhro, 2008)

If *GFH* is a double Frobenius group *GFH* with complement *H* of order q and $C_G(H)$ is abelian, then *G* is nilpotent of q-bounded class.

4 **A** N A **B** N A **B** N

Theorem (Khukhro, 2008)

If *GFH* is a double Frobenius group *GFH* with complement *H* of order q and $C_G(H)$ is abelian, then *G* is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 4 / 22

不同 いんきいんき

Theorem (Khukhro, 2008)

If *GFH* is a double Frobenius group *GFH* with complement *H* of order q and $C_G(H)$ is abelian, then *G* is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)

If *GFH* is a double Frobenius group with complement *H* of order *q* and $C_G(H)$ is nilpotent of class *c*, then *G* is nilpotent of (c, q)-bounded class.

Theorem (Khukhro, 2008)

If GFH is a double Frobenius group GFH with complement H of order q and $C_G(H)$ is abelian, then G is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)

If GFH is a double Frobenius group with complement H of order q and $C_G(H)$ is nilpotent of class c, then G is nilpotent of (c, q)-bounded class.

To appear in: Proc. AMS.

< ロ > < 同 > < 回 > < 回 >

Theorem (Khukhro, 2008)

If *GFH* is a double Frobenius group *GFH* with complement *H* of order q and $C_G(H)$ is abelian, then *G* is nilpotent of q-bounded class.

Theorem A (Makarenko–Shumyatsky, 2009)

If *GFH* is a double Frobenius group with complement *H* of order *q* and $C_G(H)$ is nilpotent of class *c*, then *G* is nilpotent of (*c*, *q*)-bounded class.

To appear in: Proc. AMS.

The Theorem can be easily reduced to the groups admitting a Frobenius group of automorphisms FH with cyclic kernel F of prime order.

Let *GFH* be a double Frobenius group with complement *H* of order *q*. Assume that $C_G(H)$ is nilpotent of class *c*.

< ロ > < 同 > < 回 > < 回 >

Let *GFH* be a double Frobenius group with complement *H* of order *q*. Assume that $C_G(H)$ is nilpotent of class *c*.

The group *F* has no non-cyclic subgroups of order p^2 for any prime *p*.

Let *GFH* be a double Frobenius group with complement *H* of order *q*. Assume that $C_G(H)$ is nilpotent of class *c*.

The group *F* has no non-cyclic subgroups of order p^2 for any prime *p*.

Hence the Sylow subgroups of F are cyclic or generalized Quaternion. (Zassenhaus, 1936).

Let *GFH* be a double Frobenius group with complement *H* of order *q*. Assume that $C_G(H)$ is nilpotent of class *c*.

The group *F* has no non-cyclic subgroups of order p^2 for any prime *p*.

Hence the Sylow subgroups of F are cyclic or generalized Quaternion. (Zassenhaus, 1936).

Being the Frobenius kernel of FH, the group F is nilpotent (Tompson 1959).

Let *GFH* be a double Frobenius group with complement *H* of order *q*. Assume that $C_G(H)$ is nilpotent of class *c*.

The group *F* has no non-cyclic subgroups of order p^2 for any prime *p*.

Hence the Sylow subgroups of F are cyclic or generalized Quaternion. (Zassenhaus, 1936).

Being the Frobenius kernel of FH, the group F is nilpotent (Tompson 1959).

It follows that the Sylow 2-subgroup of F is trivial, for otherwise its center would contain a non-trivial fixed point for H.

Let *GFH* be a double Frobenius group with complement *H* of order *q*. Assume that $C_G(H)$ is nilpotent of class *c*.

The group *F* has no non-cyclic subgroups of order p^2 for any prime *p*.

Hence the Sylow subgroups of F are cyclic or generalized Quaternion. (Zassenhaus, 1936).

Being the Frobenius kernel of FH, the group F is nilpotent (Tompson 1959).

It follows that the Sylow 2-subgroup of F is trivial, for otherwise its center would contain a non-trivial fixed point for H.

Thus, *F* is cyclic.

Let F_1 be a subgroup of F of prime order p.

Natalia MAKARENKO (Mulhouse-Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 6 / 22

Let F_1 be a subgroup of F of prime order p.

The hypothesis of the theorem is inherited by GF_1H .

< ロ > < 同 > < 回 > < 回 >

- Let F_1 be a subgroup of F of prime order p.
- The hypothesis of the theorem is inherited by GF_1H .
- Therefore we can replace F by F_1 and assume that F has prime order p.

- Let F_1 be a subgroup of F of prime order p.
- The hypothesis of the theorem is inherited by GF_1H .
- Therefore we can replace F by F_1 and assume that F has prime order p.
- So: the result follows from the following Theorem.

Let F_1 be a subgroup of F of prime order p.

The hypothesis of the theorem is inherited by GF_1H .

Therefore we can replace F by F_1 and assume that F has prime order p.

So: the result follows from the following Theorem.

Theorem B.

Let a finite group G admit a Frobenius group of automorphisms FH with cyclic kernel F of prime order and complement H.

< ロ > < 同 > < 回 > < 回 >

Let F_1 be a subgroup of F of prime order p.

The hypothesis of the theorem is inherited by GF_1H .

Therefore we can replace F by F_1 and assume that F has prime order p.

So: the result follows from the following Theorem.

Theorem B.

Let a finite group G admit a Frobenius group of automorphisms FH with cyclic kernel F of prime order and complement H.

If $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *G* is bounded in terms of |H| and *c*.

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of G are completely determined by H and the action of H on G (and do not depend on F).

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of *G* are completely determined by *H* and the action of *H* on *G* (and do not depend on F).

Conjectures:

• Order. The order of G is bounded in terms of |H| and $|C_G(H)|$.

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of G are completely determined by H and the action of H on G (and do not depend on F).

Conjectures:

- Order. The order of G is bounded in terms of |H| and $|C_G(H)|$.
- Rank. The rank of *G* is bounded in terms of |H| and the rank of $C_G(H)$.

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of G are completely determined by H and the action of H on G (and do not depend on F).

Conjectures:

- Order. The order of G is bounded in terms of |H| and $|C_G(H)|$.
- Rank. The rank of *G* is bounded in terms of |H| and the rank of $C_G(H)$.
- Nilpotence. If $C_G(H)$ is nilpotent then G is also nilpotent.

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of G are completely determined by H and the action of H on G (and do not depend on F).

Conjectures:

- Order. The order of G is bounded in terms of |H| and $|C_G(H)|$.
- Rank. The rank of *G* is bounded in terms of |H| and the rank of $C_G(H)$.
- Nilpotence. If $C_G(H)$ is nilpotent then G is also nilpotent.
- Nilpotency class. The nilpotency class of *G* is bounded in terms of |H| and the nilpotency class of $C_G(H)$.

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of G are completely determined by H and the action of H on G (and do not depend on F).

Conjectures:

- Order. The order of *G* is bounded in terms of |H| and $|C_G(H)|$.
- Rank. The rank of *G* is bounded in terms of |H| and the rank of $C_G(H)$.
- Nilpotence. If $C_G(H)$ is nilpotent then G is also nilpotent.
- Nilpotency class. The nilpotency class of *G* is bounded in terms of |*H*| and the nilpotency class of *C*_{*G*}(*H*).
- Exponent. The exponent of *G* is bounded in terms of |*H*| and the exponent of *C*_{*G*}(*H*).

Let *G* be a finite group. A Frobenius group *FH* with kernel *F* acts on *G* by automorphisms. Assume that $C_G(F) = 1$.

General idea. Principal properties (nilpotency class, exponent, order, rank) of G are completely determined by H and the action of H on G (and do not depend on F).

Conjectures:

- Order. The order of *G* is bounded in terms of |H| and $|C_G(H)|$.
- Rank. The rank of *G* is bounded in terms of |H| and the rank of $C_G(H)$.
- Nilpotence. If $C_G(H)$ is nilpotent then G is also nilpotent.
- Nilpotency class. The nilpotency class of *G* is bounded in terms of |*H*| and the nilpotency class of *C*_{*G*}(*H*).
- Exponent. The exponent of *G* is bounded in terms of |*H*| and the exponent of *C*_{*G*}(*H*).

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H* and $C_G(F) = 1$. Then the following statements hold.

Natalia MAKARENKO (Mulhouse–Novosibirsł

A (10) > A (10) > A (10)

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H* and $C_G(F) = 1$. Then the following statements hold.

•
$$|G| = |C_G(H)|^{|H|}$$
.

Natalia MAKARENKO (Mulhouse–Novosibirsł

A (10) > A (10) > A (10)

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H* and $C_G(F) = 1$. Then the following statements hold.

- $|G| = |C_G(H)|^{|H|}$.
- The rank of G is bounded in terms of |H| and the rank of $C_G(H)$.

< ロ > < 同 > < 回 > < 回 >

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H* and $C_G(F) = 1$. Then the following statements hold.

- $|G| = |C_G(H)|^{|H|}$.
- The rank of G is bounded in terms of |H| and the rank of $C_G(H)$.
- If $C_G(H)$ is nilpotent, then G is also nilpotent.

・ロト ・ 四ト ・ ヨト ・ ヨト

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 9 / 22

Theorem (Khukhro, 2009)

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H*. If *N* is a *FH*-invariant normal subgroup of *G* such that $C_N(F) = 1$, then $C_{G/N}(H) = C_G(H)N/N$.

Natalia MAKARENKO (Mulhouse–Novosibirsk

4 **A** N A **B** N A **B** N

Theorem (Khukhro, 2009)

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H*. If *N* is a *FH*-invariant normal subgroup of *G* such that $C_N(F) = 1$, then $C_{G/N}(H) = C_G(H)N/N$.

Natalia MAKARENKO (Mulhouse–Novosibirsk

4 **A** N A **B** N A **B** N

Theorem (Khukhro, 2009)

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H*. If *N* is a *FH*-invariant normal subgroup of *G* such that $C_N(F) = 1$, then $C_{G/N}(H) = C_G(H)N/N$.

Well known fact. If (|G|, |H|) = 1 and *N* is a normal *H*-invariant subgroups of *G* then

$$C_{G/N}(H) = C_G(H)N/N.$$

< ロ > < 同 > < 回 > < 回 >

Theorem (Khukhro, 2009)

Suppose that a finite group *G* admits a Frobenius group of automorphisms *FH* with kernel *F* and complement *H*. If *N* is a *FH*-invariant normal subgroup of *G* such that $C_N(F) = 1$, then $C_{G/N}(H) = C_G(H)N/N$.

Well known fact. If (|G|, |H|) = 1 and *N* is a normal *H*-invariant subgroups of *G* then

$$C_{G/N}(H) = C_G(H)N/N.$$

In general case if we do not assume that (|G|, |H|) = 1, this equality may no longer be true.

Natalia MAKARENKO (Mulhouse-Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 10 / 22

æ

イロト イヨト イヨト イヨト

Let *G* be a finite group acted by a Frobenius group with cyclic kernel F and complement *H*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

Natalia MAKARENKO (Mulhouse–Novosibirs

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

If |F| = p is prime, then the nilpotency class of *G* is bounded in terms of |H| and *c* (Theorem B).

10/22

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

If |F| = p is prime, then the nilpotency class of *G* is bounded in terms of |H| and *c* (Theorem B).

If |F| is not prime the problem is more difficult.

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

If |F| = p is prime, then the nilpotency class of *G* is bounded in terms of |H| and *c* (Theorem B).

If |F| is not prime the problem is more difficult.

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

If |F| = p is prime, then the nilpotency class of *G* is bounded in terms of |H| and *c* (Theorem B).

If |F| is not prime the problem is more difficult.

Long standing conjecture. If a finite group G admits a fixed-point-free automorphism of finite order n then G is soluble of n-bounded derived length.

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

If |F| = p is prime, then the nilpotency class of *G* is bounded in terms of |H| and *c* (Theorem B).

If |F| is not prime the problem is more difficult.

Long standing conjecture. If a finite group G admits a fixed-point-free automorphism of finite order n then G is soluble of n-bounded derived length.

Remark. There is a reduction to nilpotent groups.

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Let G be a finite group acted by a Frobenius group with cyclic kernel F and complement H.

H is cyclic also as Frobenius complement.

Suppose that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class *c*.

The aim is to bound the nilpotency class (derived length?) of *G* in terms of |H| and *c*.

If |F| = p is prime, then the nilpotency class of *G* is bounded in terms of |H| and *c* (Theorem B).

If |F| is not prime the problem is more difficult.

Long standing conjecture. If a finite group G admits a fixed-point-free automorphism of finite order n then G is soluble of n-bounded derived length.

Remark. There is a reduction to nilpotent groups.

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Natalia MAKARENKO (Mulhouse-Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 11 / 22

• a cyclic group *F* of finite order acts fixed-point-freely on *G*;

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 11 / 22

< ロ > < 同 > < 回 > < 回 >

- a cyclic group *F* of finite order acts fixed-point-freely on *G*;
- The Frobenius group $FH \leq Aut G$.

- a cyclic group *F* of finite order acts fixed-point-freely on *G*;
- The Frobenius group $FH \leq Aut G$.
- $C_G(H)$ is nilpotent of class *c*.

- a cyclic group *F* of finite order acts fixed-point-freely on *G*;
- The Frobenius group $FH \leq Aut G$.
- $C_G(H)$ is nilpotent of class *c*.

The aim is different: to obtain the bounds depending only on |H| and on the nilpotency class of $C_G(H)$.

- a cyclic group *F* of finite order acts fixed-point-freely on *G*;
- The Frobenius group $FH \leq Aut G$.
- $C_G(H)$ is nilpotent of class *c*.

The aim is different: to obtain the bounds depending only on |H| and on the nilpotency class of $C_G(H)$.

Theorem D (Kh, M, Sh, 2010).

Let a finite group *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of order *n* and complement *H* of order *q*. Suppose that $C_G(F) = 1$, $C_G(H)$ is nilpotent of class *c*.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- a cyclic group *F* of finite order acts fixed-point-freely on *G*;
- The Frobenius group $FH \leq Aut G$.
- $C_G(H)$ is nilpotent of class *c*.

The aim is different: to obtain the bounds depending only on |H| and on the nilpotency class of $C_G(H)$.

Theorem D (Kh, M, Sh, 2010).

Let a finite group *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of order *n* and complement *H* of order *q*. Suppose that $C_G(F) = 1$, $C_G(H)$ is nilpotent of class *c*.

If *n* has no divisors $\leq f(c, q)$, then the nilpotency class of *G* is bounded in terms of *q* and *c*.

э.

イロト 不得 トイヨト イヨト

Lie ring Theorems

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 12 / 22

(日)

Lie ring Theorems

Theorem E.

Let a Lie ring L admit a Frobenius group of automorphisms FH with cyclic kernel F of finite order and complement H of order q.

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 12 / 22

< ロ > < 同 > < 回 > < 回 >

Lie ring Theorems

Theorem E.

Let a Lie ring L admit a Frobenius group of automorphisms FH with cyclic kernel F of finite order and complement H of order q.

If $C_L(F) = 0$ and $C_L(H)$ is nilpotent of class *c*, then the derived length of *L* is bounded in terms of *q* and *c*.

Lie ring Theorems

Theorem E.

Let a Lie ring L admit a Frobenius group of automorphisms FH with cyclic kernel F of finite order and complement H of order q.

If $C_L(F) = 0$ and $C_L(H)$ is nilpotent of class *c*, then the derived length of *L* is bounded in terms of *q* and *c*.

Theorem D'.

If |F| has no divisors $\leq f(c, q)$, then the ring *L* is nilpotent of (c, q)-bounded class.

Exponent

Theorem F.

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel F and complement H.

Natalia MAKARENKO (Mulhouse–Novosibirsk

Frobenius groups of automorphisms

Ischia Group Theory, 2010 13 / 22

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Exponent

Theorem F.

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel F and complement H.

If $C_G(F) = 1$, then the exponent of *G* is bounded in terms of |FH| and the exponent of $C_G(H)$.

< ロ > < 同 > < 回 > < 回 >

Exponent

Theorem F.

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel F and complement H.

If $C_G(F) = 1$, then the exponent of *G* is bounded in terms of |FH| and the exponent of $C_G(H)$.

Proof.

• Lie ring methods: Lazard Lie algebra constructed from the Jennings–Zassenhaus filtration.

Exponent

Theorem F.

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel F and complement H.

If $C_G(F) = 1$, then the exponent of *G* is bounded in terms of |FH| and the exponent of $C_G(H)$.

Proof.

• Lie ring methods: Lazard Lie algebra constructed from the Jennings–Zassenhaus filtration.

13/22

Powerful p-groups.

Particular case. F is cyclic of prime order p. G admits a Frobenius group of automorphisms FH with kernel F and complement H.

Particular case. F is cyclic of prime order p. G admits a Frobenius group of automorphisms FH with kernel F and complement H.

Reduction to Lie rings.

Particular case. F is cyclic of prime order p. G admits a Frobenius group of automorphisms FH with kernel F and complement H.

Reduction to Lie rings.

Let L(G) be the associated Lie ring of the group G:

$$L(G) = \bigoplus_{i=1}^n \gamma_i / \gamma_{i+1},$$

where *n* is the nilpotency class of *G* and the γ_i are the terms of the lower central series of *G*.

Particular case. F is cyclic of prime order p. G admits a Frobenius group of automorphisms FH with kernel F and complement H.

Reduction to Lie rings.

Let L(G) be the associated Lie ring of the group G:

$$L(G) = \bigoplus_{i=1}^n \gamma_i / \gamma_{i+1},$$

14/22

where *n* is the nilpotency class of *G* and the γ_i are the terms of the lower central series of *G*.

The nilpotency class of *G* coincides with that of L(G).

Particular case. F is cyclic of prime order p. G admits a Frobenius group of automorphisms FH with kernel F and complement H.

Reduction to Lie rings.

Let L(G) be the associated Lie ring of the group G:

$$L(G) = \bigoplus_{i=1}^n \gamma_i / \gamma_{i+1},$$

where *n* is the nilpotency class of *G* and the γ_i are the terms of the lower central series of *G*.

The nilpotency class of *G* coincides with that of L(G).

The action of the group FH on G naturally induces an action of FH on L(G).

Particular case. F is cyclic of prime order p. G admits a Frobenius group of automorphisms FH with kernel F and complement H.

Reduction to Lie rings.

Let L(G) be the associated Lie ring of the group G:

$$L(G) = \bigoplus_{i=1}^n \gamma_i / \gamma_{i+1},$$

where *n* is the nilpotency class of *G* and the γ_i are the terms of the lower central series of *G*.

The nilpotency class of *G* coincides with that of L(G).

The action of the group FH on G naturally induces an action of FH on L(G).

It can be proved that $C_L(F) = 0$ and $C_L(H)$ is nilpotent of class *c*.

Theorem B'.

Let a Lie ring G admit a Frobenius group of automorphisms FH with cyclic kernel F of prime order and complement H.

Natalia MAKARENKO (Mulhouse-Novosibirsk

Frobenius groups of automorphisms

Ischia Group Theory, 2010 15 / 22

< ロ > < 同 > < 回 > < 回 >

Theorem B'.

Let a Lie ring *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of prime order and complement *H*. If $C_G(L) = 0$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *L* is bounded in terms of |H| and *c*.

Natalia MAKARENKO (Mulhouse–Novosibirs

Theorem B'.

Let a Lie ring *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of prime order and complement *H*. If $C_G(L) = 0$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *L* is bounded in terms of |H| and *c*.

Proof of Theorem B'.

Natalia MAKARENKO (Mulhouse–Novosibirs Froben

Frobenius groups of automorphisms

Ischia Group Theory, 2010 15 / 22

Theorem B'.

Let a Lie ring *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of prime order and complement *H*. If $C_G(L) = 0$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *L* is bounded in terms of |H| and *c*.

Proof of Theorem B'.

Step 1: reduction to a $\mathbb{Z}/p\mathbb{Z}$ -graded Lie ring with $L_0 = 0$.

Natalia MAKARENKO (Mulhouse–Novosibirs) Frobenius groups of automorphisms Ischia C

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem B'.

Let a Lie ring *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of prime order and complement *H*. If $C_G(L) = 0$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *L* is bounded in terms of |H| and *c*.

Proof of Theorem B'.

Step 1: reduction to a $\mathbb{Z}/p\mathbb{Z}$ -graded Lie ring with $L_0 = 0$.

Let |F| = p, |H| = q. Let ω be a *p*th primitive root of 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem B'.

Let a Lie ring *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of prime order and complement *H*. If $C_G(L) = 0$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *L* is bounded in terms of |H| and *c*.

Proof of Theorem B'.

Step 1: reduction to a $\mathbb{Z}/p\mathbb{Z}$ -graded Lie ring with $L_0 = 0$.

Let |F| = p, |H| = q. Let ω be a *p*th primitive root of 1.

We extend the ground ring by ω setting $\tilde{L} = L \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$.

Theorem B'.

Let a Lie ring *G* admit a Frobenius group of automorphisms *FH* with cyclic kernel *F* of prime order and complement *H*. If $C_G(L) = 0$ and $C_G(H)$ is nilpotent of class *c*, then the nilpotency class of *L* is bounded in terms of |H| and *c*.

Proof of Theorem B'.

- Step 1: reduction to a $\mathbb{Z}/p\mathbb{Z}$ -graded Lie ring with $L_0 = 0$.
- Let |F| = p, |H| = q. Let ω be a *p*th primitive root of 1.
- We extend the ground ring by ω setting $\tilde{L} = L \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$.
- The group *FH* acts in a natural way on \tilde{L} and the action satisfies the conditions that $C_{\tilde{L}}(F) = 0$ and $C_{\tilde{L}}(H)$ is nilpotent of class *c*.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Natalia MAKARENKO (Mulhouse–Novosibirsk Fi

Frobenius groups of automorphisms

Ischia Group Theory, 2010 16 / 22

・ロト ・ 四ト ・ ヨト ・ ヨト

Let ϕ be a generator of F. For each i = 0, ..., p - 1 we define $L_i = \{x \in \tilde{L} \mid x^{\phi} = \omega^i x\}.$

Natalia MAKARENKO (Mulhouse-Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 16 / 22

イロン イ理 とく ヨン イヨン

Let ϕ be a generator of *F*. For each i = 0, ..., p - 1 we define $L_i = \{x \in \tilde{L} \mid x^{\phi} = \omega^i x\}.$

One can verify that

$$[L_i, L_j] \leq L_{(i+j) \mod p}.$$

Let ϕ be a generator of *F*. For each $i = 0, \dots, p-1$ we define

$$L_i = \{ x \in \tilde{L} \mid x^{\phi} = \omega^i x \}.$$

One can verify that

$$[L_i, L_j] \leq L_{(i+j) \mod p}.$$

For each $a \in \tilde{L}$ and for each $i = 0, \ldots, p-1$ we set

$$a_i=\sum_{s=0}^{p-1}\omega^{-is}a^{\phi^s}.$$

Natalia MAKARENKO (Mulhouse–Novosibirs) Frobenius groups of automorphisms

3

イロト 不得 トイヨト イヨト

Let ϕ be a generator of *F*. For each $i = 0, \dots, p-1$ we define

$$L_i = \{ \mathbf{x} \in \tilde{L} \mid \mathbf{x}^{\phi} = \omega^i \mathbf{x} \}.$$

One can verify that

$$[L_i, L_j] \leq L_{(i+j) \mod p}.$$

For each $a \in \tilde{L}$ and for each i = 0, ..., p - 1 we set

$$a_i = \sum_{s=0}^{p-1} \omega^{-is} a^{\phi^s}.$$

Direct calculations show that

$$a_i^{\phi} = \omega^i a_i,$$

whence $a_i \in L_i$,

Let ϕ be a generator of F. For each $i = 0, \dots, p-1$ we define

$$L_i = \{ x \in \tilde{L} \mid x^{\phi} = \omega^i x \}.$$

One can verify that

$$[L_i, L_j] \leq L_{(i+j) \mod p}.$$

For each $a \in \tilde{L}$ and for each i = 0, ..., p - 1 we set

$$a_i = \sum_{s=0}^{p-1} \omega^{-is} a^{\phi^s}.$$

Direct calculations show that

$$a_i^{\phi} = \omega^i a_i,$$

whence $a_i \in L_i$, and

$$\sum_{i=0}^{p-1} a_i = pa$$

Frobenius groups of automorphisms

イロト 不得 トイヨト イヨト

Let ϕ be a generator of F. For each $i = 0, \dots, p-1$ we define

$$L_i = \{ x \in \tilde{L} \mid x^{\phi} = \omega^i x \}.$$

One can verify that

$$[L_i, L_j] \leq L_{(i+j) \mod p}.$$

For each $a \in \tilde{L}$ and for each i = 0, ..., p - 1 we set

$$a_i = \sum_{s=0}^{p-1} \omega^{-is} a^{\phi^s}.$$

Direct calculations show that

$$a_i^{\phi} = \omega^i a_i,$$

whence $a_i \in L_i$, and

$$\sum_{i=0}^{p-1} a_i = pa$$

Frobenius groups of automorphisms

イロト 不得 トイヨト イヨト

Natalia MAKARENKO (Mulhouse-Novosibirsk

Frobenius groups of automorphisms

Ischia Group Theory, 2010 17 / 22

2

イロト イヨト イヨト イヨト

$$p\tilde{L}\leq \sum_{i=0}^{p-1}L_i.$$

Since *L* admits a fixed-point-free automorphism of order p, there can be no p-torsion in *L*.

$$p\tilde{L}\leq \sum_{i=0}^{p-1}L_i.$$

Since *L* admits a fixed-point-free automorphism of order p, there can be no p-torsion in *L*.

Hence $\sum_{i=0}^{p-1} L_i$ is the direct sum of L_i .

・ロト ・ 四ト ・ ヨト ・ ヨト

$$p\tilde{L}\leq \sum_{i=0}^{p-1}L_i.$$

Since *L* admits a fixed-point-free automorphism of order p, there can be no p-torsion in *L*.

Hence $\sum_{i=0}^{p-1} L_i$ is the direct sum of L_i .

So $\sum_{i=0}^{p-1} L_i$ is naturally endowed with a $\mathbb{Z}/p\mathbb{Z}$ -grading such that $L_0 = 0$.

$$p\tilde{L}\leq \sum_{i=0}^{p-1}L_i.$$

Since *L* admits a fixed-point-free automorphism of order p, there can be no p-torsion in *L*.

Hence $\sum_{i=0}^{p-1} L_i$ is the direct sum of L_i .

So $\sum_{i=0}^{p-1} L_i$ is naturally endowed with a $\mathbb{Z}/p\mathbb{Z}$ -grading such that $L_0 = 0$. One can prove that

$$\operatorname{cl}\left(\sum_{i=0}^{p-1}L_i\right)=\operatorname{cl}\left(\tilde{L}\right)=\operatorname{cl}\left(L\right).$$

$$p\tilde{L}\leq \sum_{i=0}^{p-1}L_i.$$

Since *L* admits a fixed-point-free automorphism of order p, there can be no p-torsion in *L*.

Hence $\sum_{i=0}^{p-1} L_i$ is the direct sum of L_i .

So $\sum_{i=0}^{p-1} L_i$ is naturally endowed with a $\mathbb{Z}/p\mathbb{Z}$ -grading such that $L_0 = 0$. One can prove that

$$\operatorname{cl}\left(\sum_{i=0}^{p-1}L_i\right)=\operatorname{cl}\left(\tilde{L}\right)=\operatorname{cl}\left(L\right).$$

Thus, it is sufficient to show that a $\mathbb{Z}/p\mathbb{Z}$ -graded Lie ring *L* with $L_0 = 0$ and nilpotent $C_L(H)$ of nilpotency class *c* is nilpotent of (c, q)-bounded class.

Step 2: Combinatorial condition

Definition.

Let q, p, r be positive integers such that p is prime, q divides p - 1, $1 \le r \le p - 1$ and r is primitive qth root of 1 in \mathbb{F}_p . Let a_1, \ldots, a_k be not necessarily distinct elements of \mathbb{F}_p . We say that the sequence (a_1, \ldots, a_k) is r-dependent if and only if there exist $i_1, \ldots, i_m \in \{1, 2, \ldots, k\}$ and $\alpha_1, \ldots, \alpha_m \in \{1, 2, \ldots, q - 1\}$ such that

$$a_{i_1}+\cdots+a_{i_m}=r^{\alpha_1}a_{i_1}+\cdots+r^{\alpha_m}a_{i_m}.$$

If the sequence (a_1, \ldots, a_k) is not *r*-dependent, we will call it *r*-independent.

< 日 > < 同 > < 回 > < 回 > < □ > <

Step 2: Combinatorial condition

Definition.

Let q, p, r be positive integers such that p is prime, q divides p - 1, $1 \le r \le p - 1$ and r is primitive qth root of 1 in \mathbb{F}_p . Let a_1, \ldots, a_k be not necessarily distinct elements of \mathbb{F}_p . We say that the sequence (a_1, \ldots, a_k) is r-dependent if and only if there exist $i_1, \ldots, i_m \in \{1, 2, \ldots, k\}$ and $\alpha_1, \ldots, \alpha_m \in \{1, 2, \ldots, q - 1\}$ such that

$$a_{i_1}+\cdots+a_{i_m}=r^{\alpha_1}a_{i_1}+\cdots+r^{\alpha_m}a_{i_m}.$$

If the sequence (a_1, \ldots, a_k) is not *r*-dependent, we will call it *r*-independent.

Example: q = 2, p = 13, r = -1.

3

イロト 不得 トイヨト イヨト

Step 2: Combinatorial condition

Definition.

Let q, p, r be positive integers such that p is prime, q divides p - 1, $1 \le r \le p - 1$ and r is primitive qth root of 1 in \mathbb{F}_p . Let a_1, \ldots, a_k be not necessarily distinct elements of \mathbb{F}_p . We say that the sequence (a_1, \ldots, a_k) is r-dependent if and only if there exist $i_1, \ldots, i_m \in \{1, 2, \ldots, k\}$ and $\alpha_1, \ldots, \alpha_m \in \{1, 2, \ldots, q - 1\}$ such that

$$a_{i_1}+\cdots+a_{i_m}=r^{\alpha_1}a_{i_1}+\cdots+r^{\alpha_m}a_{i_m}.$$

If the sequence (a_1, \ldots, a_k) is not *r*-dependent, we will call it *r*-independent.

Example: q = 2, p = 13, r = -1. We take, for example, (1, 1, 2, 3).

The sequence (1, 1, 2, 3) is *r*-independent, because we cannot find $i_1, \ldots, i_m \in \{1, 2, 3, 4\}$ such that

$$a_{i_1} + \cdots + a_{i_m} = -a_{i_1} + \cdots - a_{i_m} \pmod{13}.$$

Natalia MAKARENKO (Mulhouse–Novosibirs) Frobenius groups of automorphisms

Proposition.

Let q, p, r, c be positive integers such that p is prime, q divides p - 1, $1 \le r \le p - 1$ and r is primitive qth root of 1 in \mathbb{F}_p .

э

Proposition.

Let q, p, r, c be positive integers such that p is prime, q divides p - 1, $1 \le r \le p - 1$ and r is primitive qth root of 1 in \mathbb{F}_p . Let

$$L = \sum_{i=0}^{p-1} L_i$$

be a $\mathbb{Z}/n\mathbb{Z}$ -graded Lie ring such that $L_0 = 0$ and

 $[x_{d_1}, x_{d_2}, \dots, x_{d_{c+1}}] = 0$ whenever (d_1, \dots, d_{c+1}) is *r*-independent,

where $x_{d_1}, x_{d_2}, \ldots, x_{d_{c+1}}$ are homogeneous elements $x_{d_i} \in L_{d_i}$.

3

イロト 不得 トイヨト イヨト

Proposition.

Let q, p, r, c be positive integers such that p is prime, q divides p - 1, $1 \le r \le p - 1$ and r is primitive qth root of 1 in \mathbb{F}_p . Let

$$L = \sum_{i=0}^{p-1} L_i$$

be a $\mathbb{Z}/n\mathbb{Z}$ -graded Lie ring such that $L_0 = 0$ and

 $[x_{d_1}, x_{d_2}, \dots, x_{d_{c+1}}] = 0$ whenever (d_1, \dots, d_{c+1}) is *r*-independent,

where $x_{d_1}, x_{d_2}, \ldots, x_{d_{c+1}}$ are homogeneous elements $x_{d_i} \in L_{d_i}$. Then *L* is nilpotent of (c, q)-bounded derived length.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

$$q = 2, p = 13, c = 3, r = -1.$$

Natalia MAKARENKO (Mulhouse–Novosibirs

Frobenius groups of automorphisms

Ischia Group Theory, 2010 21 / 22

2

<ロ> (日) (日) (日) (日) (日)

$$q = 2, p = 13, c = 3, r = -1.$$

We take, for example, $x_1 \in L_1, y_1 \in L_1, z_2 \in L_2, q_3 \in L_3$.

Natalia MAKARENKO (Mulhouse–Novosibirs

Ischia Group Theory, 2010 21 / 22

q = 2, p = 13, c = 3, r = -1.

We take, for example, $x_1 \in L_1$, $y_1 \in L_1$, $z_2 \in L_2$, $q_3 \in L_3$.

The sequence (1, 1, 2, 3) is *r*-independent.

Natalia MAKARENKO (Mulhouse–Novosibirs

< ロ > < 同 > < 回 > < 回 >

q = 2, p = 13, c = 3, r = -1.

We take, for example, $x_1 \in L_1, y_1 \in L_1, z_2 \in L_2, q_3 \in L_3$.

The sequence (1, 1, 2, 3) is *r*-independent.

It follows that

$$[x_1, y_1, z_2, q_3] = 0$$

and consequently

$$[L_1, L_1, L_2, L_3] = 0.$$

q = 2, p = 13, c = 3, r = -1.

We take, for example, $x_1 \in L_1, y_1 \in L_1, z_2 \in L_2, q_3 \in L_3$.

The sequence (1, 1, 2, 3) is *r*-independent.

It follows that

$$[x_1, y_1, z_2, q_3] = 0$$

and consequently

$$[L_1, L_1, L_2, L_3] = 0.$$

By the same reasons we have, for example,

$$[L_1, L_1, L_1, L_1] = 0, [L_2, L_2, L_2, L_2] = 0,$$

 $[L_1, L_2, L_3, L_1] = 0, \text{ etc.}$

Step 3: Proof of the Proposition.

- Step 3: Proof of the Proposition.
- The proof is technical and rather intricate.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Step 3: Proof of the Proposition.
- The proof is technical and rather intricate.
- We use induction on *c*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Step 3: Proof of the Proposition.
- The proof is technical and rather intricate.
- We use induction on *c*.
- Eventually the proof reduces to Theorem of Shalev (1993) on $\mathbb{Z}/p\mathbb{Z}$ -graded Lie rings with few non-trivial homogeneous components.

- Step 3: Proof of the Proposition.
- The proof is technical and rather intricate.
- We use induction on *c*.
- Eventually the proof reduces to Theorem of Shalev (1993) on $\mathbb{Z}/p\mathbb{Z}$ -graded Lie rings with few non-trivial homogeneous components.
- Some ideas of the work of Khukhro on Lie ring with few number of commuting components are also used.