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Fixed point spaces

k a field, V = k", G < GL(V) a linear group

What can be said about eigenspaces of elements g € G?
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Fixed point spaces

k a field, V = k", G < GL(V) a linear group
What can be said about eigenspaces of elements g € G?

Here: how small are fixed point spaces?
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Fixed point spaces

k a field, V = k", G < GL(V) a linear group
What can be said about eigenspaces of elements g € G?
Here: how small are fixed point spaces?

Assume G irreducible
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Fixed point spaces

k a field, V = k", G < GL(V) a linear group
What can be said about eigenspaces of elements g € G?
Here: how small are fixed point spaces?

Assume G irreducible

G = SO3(k) is irreducible, but any g € G has 1-dimensional fixed space.
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Fixed point spaces

k a field, V = k", G < GL(V) a linear group

What can be said about eigenspaces of elements g € G?

Here: how small are fixed point spaces?

Assume G irreducible

G = SO3(k) is irreducible, but any g € G has 1-dimensional fixed space.

Here, dim Cv(g) > 3 dim V.
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Some history

Theorem (P. Neumann (1966))
G < GL(V) finite irreducible solvable = there exists g € G with

i Coll) < % i (7/18 ~ 0.3888)
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Some history

Theorem (P. Neumann (1966))
G < GL(V) finite irreducible solvable = there exists g € G with

i Coll) < % i (7/18 ~ 0.3888)

Theorem (Segal-Shalev (1999))
G < GL(V) finite irreducible = there exists g € G with

dim Cy(g) < Zdim V.
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Some history

Theorem (P. Neumann (1966))
G < GL(V) finite irreducible solvable = there exists g € G with

i Coll) < % i (7/18 ~ 0.3888)

Theorem (Segal-Shalev (1999))
G < GL(V) finite irreducible = there exists g € G with

dim Cy(g) < %dim V.

Uses classification of finite simple groups (CFSG)
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G finite, p smallest prime divisor of |G|
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Recent results

G finite, p smallest prime divisor of |G|

Theorem (Isaacs—Keller-Meierfrankenfeld-Moret6 (2006))
G < GL(V) irreducible = there exists g € G with

1
dim Cy(g) < I—)dim V.
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Recent results

G finite, p smallest prime divisor of |G|

Theorem (Isaacs—Keller-Meierfrankenfeld-Moret6 (2006))
G < GL(V) irreducible = there exists g € G with

1
dim Cy(g) < I—)dim V.

Theorem (Guralnick—Maréti (2010))

G < GL(V) without trivial composition factor = there exists g € G with

1
dim Cy(g) < l—)dim V.
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Recent results

G finite, p smallest prime divisor of |G|

Theorem (Isaacs—Keller-Meierfrankenfeld-Moret6 (2006))
G < GL(V) irreducible = there exists g € G with

1
dim Cy(g) < I—)dim V.

Theorem (Guralnick—Maréti (2010))

G < GL(V) without trivial composition factor = there exists g € G with

1
dim Cy(g) < l—)dim V.

Both use CFSG
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Main result

G # 1 arbitrary group

Theorem A

G < GL(V) irreducible => there exists g € G with

1
dim Cy(g) < §dim V.
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Main result

G # 1 arbitrary group

Theorem A
G < GL(V) irreducible = there exists g € G with

1
dim Cy(g) < §dim V.

Best possible by example of SO3(k).
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Large dimension

Better bounds for larger dimensions?
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Large dimension

Better bounds for larger dimensions?
Theorem B

For any € > 0 there exists N > 0 with the following property:
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Large dimension

Better bounds for larger dimensions?

Theorem B

For any € > 0 there exists N > 0 with the following property:

G finite quasi-simple = there is g € G such that for all irreducible
CG-modules V' with dimV > N:

every eigenspace of g has dimension < edim V.
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Large dimension

Better bounds for larger dimensions?

Theorem B

For any € > 0 there exists N > 0 with the following property:

G finite quasi-simple = there is g € G such that for all irreducible
CG-modules V' with dimV > N:

every eigenspace of g has dimension < edim V.

So: G quasi-simple, dim V' large = all eigenspaces are small
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Large dimension

Better bounds for larger dimensions?

Theorem B

For any € > 0 there exists N > 0 with the following property:

G finite quasi-simple = there is g € G such that for all irreducible
CG-modules V' with dimV > N:

every eigenspace of g has dimension < edim V.

So: G quasi-simple, dim V' large = all eigenspaces are small

Example

Gm =2As x ... x As (m copies) acting on
Vm=W®&...® W (m copies), W 5-dim’l irred. Cs-module
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Large dimension

Better bounds for larger dimensions?

Theorem B

For any € > 0 there exists N > 0 with the following property:

G finite quasi-simple = there is g € G such that for all irreducible
CG-modules V' with dimV > N:

every eigenspace of g has dimension < edim V.

So: G quasi-simple, dim V' large = all eigenspaces are small

Example

Gm =2As x ... x As (m copies) acting on
Vm=W®&...® W (m copies), W 5-dim’l irred. Cs-module

1
— dim Cy,,(g) > 50 dimV, forall g € Gp,.
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Reductions for Thm. A

Have 1 # G < GL(V), V = k", irreducible.
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Reductions for Thm. A
Have 1 # G < GL(V), V = k", irreducible.

Step 1: wlog G absolutely irreducible
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Reductions for Thm. A
Have 1 # G < GL(V), V = k", irreducible.

Step 1: wlog G absolutely irreducible

Over splitting field, V' is sum of Galois conjugates, all with same fixed
spaces.
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Reductions for Thm. A
Have 1 # G < GL(V), V = k", irreducible.

Step 1: wlog G absolutely irreducible

Over splitting field, V' is sum of Galois conjugates, all with same fixed
spaces.

Step 2: wlog G finitely generated
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Reductions for Thm. A
Have 1 # G < GL(V), V = k", irreducible.

Step 1: wlog G absolutely irreducible

Over splitting field, V' is sum of Galois conjugates, all with same fixed
spaces.

Step 2: wlog G finitely generated
Indeed, there are g1, ...,g, € G which generate irreducible subgroup J
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Reductions for Thm. A
Have 1 # G < GL(V), V = k", irreducible.

Step 1: wlog G absolutely irreducible

Over splitting field, V' is sum of Galois conjugates, all with same fixed
spaces.

Step 2: wlog G finitely generated
Indeed, there are g1, ...,g, € G which generate irreducible subgroup

Step 3: wlog G < GL,(R) with R finitely generated over Z or F,
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Reductions for Thm. A
Have 1 # G < GL(V), V = k", irreducible.

Step 1: wlog G absolutely irreducible

Over splitting field, V' is sum of Galois conjugates, all with same fixed
spaces.

Step 2: wlog G finitely generated
Indeed, there are g1, ...,g, € G which generate irreducible subgroup

Step 3: wlog G < GL,(R) with R finitely generated over Z or F,

Indeed, take entries of git, ... gt
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Reductions, continued

Have 1 # G < GL,(R) abs. irred., R finitely generated
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Reductions, continued

Have 1 # G < GL,(R) abs. irred., R finitely generated

Step 4: wlog G < GL,(q) finite
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Reductions, continued

Have 1 # G < GL,(R) abs. irred., R finitely generated

Step 4: wlog G < GL,(q) finite
Clear for |R| < 0.
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Reductions, continued

Have 1 # G < GL,(R) abs. irred., R finitely generated

Step 4: wlog G < GL,(q) finite
Clear for |R| < oo.

Else take n® elements h; € G which span R™".
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Reductions, continued

Have 1 # G < GL,(R) abs. irred., R finitely generated

Step 4: wlog G < GL,(q) finite
Clear for |R| < oo.

Else take n® elements h; € G which span R™".

Take maximal ideal M < R such that h; € (R/9M)™" remain independent,
get irreducible G = (h;) < GL,(R/9M).
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Reductions, continued

Have 1 # G < GL,(R) abs. irred., R finitely generated

Step 4: wlog G < GL,(q) finite
Clear for |R| < oo.

Else take n® elements h; € G which span R™".

Take maximal ideal 9 < R such that h; € (R/9M)"™*" remain independent,
get irreducible G = (h;) < GL,(R/M).

Here R/ is a finite field.
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Reductions, concluded

Have 1 # G < GLu(q) irreducible
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Reductions, concluded

Have 1 # G < GLu(q) irreducible

Step 5: wlog G non-abelian simple
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Reductions, concluded

Have 1 # G < GL,(q) irreducible

Step 5: wlog G non-abelian simple
Let N < G minimal normal subgroup.

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010 10 / 20



Reductions, concluded

Have 1 # G < GL,(q) irreducible

Step 5: wlog G non-abelian simple
Let N <« G minimal normal subgroup.

e N elementary abelian p-group, p > 2: done by Isaacs et al.
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Reductions, concluded

Have 1 # G < GL,(q) irreducible

Step 5: wlog G non-abelian simple
Let N <« G minimal normal subgroup.
e N elementary abelian p-group, p > 2: done by Isaacs et al.

o N elementary abelian 2-group: use an argument on average size of
fixed point space.
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Reductions, concluded

Have 1 # G < GL,(q) irreducible

Step 5: wlog G non-abelian simple
Let N <« G minimal normal subgroup.
e N elementary abelian p-group, p > 2: done by Isaacs et al.

o N elementary abelian 2-group: use an argument on average size of
fixed point space.

e N non-abelian: Reduces to simple case (for Lo(2f) use an argument
of Guralnick—Mardti)
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Sizes of fixed point spaces

Lemma (Scott (1977))
Let G = (g1,

,8r) with g1 ---g, =1, V finite dim’l kG-module. Then
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Sizes of fixed point spaces
Lemma (Scott (1977))
Let G = {g1,...,8) with g ---g =1, V finite dim’l kG-module. Then

r
> " dimlgi, V] = dim V — dim V¢ + dim[G, V].
i=1
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Sizes of fixed point spaces
Lemma (Scott (1977))
Let G = {g1,...,8) with g ---g =1, V finite dim’l kG-module. Then

r
> " dimlgi, V] = dim V — dim V¢ + dim[G, V].
i=1

When r = 3 and G has no fixed points on V or V* this gives

3
> dim Cy(gi) < dimV
i=1
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Sizes of fixed point spaces
Lemma (Scott (1977))
Let G = {g1,...,8) with g ---g =1, V finite dim’l kG-module. Then

r
> " dimlgi, V] = dim V — dim V¢ + dim[G, V].
i=1

When r = 3 and G has no fixed points on V or V* this gives

3
> dim Cy(gi) < dimV
i=1

(since dim Cy(gi) = dim V —dim[g;, V])
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.

Proof.

Let 0 an eigenvalue of x with #-eigenspace of maximal dimension,
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.

Proof.

Let 0 an eigenvalue of x with #-eigenspace of maximal dimension,

x' = 607"1x, y' = 071y, Z = 92(xy)*1.
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.

Proof.

Let 0 an eigenvalue of x with #-eigenspace of maximal dimension,
xX'=0"1x, y =601y, Z=60%(xy)"L.

— x'y'Z =1.
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.

If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.

Proof.

Let 0 an eigenvalue of x with #-eigenspace of maximal dimension,
X' =0"1x, y =601y, Z=60*(xy)"L
— x'y'Z =1.

Fixed space of each of these has dimension at least that of the
f-eigenspace of x.
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.

Proof.

Let 0 an eigenvalue of x with #-eigenspace of maximal dimension,
X' =0"1x, y =601y, Z=60*(xy)"L

— x'y'Z =1.

Fixed space of each of these has dimension at least that of the
f-eigenspace of x.

Apply Scott’s Lemma O
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Lemma

Let x,y € GL,(k) = GL(V), n > 2, be conjugate with product xy ~ x>.
If V is irreducible for G = (x,y) =
all eigenspaces of x have dimension at most n/3.

Proof.

Let 0 an eigenvalue of x with #-eigenspace of maximal dimension,
X' =0"1x, y =601y, Z=60*(xy)"L

= x'y'z = 1.

Fixed space of each of these has dimension at least that of the
f-eigenspace of x.

Apply Scott’s Lemma O

v

Thus, Thm. A follows from certain generation property of simple groups.
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Generation of simple groups
Theorem C

G finite non-abelian simple, G # L»(2), L»(7)
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Generation of simple groups
Theorem C

G finite non-abelian simple, G # Lo(2F), Lx(7) =
there exists a class C of G and (x,y,z) € C x C x C~2 with:

xyz=1 and G = (x,y).
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Generation of simple groups

Theorem C

G finite non-abelian simple, G # Lo(2F), Lx(7) =

there exists a class C of G and (x,y,z) € C x C x C~2 with:

xyz=1 and G = (x,y).

Corollary

G finite non-abelian simple other than L,(2f).
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Generation of simple groups

Theorem C

G finite non-abelian simple, G # L,(2f), Lo(7) =

there exists a class C of G and (x,y,z) € C x C x C~2 with:

xyz=1 and G = (x,y).

Corollary

G finite non-abelian simple other than Lo(2f). There exists g € G with:

for any non-trivial irreducible kG-module V/, every eigenspace of g on V
has dimension < (1/3)dim V.
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Generation of simple groups

Theorem C

G finite non-abelian simple, G # L,(2f), Lo(7) =

there exists a class C of G and (x,y,z) € C x C x C~2 with:

xyz=1 and G = (x,y).

Corollary

G finite non-abelian simple other than Lo(2f). There exists g € G with:

for any non-trivial irreducible kG-module V/, every eigenspace of g on V
has dimension < (1/3)dim V.

For L»(27) the 2-dim’l modules in char. 2 provide counterexamples.
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Generation of simple groups

Theorem C

G finite non-abelian simple, G # Lo(2F), Lx(7) =
there exists a class C of G and (x,y,z) € C x C x C~2 with:

xyz=1 and G = (x,y).

Corollary

G finite non-abelian simple other than Lo(2f). There exists g € G with:
for any non-trivial irreducible kG-module V/, every eigenspace of g on V
has dimension < (1/3)dim V.

For L»(27) the 2-dim’l modules in char. 2 provide counterexamples.

Still, a slight variation holds in this case as well.
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Alternating groups

For ,, Thm. Cis proved by explicit construction.
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Alternating groups

For 2,, Thm. C is proved by explicit construction.

Lemma

Let n > 11 be odd. There exist three n — 2-cycles in 2, with product 1
that generate U,,.
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Alternating groups

For 2,, Thm. C is proved by explicit construction.

Lemma

Let n > 11 be odd. There exist three n — 2-cycles in 2, with product 1
that generate 2A,,.

Uses results of Wielandt on triply transitive groups.
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Alternating groups

For 2,, Thm. C is proved by explicit construction.

Lemma

Let n > 11 be odd. There exist three n — 2-cycles in A, with product 1
that generate 2A,,.

Uses results of Wielandt on triply transitive groups.

Similarly for n > 12 even with n — 3-cycles.

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010 14 /20



Alternating groups

For 2,, Thm. C is proved by explicit construction.

Lemma

Let n > 11 be odd. There exist three n — 2-cycles in A, with product 1
that generate 2A,,.

Uses results of Wielandt on triply transitive groups.
Similarly for n > 12 even with n — 3-cycles.

Small n: computer check
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Structure constants
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Structure constants

G a finite group, C C G a conjugacy class, x € C.
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Structure constants

G a finite group, C C G a conjugacy class, x € C. Then

n(C):=H{(y,2) € Cx C2 | xyz = 1}
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Structure constants

G a finite group, C C G a conjugacy class, x € C. Then
n(C) = {(y,z) € Cx C? | xyz =1}

is given by

|C| (C)x(
__ZX) )
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Structure constants

G a finite group, C C G a conjugacy class, x € C. Then
n(C) = {(y,z) € Cx C? | xyz =1}

is given by

Set
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Structure constants

G a finite group, C C G a conjugacy class, x € C. Then

n(C):=H{(y,2) € Cx C2 | xyz = 1}

is given by
C Z X C)2 )
|G| XElrr(G) (1)
Set C)2 (c- 2)
x(C)x
e(C): Z ,
ol X
so that
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Structure constants

G a finite group, C C G a conjugacy class, x € C. Then

n(C):=H{(y,2) € Cx C2 | xyz = 1}

is given by
C Z X C)2 )
|G| XElrr(G) (1)
Set C)2 (c- 2)
x(C)x
e(C): Z ,
ol X
so that

So: ¢(C)<1=n(C)>0
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Structure constants

G a finite group, C C G a conjugacy class, x € C. Then

n(C):=H{(y,2) € Cx C2 | xyz = 1}

is given by
C Z X C)2 )
|G| XElrr(G) (1)
Set C)2 (c- 2)
x(C)x
e(C): Z ,
ol X
so that

So: €(C) <1 = n(C) > 0 = there exist triples

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010

15 / 20



Groups of type Eg

Let G = Es(q), g =p",
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Groups of type Eg

Let G = Es(q), g =p",

Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,
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Groups of type Eg

Let G = Eg(q), g =p",

Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,
T = (x)
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Groups of type Eg

Let G = Eg(q), g =p",

Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,
T = (x)

Weigel (1992): if x € M < G then M < Ng(T) =T : Z3p
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Groups of type Eg

Let G = Eg(q), g =p",

Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,
T = (x)

Weigel (1992): if x € M < G then M < Ng(T) =T : Z3p

= at most one pair (y, z) € C x C~2 with xyz = 1 does not generate G.
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Groups of type Eg

Let G = Eg(q), g =p",

Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,

T = (x)

Weigel (1992): if x € M < G then M < Ng(T) =T : Z3p

= at most one pair (y, z) € C x C~2 with xyz = 1 does not generate G.

Deligne-Lusztig theory: characters with x(x) # 0 can be described, values
estimated
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Groups of type Eg

Let G = Eg(q), g =p",

Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,

T = (x)

Weigel (1992): if x € M < G then M < Ng(T) =T : Z3p

= at most one pair (y, z) € C x C~2 with xyz = 1 does not generate G.

Deligne-Lusztig theory: characters with x(x) # 0 can be described, values
estimated

—  (C)<1)2
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Groups of type Eg

Let G = Eg(q), g =p",
Cclassof x € G oforder ¢ +q" —¢® —g* —¢* + g+ 1,
T = (x)

Weigel (1992): if x e M < G then M < Ng(T) =T : Z3
= at most one pair (y, z) € C x C~2 with xyz = 1 does not generate G.

Deligne-Lusztig theory: characters with x(x) # 0 can be described, values
estimated

|CP
e >2
|Gl

N~

—  (C)<1)2 —  n(C) >
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Groups of type Eg

Let G = E5(q), g = p',
Cclassof x€ Goforder @ +q" —¢> —g* — ¢+ qg+1,
T = (x)

Weigel (1992): if x €« M < G then M < Ng(T) =T : Z39
= at most one pair (y,z) € C x C~2 with xyz = 1 does not generate G.

Deligne-Lusztig theory: characters with x(x) # 0 can be described, values
estimated

—  (C)<1)2 = 02570

N |

— there exist generating pairs (y, z)
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Groups of Lie type

G of Lie type,
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Groups of Lie type

G of Lie type, C class of generators of suitable maximal torus T
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Groups of Lie type

G of Lie type, C class of generators of suitable maximal torus T

Weigel, Kleidman—Liebeck, M.—Sax|-Weigel, G.—Penttila—Praeger-Saxl,
G.-M.: Maximal overgroups of T known
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Groups of Lie type
G of Lie type, C class of generators of suitable maximal torus T

Weigel, Kleidman—Liebeck, M.—Sax|-Weigel, G.—Penttila—Praeger-Saxl,
G.-M.: Maximal overgroups of T known

Example
Let G = Q,,(q), x an element of order r > 4n + 1 dividing ®2,(q),
x € M < G. Then one of:
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Groups of Lie type

G of Lie type, C class of generators of suitable maximal torus T

Weigel, Kleidman—Liebeck, M.—Sax|-Weigel, G.—Penttila—Praeger-Saxl,
G.—M.: Maximal overgroups of T known
Example

Let G = Q,,(q), x an element of order r > 4n + 1 dividing ®2,(q),
x € M < G. Then one of:

(1) M is the normalizer of Qz_n/f(qf), f|n prime;
(2) nis odd and M is the normalizer of SU,(q);
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Groups of Lie type

G of Lie type, C class of generators of suitable maximal torus T

Weigel, Kleidman—Liebeck, M.—Sax|-Weigel, G.—Penttila—Praeger-Saxl,
G.—M.: Maximal overgroups of T known
Example

Let G = Q,,(q), x an element of order r > 4n + 1 dividing ®2,(q),
x € M < G. Then one of:

(1) M is the normalizer of Q;n/f(qf), f|n prime;

(2) nis odd and M is the normalizer of SU,(q);

(3) (n,q) =(10,2), M = Ayo;

(4) (n,q) = (12,2), M = 243, 15(13), L3(3); or

(5) (n,q) = (18,2), M = 2o, )
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Deligne—Lusztig theory

Lusztig's Jordan decomposition of characters:
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Deligne—Lusztig theory

Lusztig's Jordan decomposition of characters:

characters not vanishing on x € T lie in few Lusztig families,

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010 18 / 20



Deligne—Lusztig theory

Lusztig's Jordan decomposition of characters:
characters not vanishing on x € T lie in few Lusztig families,

values on x, x> known 'in principle’ (since x is semisimple).
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Deligne—Lusztig theory

Lusztig's Jordan decomposition of characters:
characters not vanishing on x € T lie in few Lusztig families,
values on x, x> known 'in principle’ (since x is semisimple).

Estimate yields ¢(C) < 1/2
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Deligne—Lusztig theory

Lusztig's Jordan decomposition of characters:

characters not vanishing on x € T lie in few Lusztig families,
values on x, x> known 'in principle’ (since x is semisimple).
Estimate yields ¢(C) < 1/2

= n(C) 'large’; not all triples can lie in maximal subgroups

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010

18 / 20



Deligne—Lusztig theory

Lusztig's Jordan decomposition of characters:

characters not vanishing on x € T lie in few Lusztig families,
values on x, x> known 'in principle’ (since x is semisimple).
Estimate yields ¢(C) < 1/2

= n(C) 'large’; not all triples can lie in maximal subgroups

= Thm. C holds for these groups

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010

18 / 20
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A related result

Theorem D

G finite non-abelian simple, G # Og (2) =
there exists an element x of order prime to 6 such that:

{1} # C classof G = G = (g, x) for some g € C.
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A related result

Theorem D

G finite non-abelian simple, G # Og (2) =
there exists an element x of order prime to 6 such that:

{1} # C classof G = G = (g, x) for some g € C.

Idea of proof of Theorem D.

Take x as in Thm. C.
If contained in at most two maximal subgroups done by: O
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A related result

Theorem D

G finite non-abelian simple, G # Og (2) =
there exists an element x of order prime to 6 such that:

{1} # C classof G = G = (g, x) for some g € C.

Idea of proof of Theorem D.

Take x as in Thm. C.
If contained in at most two maximal subgroups done by: O

Lemma

C a non-trivial conjugacy class in a finite simple group G
= C not contained in the union of any two proper subgroups.
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Remaining cases:
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Remaining cases:

Find two conjugacy classes Ci, C; of G such that
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Remaining cases:
Find two conjugacy classes (i, (; of G such that

e G = (1 G (structure constants)
e no maximal subgroup contains elements from both classes
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Remaining cases:
Find two conjugacy classes (i, (; of G such that

e G = (1 G (structure constants)
e no maximal subgroup contains elements from both classes

or: use fixed point ratios
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