Uniform triples and fixed point spaces

Gunter Malle

TU Kaiserslautern
16. April 2010

Joint with Robert M. Guralnick (USC)

Fixed point spaces

k a field, $V=k^{n}$,

Fixed point spaces

k a field, $V=k^{n}, \quad G \leq G L(V)$ a linear group

Fixed point spaces

k a field, $V=k^{n}, \quad G \leq G L(V)$ a linear group
What can be said about eigenspaces of elements $g \in G$?

Fixed point spaces

k a field, $V=k^{n}, \quad G \leq G L(V)$ a linear group
What can be said about eigenspaces of elements $g \in G$?
Here: how small are fixed point spaces?

Fixed point spaces

k a field, $V=k^{n}, \quad G \leq G L(V)$ a linear group
What can be said about eigenspaces of elements $g \in G$?
Here: how small are fixed point spaces?
Assume G irreducible

Fixed point spaces

k a field, $V=k^{n}, \quad G \leq G L(V)$ a linear group
What can be said about eigenspaces of elements $g \in G$?
Here: how small are fixed point spaces?
Assume G irreducible
$G=\mathrm{SO}_{3}(k)$ is irreducible, but any $g \in G$ has 1-dimensional fixed space.

Fixed point spaces

k a field, $V=k^{n}, \quad G \leq G L(V)$ a linear group
What can be said about eigenspaces of elements $g \in G$?
Here: how small are fixed point spaces?
Assume G irreducible
$G=\mathrm{SO}_{3}(k)$ is irreducible, but any $g \in G$ has 1-dimensional fixed space.
Here, $\operatorname{dim} C_{V}(g) \geq \frac{1}{3} \operatorname{dim} V$.

Some history

Some history

Theorem (P. Neumann (1966))
$G \leq G L(V)$ finite irreducible solvable \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{7}{18} \operatorname{dim} V . \quad(7 / 18 \approx 0.3888)
$$

Some history

Theorem (P. Neumann (1966))
$G \leq G L(V)$ finite irreducible solvable \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{7}{18} \operatorname{dim} V . \quad(7 / 18 \approx 0.3888)
$$

Theorem (Segal-Shalev (1999))
$G \leq G L(V)$ finite irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{3}{4} \operatorname{dim} V
$$

Some history

Theorem (P. Neumann (1966))
$G \leq G L(V)$ finite irreducible solvable \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{7}{18} \operatorname{dim} V . \quad(7 / 18 \approx 0.3888)
$$

Theorem (Segal-Shalev (1999))
$G \leq G L(V)$ finite irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{3}{4} \operatorname{dim} V
$$

Uses classification of finite simple groups (CFSG)

Recent results

Recent results

G finite, p smallest prime divisor of $|G|$

Recent results

G finite, p smallest prime divisor of $|G|$
Theorem (Isaacs-Keller-Meierfrankenfeld-Moretó (2006))
$G \leq G L(V)$ irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{1}{p} \operatorname{dim} V
$$

Recent results

G finite, p smallest prime divisor of $|G|$
Theorem (Isaacs-Keller-Meierfrankenfeld-Moretó (2006))
$G \leq G L(V)$ irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{1}{p} \operatorname{dim} V
$$

Theorem (Guralnick-Maróti (2010))
$G \leq \mathrm{GL}(V)$ without trivial composition factor \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g)<\frac{1}{p} \operatorname{dim} V
$$

Recent results

G finite, p smallest prime divisor of $|G|$
Theorem (Isaacs-Keller-Meierfrankenfeld-Moretó (2006))
$G \leq G L(V)$ irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{1}{p} \operatorname{dim} V
$$

Theorem (Guralnick-Maróti (2010))
$G \leq G L(V)$ without trivial composition factor \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g)<\frac{1}{p} \operatorname{dim} V
$$

Both use CFSG

Main result

Main result

$G \neq 1$ arbitrary group

Main result

$G \neq 1$ arbitrary group

Theorem A
$G \leq G L(V)$ irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{1}{3} \operatorname{dim} V .
$$

Main result

$G \neq 1$ arbitrary group

Theorem A
$G \leq G L(V)$ irreducible \Longrightarrow there exists $g \in G$ with

$$
\operatorname{dim} C_{V}(g) \leq \frac{1}{3} \operatorname{dim} V
$$

Best possible by example of $\mathrm{SO}_{3}(k)$.

Large dimension

Large dimension

Better bounds for larger dimensions?

Large dimension

Better bounds for larger dimensions?

Theorem B

For any $\epsilon>0$ there exists $N>0$ with the following property:

Large dimension

Better bounds for larger dimensions?

Theorem B

For any $\epsilon>0$ there exists $N>0$ with the following property:
G finite quasi-simple \Longrightarrow there is $g \in G$ such that for all irreducible $\mathbb{C} G$-modules V with $\operatorname{dim} V>N$:
every eigenspace of g has dimension $\leq \epsilon \operatorname{dim} V$.

Large dimension

Better bounds for larger dimensions?

Theorem B

For any $\epsilon>0$ there exists $N>0$ with the following property:
G finite quasi-simple \Longrightarrow there is $g \in G$ such that for all irreducible $\mathbb{C} G$-modules V with $\operatorname{dim} V>N$:
every eigenspace of g has dimension $\leq \epsilon \operatorname{dim} V$.

So: G quasi-simple, $\operatorname{dim} V$ large \Longrightarrow all eigenspaces are small

Large dimension

Better bounds for larger dimensions?

Theorem B

For any $\epsilon>0$ there exists $N>0$ with the following property:
G finite quasi-simple \Longrightarrow there is $g \in G$ such that for all irreducible $\mathbb{C} G$-modules V with $\operatorname{dim} V>N$: every eigenspace of g has dimension $\leq \epsilon \operatorname{dim} V$.

So: G quasi-simple, $\operatorname{dim} V$ large \Longrightarrow all eigenspaces are small

Example

$G_{m}=\mathfrak{A}_{5} \times \ldots \times \mathfrak{A}_{5}$ (m copies) acting on
$V_{m}=W \otimes \ldots \otimes W$ (m copies), W 5-dim'l irred. \mathbb{C}_{5}-module

Large dimension

Better bounds for larger dimensions?

Theorem B

For any $\epsilon>0$ there exists $N>0$ with the following property:
G finite quasi-simple \Longrightarrow there is $g \in G$ such that for all irreducible $\mathbb{C} G$-modules V with $\operatorname{dim} V>N$: every eigenspace of g has dimension $\leq \epsilon \operatorname{dim} V$.

So: G quasi-simple, $\operatorname{dim} V$ large \Longrightarrow all eigenspaces are small

Example

$G_{m}=\mathfrak{A}_{5} \times \ldots \times \mathfrak{A}_{5}$ (m copies) acting on
$V_{m}=W \otimes \ldots \otimes W$ (m copies), W 5-dim'l irred. \mathbb{C}_{5}-module
$\Longrightarrow \quad \operatorname{dim} C_{V_{m}}(g)>\frac{1}{50} \operatorname{dim} V_{m} \quad$ for all $g \in G_{m}$.

Reductions for Thm. A

Have $1 \neq G \leq G L(V), V=k^{n}$, irreducible.

Reductions for Thm. A

Have $1 \neq G \leq G L(V), V=k^{n}$, irreducible.

Step 1: wlog G absolutely irreducible

Reductions for Thm. A

Have $1 \neq G \leq G L(V), V=k^{n}$, irreducible.

Step 1: wlog G absolutely irreducible
Over splitting field, V is sum of Galois conjugates, all with same fixed spaces.

Reductions for Thm. A

Have $1 \neq G \leq \mathrm{GL}(V), V=k^{n}$, irreducible.

Step 1: wlog G absolutely irreducible
Over splitting field, V is sum of Galois conjugates, all with same fixed spaces.

Step 2: wlog G finitely generated

Reductions for Thm. A

Have $1 \neq G \leq \mathrm{GL}(V), V=k^{n}$, irreducible.

Step 1: wlog G absolutely irreducible
Over splitting field, V is sum of Galois conjugates, all with same fixed spaces.

Step 2: wlog G finitely generated Indeed, there are $g_{1}, \ldots, g_{n} \in G$ which generate irreducible subgroup

Reductions for Thm. A

Have $1 \neq G \leq \mathrm{GL}(V), V=k^{n}$, irreducible.

Step 1: wlog G absolutely irreducible
Over splitting field, V is sum of Galois conjugates, all with same fixed spaces.

Step 2: wlog G finitely generated Indeed, there are $g_{1}, \ldots, g_{n} \in G$ which generate irreducible subgroup

Step 3: wlog $G \leq G L_{n}(R)$ with R finitely generated over \mathbb{Z} or \mathbb{F}_{p}

Reductions for Thm. A

Have $1 \neq G \leq \mathrm{GL}(V), V=k^{n}$, irreducible.

Step 1: wlog G absolutely irreducible
Over splitting field, V is sum of Galois conjugates, all with same fixed spaces.

Step 2: wlog G finitely generated Indeed, there are $g_{1}, \ldots, g_{n} \in G$ which generate irreducible subgroup

```
Step 3: wlog \(G \leq G L_{n}(R)\) with \(R\) finitely generated over \(\mathbb{Z}\) or \(\mathbb{F}_{p}\)
``` Indeed, take entries of \(g_{1}^{ \pm 1}, \ldots, g_{n}^{ \pm 1}\)

\section*{Reductions, continued}

\author{
Have \(1 \neq G \leq G L_{n}(R)\) abs. irred., \(R\) finitely generated
}

\section*{Reductions, continued}

Have \(1 \neq G \leq \mathrm{GL}_{n}(R)\) abs. irred., \(R\) finitely generated

Step 4: wlog \(G \leq G L_{n}(q)\) finite

\section*{Reductions, continued}

Have \(1 \neq G \leq \mathrm{GL}_{n}(R)\) abs. irred., \(R\) finitely generated

Step 4: wlog \(G \leq G L_{n}(q)\) finite
Clear for \(|R|<\infty\).

\section*{Reductions, continued}

Have \(1 \neq G \leq G L_{n}(R)\) abs. irred., \(R\) finitely generated

Step 4: wlog \(G \leq G L_{n}(q)\) finite
Clear for \(|R|<\infty\).
Else take \(n^{2}\) elements \(h_{i} \in G\) which span \(R^{n \times n}\).

\section*{Reductions, continued}

Have \(1 \neq G \leq G L_{n}(R)\) abs. irred., \(R\) finitely generated

Step 4: wlog \(G \leq G L_{n}(q)\) finite
Clear for \(|R|<\infty\).
Else take \(n^{2}\) elements \(h_{i} \in G\) which span \(R^{n \times n}\). Take maximal ideal \(\mathfrak{M} \triangleleft R\) such that \(\bar{h}_{i} \in(R / \mathfrak{M})^{n \times n}\) remain independent, get irreducible \(\bar{G}=\left\langle\bar{h}_{i}\right\rangle \leq \mathrm{GL}_{n}(R / \mathfrak{M})\).

\section*{Reductions, continued}

Have \(1 \neq G \leq G L_{n}(R)\) abs. irred., \(R\) finitely generated

Step 4: wlog \(G \leq G L_{n}(q)\) finite
Clear for \(|R|<\infty\).
Else take \(n^{2}\) elements \(h_{i} \in G\) which span \(R^{n \times n}\). Take maximal ideal \(\mathfrak{M} \triangleleft R\) such that \(\bar{h}_{i} \in(R / \mathfrak{M})^{n \times n}\) remain independent, get irreducible \(\bar{G}=\left\langle\bar{h}_{i}\right\rangle \leq \mathrm{GL}_{n}(R / \mathfrak{M})\). Here \(R / \mathfrak{M}\) is a finite field.

\section*{Reductions, concluded}

Have \(1 \neq G \leq \mathrm{GL}_{n}(q)\) irreducible

\section*{Reductions, concluded}

\author{
Have \(1 \neq G \leq \mathrm{GL}_{n}(q)\) irreducible
}

Step 5: wlog \(G\) non-abelian simple

\section*{Reductions, concluded}

Have \(1 \neq G \leq G L_{n}(q)\) irreducible

Step 5: wlog \(G\) non-abelian simple
Let \(N \triangleleft G\) minimal normal subgroup.

\section*{Reductions, concluded}

Have \(1 \neq G \leq \mathrm{GL}_{n}(q)\) irreducible

Step 5: wlog \(G\) non-abelian simple
Let \(N \triangleleft G\) minimal normal subgroup.
- \(N\) elementary abelian p-group, \(p>2\) : done by Isaacs et al.

\section*{Reductions, concluded}

Have \(1 \neq G \leq G L_{n}(q)\) irreducible

Step 5: wlog \(G\) non-abelian simple
Let \(N \triangleleft G\) minimal normal subgroup.
- \(N\) elementary abelian p-group, \(p>2\) : done by Isaacs et al.
- \(N\) elementary abelian 2-group: use an argument on average size of fixed point space.

\section*{Reductions, concluded}

Have \(1 \neq G \leq G L_{n}(q)\) irreducible

Step 5: wlog \(G\) non-abelian simple
Let \(N \triangleleft G\) minimal normal subgroup.
- \(N\) elementary abelian p-group, \(p>2\) : done by Isaacs et al.
- \(N\) elementary abelian 2-group: use an argument on average size of fixed point space.
- \(N\) non-abelian: Reduces to simple case (for \(\mathrm{L}_{2}\left(2^{f}\right)\) use an argument of Guralnick-Maróti)

\section*{Sizes of fixed point spaces}

\section*{Sizes of fixed point spaces}

Lemma (Scott (1977))
Let \(G=\left\langle g_{1}, \ldots, g_{r}\right\rangle\) with \(g_{1} \cdots g_{r}=1, V\) finite dim'l \(k G\)-module. Then

\section*{Sizes of fixed point spaces}

Lemma (Scott (1977))
Let \(G=\left\langle g_{1}, \ldots, g_{r}\right\rangle\) with \(g_{1} \cdots g_{r}=1, V\) finite dim'l \(k G\)-module. Then
\[
\sum_{i=1}^{r} \operatorname{dim}\left[g_{i}, V\right] \geq \operatorname{dim} V-\operatorname{dim} V^{G}+\operatorname{dim}[G, V]
\]

\section*{Sizes of fixed point spaces}

Lemma (Scott (1977))
Let \(G=\left\langle g_{1}, \ldots, g_{r}\right\rangle\) with \(g_{1} \cdots g_{r}=1, V\) finite dim'l \(k G\)-module. Then
\[
\sum_{i=1}^{r} \operatorname{dim}\left[g_{i}, V\right] \geq \operatorname{dim} V-\operatorname{dim} V^{G}+\operatorname{dim}[G, V] .
\]

When \(r=3\) and \(G\) has no fixed points on \(V\) or \(V^{*}\) this gives
\[
\sum_{i=1}^{3} \operatorname{dim} C_{V}\left(g_{i}\right) \leq \operatorname{dim} V
\]

\section*{Sizes of fixed point spaces}

Lemma (Scott (1977))
Let \(G=\left\langle g_{1}, \ldots, g_{r}\right\rangle\) with \(g_{1} \cdots g_{r}=1, V\) finite dim'l \(k G\)-module. Then
\[
\sum_{i=1}^{r} \operatorname{dim}\left[g_{i}, V\right] \geq \operatorname{dim} V-\operatorname{dim} V^{G}+\operatorname{dim}[G, V] .
\]

When \(r=3\) and \(G\) has no fixed points on \(V\) or \(V^{*}\) this gives
\[
\sum_{i=1}^{3} \operatorname{dim} C_{V}\left(g_{i}\right) \leq \operatorname{dim} V
\]
(since \(\operatorname{dim} C_{V}\left(g_{i}\right)=\operatorname{dim} V-\operatorname{dim}\left[g_{i}, V\right]\))

Lemma
Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\).

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Proof.}

Let \(\theta\) an eigenvalue of \(x\) with \(\theta\)-eigenspace of maximal dimension,

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Proof.}

Let \(\theta\) an eigenvalue of \(x\) with \(\theta\)-eigenspace of maximal dimension,
\[
x^{\prime}=\theta^{-1} x, \quad y^{\prime}=\theta^{-1} y, \quad z^{\prime}=\theta^{2}(x y)^{-1}
\]

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Proof.}

Let \(\theta\) an eigenvalue of \(x\) with \(\theta\)-eigenspace of maximal dimension,
\[
x^{\prime}=\theta^{-1} x, \quad y^{\prime}=\theta^{-1} y, \quad z^{\prime}=\theta^{2}(x y)^{-1}
\]
\(\Longrightarrow x^{\prime} y^{\prime} z^{\prime}=1\).

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Proof.}

Let \(\theta\) an eigenvalue of \(x\) with \(\theta\)-eigenspace of maximal dimension,
\[
x^{\prime}=\theta^{-1} x, \quad y^{\prime}=\theta^{-1} y, \quad z^{\prime}=\theta^{2}(x y)^{-1} .
\]
\(\Longrightarrow x^{\prime} y^{\prime} z^{\prime}=1\).
Fixed space of each of these has dimension at least that of the \(\theta\)-eigenspace of \(x\).

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Proof.}

Let \(\theta\) an eigenvalue of \(x\) with \(\theta\)-eigenspace of maximal dimension,
\[
x^{\prime}=\theta^{-1} x, \quad y^{\prime}=\theta^{-1} y, \quad z^{\prime}=\theta^{2}(x y)^{-1} .
\]
\(\Longrightarrow x^{\prime} y^{\prime} z^{\prime}=1\).
Fixed space of each of these has dimension at least that of the \(\theta\)-eigenspace of \(x\).
Apply Scott's Lemma

\section*{Lemma}

Let \(x, y \in \mathrm{GL}_{n}(k)=\mathrm{GL}(V), n \geq 2\), be conjugate with product \(x y \sim x^{2}\). If \(V\) is irreducible for \(G=\langle x, y\rangle \Longrightarrow\) all eigenspaces of \(x\) have dimension at most \(n / 3\).

\section*{Proof.}

Let \(\theta\) an eigenvalue of \(x\) with \(\theta\)-eigenspace of maximal dimension,
\[
x^{\prime}=\theta^{-1} x, \quad y^{\prime}=\theta^{-1} y, \quad z^{\prime}=\theta^{2}(x y)^{-1} .
\]
\(\Longrightarrow x^{\prime} y^{\prime} z^{\prime}=1\).
Fixed space of each of these has dimension at least that of the \(\theta\)-eigenspace of \(x\).
Apply Scott's Lemma

Thus, Thm. A follows from certain generation property of simple groups.

\section*{Generation of simple groups}

Theorem C
\(G\) finite non-abelian simple, \(G \neq \mathrm{L}_{2}\left(2^{f}\right), \mathrm{L}_{2}(7)\)

\section*{Generation of simple groups}

Theorem C
\(G\) finite non-abelian simple, \(G \neq \mathrm{L}_{2}\left(2^{f}\right), \mathrm{L}_{2}(7) \Longrightarrow\) there exists a class \(C\) of \(G\) and \((x, y, z) \in C \times C \times C^{-2}\) with:
\[
x y z=1 \quad \text { and } G=\langle x, y\rangle .
\]

\section*{Generation of simple groups}

Theorem C
\(G\) finite non-abelian simple, \(G \neq \mathrm{L}_{2}\left(2^{f}\right), \mathrm{L}_{2}(7) \Longrightarrow\) there exists a class \(C\) of \(G\) and \((x, y, z) \in C \times C \times C^{-2}\) with:
\[
x y z=1 \quad \text { and } G=\langle x, y\rangle .
\]

Corollary
\(G\) finite non-abelian simple other than \(\mathrm{L}_{2}\left(2^{f}\right)\).

\section*{Generation of simple groups}

\section*{Theorem C}
\(G\) finite non-abelian simple, \(G \neq \mathrm{L}_{2}\left(2^{f}\right), \mathrm{L}_{2}(7) \Longrightarrow\) there exists a class \(C\) of \(G\) and \((x, y, z) \in C \times C \times C^{-2}\) with:
\[
x y z=1 \quad \text { and } G=\langle x, y\rangle .
\]

\section*{Corollary}
\(G\) finite non-abelian simple other than \(\mathrm{L}_{2}\left(2^{f}\right)\). There exists \(g \in G\) with: for any non-trivial irreducible \(k G\)-module \(V\), every eigenspace of \(g\) on \(V\) has dimension \(\leq(1 / 3) \operatorname{dim} V\).

\section*{Generation of simple groups}

\section*{Theorem C}
\(G\) finite non-abelian simple, \(G \neq \mathrm{L}_{2}\left(2^{f}\right), \mathrm{L}_{2}(7) \Longrightarrow\) there exists a class \(C\) of \(G\) and \((x, y, z) \in C \times C \times C^{-2}\) with:
\[
x y z=1 \quad \text { and } G=\langle x, y\rangle .
\]

\section*{Corollary}
\(G\) finite non-abelian simple other than \(\mathrm{L}_{2}\left(2^{f}\right)\). There exists \(g \in G\) with: for any non-trivial irreducible \(k G\)-module \(V\), every eigenspace of \(g\) on \(V\) has dimension \(\leq(1 / 3) \operatorname{dim} V\).

For \(L_{2}\left(2^{f}\right)\) the 2-dim'l modules in char. 2 provide counterexamples.

\section*{Generation of simple groups}

\section*{Theorem C}
\(G\) finite non-abelian simple, \(G \neq \mathrm{L}_{2}\left(2^{f}\right), \mathrm{L}_{2}(7) \Longrightarrow\) there exists a class \(C\) of \(G\) and \((x, y, z) \in C \times C \times C^{-2}\) with:
\[
x y z=1 \quad \text { and } G=\langle x, y\rangle .
\]

\section*{Corollary}
\(G\) finite non-abelian simple other than \(\mathrm{L}_{2}\left(2^{f}\right)\). There exists \(g \in G\) with: for any non-trivial irreducible \(k G\)-module \(V\), every eigenspace of \(g\) on \(V\) has dimension \(\leq(1 / 3) \operatorname{dim} V\).

For \(L_{2}\left(2^{f}\right)\) the 2-dim'l modules in char. 2 provide counterexamples.
Still, a slight variation holds in this case as well.

\section*{Alternating groups}

For \(\mathfrak{A}_{n}\), Thm. C is proved by explicit construction.

\section*{Alternating groups}

For \(\mathfrak{A}_{n}\), Thm. C is proved by explicit construction.
Lemma
Let \(n \geq 11\) be odd. There exist three \(n-2\)-cycles in \(\mathfrak{A}_{n}\) with product 1 that generate \(\mathfrak{A}_{n}\).

\section*{Alternating groups}

For \(\mathfrak{A}_{n}\), Thm. C is proved by explicit construction.
Lemma
Let \(n \geq 11\) be odd. There exist three \(n-2\)-cycles in \(\mathfrak{A}_{n}\) with product 1 that generate \(\mathfrak{A}_{n}\).

Uses results of Wielandt on triply transitive groups.

\section*{Alternating groups}

For \(\mathfrak{A}_{n}\), Thm. \(C\) is proved by explicit construction.
Lemma
Let \(n \geq 11\) be odd. There exist three \(n-2\)-cycles in \(\mathfrak{A}_{n}\) with product 1 that generate \(\mathfrak{A}_{n}\).

Uses results of Wielandt on triply transitive groups.
Similarly for \(n \geq 12\) even with \(n\)-3-cycles.

\section*{Alternating groups}

For \(\mathfrak{A}_{n}\), Thm. \(C\) is proved by explicit construction.
Lemma
Let \(n \geq 11\) be odd. There exist three \(n-2\)-cycles in \(\mathfrak{A}_{n}\) with product 1 that generate \(\mathfrak{A}_{n}\).

Uses results of Wielandt on triply transitive groups.
Similarly for \(n \geq 12\) even with \(n\)-3-cycles.
Small n: computer check

\section*{Structure constants}

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\).

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\). Then
\[
n(C):=\left|\left\{(y, z) \in C \times C^{-2} \mid x y z=1\right\}\right|
\]

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\). Then
\[
n(C):=\left|\left\{(y, z) \in C \times C^{-2} \mid x y z=1\right\}\right|
\]
is given by
\[
n(C)=\frac{|C|^{2}}{|G|} \sum_{\chi \in \operatorname{lrr}(G)} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\). Then
\[
n(C):=\left|\left\{(y, z) \in C \times C^{-2} \mid x y z=1\right\}\right|
\]
is given by
\[
n(C)=\frac{|C|^{2}}{|G|} \sum_{\chi \in \operatorname{lrr}(G)} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]

Set
\[
\epsilon(C):=\sum_{\chi \neq 1_{G}} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\). Then
\[
n(C):=\left|\left\{(y, z) \in C \times C^{-2} \mid x y z=1\right\}\right|
\]
is given by
\[
n(C)=\frac{|C|^{2}}{|G|} \sum_{\chi \in \operatorname{lrr}(G)} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]

Set
\[
\epsilon(C):=\sum_{\chi \neq 1_{G}} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]
so that
\[
n(C)=\frac{|C|^{2}}{|G|}(1+\epsilon(C))
\]

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\). Then
\[
n(C):=\left|\left\{(y, z) \in C \times C^{-2} \mid x y z=1\right\}\right|
\]
is given by
\[
n(C)=\frac{|C|^{2}}{|G|} \sum_{\chi \in \operatorname{lrr}(G)} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]

Set
\[
\epsilon(C):=\sum_{\chi \neq 1_{G}} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]
so that
\[
n(C)=\frac{|C|^{2}}{|G|}(1+\epsilon(C))
\]

So: \(\epsilon(C)<1 \Longrightarrow n(C)>0\)

\section*{Structure constants}
\(G\) a finite group, \(C \subset G\) a conjugacy class, \(x \in C\). Then
\[
n(C):=\left|\left\{(y, z) \in C \times C^{-2} \mid x y z=1\right\}\right|
\]
is given by
\[
n(C)=\frac{|C|^{2}}{|G|} \sum_{\chi \in \operatorname{lrr}(G)} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]

Set
\[
\epsilon(C):=\sum_{\chi \neq 1_{G}} \frac{\chi(C)^{2} \chi\left(C^{-2}\right)}{\chi(1)}
\]
so that
\[
n(C)=\frac{|C|^{2}}{|G|}(1+\epsilon(C))
\]

So: \(\epsilon(C)<1 \Longrightarrow n(C)>0 \Longrightarrow\) there exist triples

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\),

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

Weigel (1992): if \(x \in M<G\) then \(M \leq N_{G}(T)=T: Z_{30}\)

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

Weigel (1992): if \(x \in M<G\) then \(M \leq N_{G}(T)=T: Z_{30}\)
\(\Longrightarrow\) at most one pair \((y, z) \in C \times C^{-2}\) with \(x y z=1\) does not generate \(G\).

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

Weigel (1992): if \(x \in M<G\) then \(M \leq N_{G}(T)=T: Z_{30}\)
\(\Longrightarrow\) at most one pair \((y, z) \in C \times C^{-2}\) with \(x y z=1\) does not generate \(G\).
Deligne-Lusztig theory: characters with \(\chi(x) \neq 0\) can be described, values estimated

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

Weigel (1992): if \(x \in M<G\) then \(M \leq N_{G}(T)=T: Z_{30}\)
\(\Longrightarrow\) at most one pair \((y, z) \in C \times C^{-2}\) with \(x y z=1\) does not generate \(G\).
Deligne-Lusztig theory: characters with \(\chi(x) \neq 0\) can be described, values estimated
\[
\Longrightarrow \quad \epsilon(C)<1 / 2
\]

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

Weigel (1992): if \(x \in M<G\) then \(M \leq N_{G}(T)=T: Z_{30}\)
\(\Longrightarrow\) at most one pair \((y, z) \in C \times C^{-2}\) with \(x y z=1\) does not generate \(G\).
Deligne-Lusztig theory: characters with \(\chi(x) \neq 0\) can be described, values estimated
\[
\Longrightarrow \quad \epsilon(C)<1 / 2 \quad \Longrightarrow \quad n(C) \geq \frac{1}{2} \frac{|C|^{2}}{|G|}>2
\]

\section*{Groups of type \(E_{8}\)}

Let \(G=E_{8}(q), q=p^{f}\),
\(C\) class of \(x \in G\) of order \(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\), \(T:=\langle x\rangle\)

Weigel (1992): if \(x \in M<G\) then \(M \leq N_{G}(T)=T: Z_{30}\)
\(\Longrightarrow\) at most one pair \((y, z) \in C \times C^{-2}\) with \(x y z=1\) does not generate \(G\).
Deligne-Lusztig theory: characters with \(\chi(x) \neq 0\) can be described, values estimated
\[
\Longrightarrow \quad \epsilon(C)<1 / 2 \quad \Longrightarrow \quad n(C) \geq \frac{1}{2} \frac{|C|^{2}}{|G|}>2
\]
\(\Longrightarrow\) there exist generating pairs \((y, z)\)

\section*{Groups of Lie type}

\section*{Groups of Lie type}

G of Lie type,

\section*{Groups of Lie type}
\(G\) of Lie type, \(C\) class of generators of suitable maximal torus \(T\)

\section*{Groups of Lie type}
\(G\) of Lie type, \(C\) class of generators of suitable maximal torus \(T\)
Weigel, Kleidman-Liebeck, M.-Saxl-Weigel, G.-Penttila-Praeger-Saxl, G.-M.: Maximal overgroups of \(T\) known

\section*{Groups of Lie type}
\(G\) of Lie type, \(C\) class of generators of suitable maximal torus \(T\)
Weigel, Kleidman-Liebeck, M.-Saxl-Weigel, G.-Penttila-Praeger-Saxl, G.-M.: Maximal overgroups of \(T\) known

\section*{Example}

Let \(G=\Omega_{2 n}^{-}(q), x\) an element of order \(r>4 n+1\) dividing \(\Phi_{2 n}(q)\), \(x \in M<G\). Then one of:

\section*{Groups of Lie type}
\(G\) of Lie type, \(C\) class of generators of suitable maximal torus \(T\)
Weigel, Kleidman-Liebeck, M.-Saxl-Weigel, G.-Penttila-Praeger-Saxl, G.-M.: Maximal overgroups of \(T\) known

\section*{Example}

Let \(G=\Omega_{2 n}^{-}(q), x\) an element of order \(r>4 n+1\) dividing \(\Phi_{2 n}(q)\), \(x \in M<G\). Then one of:
(1) \(M\) is the normalizer of \(\Omega_{2 n / f}^{-}\left(q^{f}\right), f \mid n\) prime;
(2) \(n\) is odd and \(M\) is the normalizer of \(\mathrm{SU}_{n}(q)\);

\section*{Groups of Lie type}
\(G\) of Lie type, \(C\) class of generators of suitable maximal torus \(T\)
Weigel, Kleidman-Liebeck, M.-Saxl-Weigel, G.-Penttila-Praeger-Saxl, G.-M.: Maximal overgroups of \(T\) known

\section*{Example}

Let \(G=\Omega_{2 n}^{-}(q), x\) an element of order \(r>4 n+1\) dividing \(\Phi_{2 n}(q)\), \(x \in M<G\). Then one of:
(1) \(M\) is the normalizer of \(\Omega_{2 n / f}^{-}\left(q^{f}\right), f \mid n\) prime;
(2) \(n\) is odd and \(M\) is the normalizer of \(S U_{n}(q)\);
(3) \((n, q)=(10,2), M=\mathfrak{A}_{12}\);
(4) \((n, q)=(12,2), M=\mathfrak{A}_{13}, \mathrm{~L}_{2}(13), \mathrm{L}_{3}(3)\); or
(5) \((n, q)=(18,2), M=\mathfrak{A}_{20}\).

\section*{Deligne-Lusztig theory}

\section*{Deligne-Lusztig theory}

Lusztig's Jordan decomposition of characters:

\section*{Deligne-Lusztig theory}

Lusztig's Jordan decomposition of characters:
characters not vanishing on \(x \in T\) lie in few Lusztig families,

\section*{Deligne-Lusztig theory}

Lusztig's Jordan decomposition of characters:
characters not vanishing on \(x \in T\) lie in few Lusztig families,
values on \(x, x^{2}\) known 'in principle' (since \(x\) is semisimple).

\section*{Deligne-Lusztig theory}

Lusztig's Jordan decomposition of characters:
characters not vanishing on \(x \in T\) lie in few Lusztig families,
values on \(x, x^{2}\) known 'in principle' (since \(x\) is semisimple).
Estimate yields \(\epsilon(C)<1 / 2\)

\section*{Deligne-Lusztig theory}

Lusztig's Jordan decomposition of characters:
characters not vanishing on \(x \in T\) lie in few Lusztig families,
values on \(x, x^{2}\) known 'in principle' (since \(x\) is semisimple).
Estimate yields \(\epsilon(C)<1 / 2\)
\(\Longrightarrow n(C)\) 'large'; not all triples can lie in maximal subgroups

\section*{Deligne-Lusztig theory}

Lusztig's Jordan decomposition of characters:
characters not vanishing on \(x \in T\) lie in few Lusztig families,
values on \(x, x^{2}\) known 'in principle' (since \(x\) is semisimple).
Estimate yields \(\epsilon(C)<1 / 2\)
\(\Longrightarrow n(C)\) 'large'; not all triples can lie in maximal subgroups
\(\Longrightarrow\) Thm. C holds for these groups

\section*{A related result}

\section*{A related result}

\section*{Theorem D}
\(G\) finite non-abelian simple, \(G \neq \mathrm{O}_{8}^{+}(2) \Longrightarrow\) there exists an element \(x\) of order prime to 6 such that:
\[
\{1\} \neq C \text { class of } G \Longrightarrow G=\langle g, x\rangle \text { for some } g \in C .
\]

\section*{A related result}

\section*{Theorem D}
\(G\) finite non-abelian simple, \(G \neq \mathrm{O}_{8}^{+}(2) \Longrightarrow\) there exists an element \(x\) of order prime to 6 such that:
\[
\{1\} \neq C \text { class of } G \Longrightarrow G=\langle g, x\rangle \text { for some } g \in C .
\]

Idea of proof of Theorem D.
Take \(x\) as in Thm. C.
If contained in at most two maximal subgroups done by:

\section*{A related result}

\section*{Theorem D}
\(G\) finite non-abelian simple, \(G \neq \mathrm{O}_{8}^{+}(2) \Longrightarrow\) there exists an element \(x\) of order prime to 6 such that:
\[
\{1\} \neq C \text { class of } G \Longrightarrow G=\langle g, x\rangle \text { for some } g \in C .
\]

Idea of proof of Theorem D.
Take \(x\) as in Thm. C.
If contained in at most two maximal subgroups done by:

\section*{Lemma}
\(C\) a non-trivial conjugacy class in a finite simple group \(G\) \(\Longrightarrow C\) not contained in the union of any two proper subgroups.

\section*{Remaining cases:}

Remaining cases:
Find two conjugacy classes \(C_{1}, C_{2}\) of \(G\) such that

Remaining cases:
Find two conjugacy classes \(C_{1}, C_{2}\) of \(G\) such that
- \(G=C_{1} C_{2}\) (structure constants)
- no maximal subgroup contains elements from both classes

Remaining cases:
Find two conjugacy classes \(C_{1}, C_{2}\) of \(G\) such that
- \(G=C_{1} C_{2}\) (structure constants)
- no maximal subgroup contains elements from both classes
or: use fixed point ratios```

