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Fixed point spaces

k a field, V = kn,

G ≤ GL(V ) a linear group

What can be said about eigenspaces of elements g ∈ G?

Here: how small are fixed point spaces?

Assume G irreducible

G = SO3(k) is irreducible, but any g ∈ G has 1-dimensional fixed space.

Here, dim CV (g) ≥ 1
3 dim V .
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Some history

Theorem (P. Neumann (1966))

G ≤ GL(V ) finite irreducible solvable =⇒ there exists g ∈ G with

dim CV (g) ≤ 7

18
dim V . (7/18 ≈ 0.3888)

Theorem (Segal–Shalev (1999))

G ≤ GL(V ) finite irreducible =⇒ there exists g ∈ G with

dim CV (g) ≤ 3

4
dim V .

Uses classification of finite simple groups (CFSG)
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Recent results

G finite, p smallest prime divisor of |G |

Theorem (Isaacs–Keller–Meierfrankenfeld–Moretó (2006))

G ≤ GL(V ) irreducible =⇒ there exists g ∈ G with

dim CV (g) ≤ 1

p
dim V .

Theorem (Guralnick–Maróti (2010))

G ≤ GL(V ) without trivial composition factor =⇒ there exists g ∈ G with

dim CV (g) <
1

p
dim V .

Both use CFSG
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G ≤ GL(V ) irreducible =⇒ there exists g ∈ G with

dim CV (g) ≤ 1

p
dim V .

Theorem (Guralnick–Maróti (2010))
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Main result

G 6= 1 arbitrary group

Theorem A

G ≤ GL(V ) irreducible =⇒ there exists g ∈ G with

dim CV (g) ≤ 1

3
dim V .

Best possible by example of SO3(k).
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Large dimension

Better bounds for larger dimensions?

Theorem B

For any ε > 0 there exists N > 0 with the following property:
G finite quasi-simple =⇒ there is g ∈ G such that for all irreducible
CG-modules V with dim V > N:
every eigenspace of g has dimension ≤ ε dim V .

So: G quasi-simple, dim V large =⇒ all eigenspaces are small

Example

Gm = A5 × . . .× A5 (m copies) acting on
Vm = W ⊗ . . .⊗W (m copies), W 5-dim’l irred. CA5-module

=⇒ dim CVm(g) >
1

50
dim Vm for all g ∈ Gm.
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Reductions for Thm. A

Have 1 6= G ≤ GL(V ), V = kn, irreducible.

Step 1: wlog G absolutely irreducible

Over splitting field, V is sum of Galois conjugates, all with same fixed
spaces.

Step 2: wlog G finitely generated

Indeed, there are g1, . . . , gn ∈ G which generate irreducible subgroup

Step 3: wlog G ≤ GLn(R) with R finitely generated over Z or Fp

Indeed, take entries of g±1
1 , . . . , g±1

n
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Reductions, continued

Have 1 6= G ≤ GLn(R) abs. irred., R finitely generated

Step 4: wlog G ≤ GLn(q) finite

Clear for |R| < ∞.

Else take n2 elements hi ∈ G which span Rn×n.
Take maximal ideal M / R such that h̄i ∈ (R/M)n×n remain independent,
get irreducible Ḡ = 〈h̄i 〉 ≤ GLn(R/M).
Here R/M is a finite field.
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get irreducible Ḡ = 〈h̄i 〉 ≤ GLn(R/M).
Here R/M is a finite field.

Gunter Malle (TU Kaiserslautern) Uniform triples and fixed point spaces 16. April 2010 9 / 20



Reductions, concluded

Have 1 6= G ≤ GLn(q) irreducible

Step 5: wlog G non-abelian simple

Let N / G minimal normal subgroup.

• N elementary abelian p-group, p > 2: done by Isaacs et al.

• N elementary abelian 2-group: use an argument on average size of
fixed point space.

• N non-abelian: Reduces to simple case (for L2(2
f ) use an argument

of Guralnick–Maróti)
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Sizes of fixed point spaces

Lemma (Scott (1977))

Let G = 〈g1, . . . , gr 〉 with g1 · · · gr = 1, V finite dim’l kG-module. Then

r∑
i=1

dim[gi ,V ] ≥ dim V − dim V G + dim[G ,V ].

When r = 3 and G has no fixed points on V or V ∗ this gives

3∑
i=1

dim CV (gi ) ≤ dim V

(since dim CV (gi ) = dim V − dim[gi ,V ])
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Lemma

Let x , y ∈ GLn(k) = GL(V ), n ≥ 2, be conjugate with product xy ∼ x2.
If V is irreducible for G = 〈x , y〉 =⇒
all eigenspaces of x have dimension at most n/3.

Proof.

Let θ an eigenvalue of x with θ-eigenspace of maximal dimension,

x ′ = θ−1x , y ′ = θ−1y , z ′ = θ2(xy)−1.

=⇒ x ′y ′z ′ = 1.
Fixed space of each of these has dimension at least that of the
θ-eigenspace of x .
Apply Scott’s Lemma

Thus, Thm. A follows from certain generation property of simple groups.
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Generation of simple groups

Theorem C

G finite non-abelian simple, G 6= L2(2
f ), L2(7)

=⇒
there exists a class C of G and (x , y , z) ∈ C × C × C−2 with:

xyz = 1 and G = 〈x , y〉.

Corollary

G finite non-abelian simple other than L2(2
f ). There exists g ∈ G with:

for any non-trivial irreducible kG-module V , every eigenspace of g on V
has dimension ≤ (1/3) dim V .

For L2(2
f ) the 2-dim’l modules in char. 2 provide counterexamples.

Still, a slight variation holds in this case as well.
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Alternating groups

For An, Thm. C is proved by explicit construction.

Lemma

Let n ≥ 11 be odd. There exist three n − 2-cycles in An with product 1
that generate An.

Uses results of Wielandt on triply transitive groups.

Similarly for n ≥ 12 even with n − 3-cycles.

Small n: computer check
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Structure constants

G a finite group, C ⊂ G a conjugacy class, x ∈ C . Then

n(C ) := |{(y , z) ∈ C × C−2 | xyz = 1}|

is given by

n(C ) =
|C |2

|G |
∑

χ∈Irr(G)

χ(C )2χ(C−2)

χ(1)
.

Set

ε(C ) :=
∑

χ6=1G

χ(C )2χ(C−2)

χ(1)
,

so that

n(C ) =
|C |2

|G |
(1 + ε(C )).

So: ε(C ) < 1 =⇒ n(C ) > 0 =⇒ there exist triples
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Groups of type E8

Let G = E8(q), q = pf ,

C class of x ∈ G of order q8 + q7 − q5 − q4 − q3 + q + 1,
T := 〈x〉

Weigel (1992): if x ∈ M < G then M ≤ NG (T ) = T : Z30

=⇒ at most one pair (y , z) ∈ C × C−2 with xyz = 1 does not generate G .

Deligne-Lusztig theory: characters with χ(x) 6= 0 can be described, values
estimated

=⇒ ε(C ) < 1/2 =⇒ n(C ) ≥ 1

2

|C |2

|G |
> 2

=⇒ there exist generating pairs (y , z)
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estimated

=⇒ ε(C ) < 1/2 =⇒ n(C ) ≥ 1

2

|C |2

|G |
> 2

=⇒ there exist generating pairs (y , z)
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Groups of Lie type

G of Lie type, C class of generators of suitable maximal torus T

Weigel, Kleidman–Liebeck, M.–Saxl–Weigel, G.–Penttila–Praeger–Saxl,
G.–M.: Maximal overgroups of T known

Example

Let G = Ω−
2n(q), x an element of order r > 4n + 1 dividing Φ2n(q),

x ∈ M < G . Then one of:

(1) M is the normalizer of Ω−
2n/f (q

f ), f |n prime;

(2) n is odd and M is the normalizer of SUn(q);

(3) (n, q) = (10, 2), M = A12;

(4) (n, q) = (12, 2), M = A13, L2(13), L3(3); or

(5) (n, q) = (18, 2), M = A20.
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Deligne–Lusztig theory

Lusztig’s Jordan decomposition of characters:

characters not vanishing on x ∈ T lie in few Lusztig families,

values on x , x2 known ’in principle’ (since x is semisimple).

Estimate yields ε(C ) < 1/2

=⇒ n(C ) ’large’; not all triples can lie in maximal subgroups

=⇒ Thm. C holds for these groups
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A related result

Theorem D

G finite non-abelian simple, G 6= O+
8 (2) =⇒

there exists an element x of order prime to 6 such that:

{1} 6= C class of G =⇒ G = 〈g , x〉 for some g ∈ C .

Idea of proof of Theorem D.

Take x as in Thm. C.
If contained in at most two maximal subgroups done by:

Lemma

C a non-trivial conjugacy class in a finite simple group G
=⇒ C not contained in the union of any two proper subgroups.
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Remaining cases:

Find two conjugacy classes C1,C2 of G such that

• G = C1C2 (structure constants)

• no maximal subgroup contains elements from both classes

or: use fixed point ratios
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