Unramified Brauer groups of finite and infinite groups

Primož Moravec

University of Ljubljana, Slovenia

Ischia Group Theory 2010

Primož Moravec Unramified Brauer groups

A field extension K/k is **stably rational** if there exist r and s such that

$$K(x_1,\ldots,x_r)\cong k(y_1,\ldots,y_s).$$

Let k be an algebraically closed field of characteristic 0, V a finite dimensional vector space over k. Let $G \subset GL(V)$ be a finite group (or a reductive group acting almost freely on V).

Question

When is the field of invariants $k(V)^G$ (stably) rational over k?

By the **no-name lemma**, the answer does not depend on V, but only on G itself.

$k(V)^G/k$ stably rational – examples

Positive answer

- Abelian groups, S_n , A_5 .
- All groups of order p^n , $n \leq 4$.
- Special groups: $\operatorname{GL}_n(k)$, $\operatorname{SL}_n(k)$, $\operatorname{Sp}_n(k)$.
- Orthogonal groups: $O_n(k)$, $SO_n(k)$.
- $\operatorname{PGL}_n(k)$ if *n* divides 420.

Counterexamples

- Saltman (1984). Counterexamples of G of order p^9 .
- Bogomolov (1988). Counterexamples of G of order p^6 .

Some open cases

- G finite nonabelian simple.
- G connected.

Artin, Mumford (1972) introduced the unramified Brauer group $H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z})$. It is a subgroup of Br $k(V)^G$. If

 $\mathsf{H}^2_{\mathrm{nr}}(k(V)^G,\mathbb{Q}/\mathbb{Z})\neq 0,$

then $k(V)^G/k$ is **not** stably rational.

Bogomolov (1988). if G is finite, then $H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z}) \cong B_0(G)$, where

$$\mathsf{B}_0(\mathcal{G}) = \bigcap_{\substack{A \leq G, \\ A \text{ abelian}}} \ker \mathsf{res}_A^{\mathcal{G}},$$

where $\operatorname{res}_{A}^{G} : \operatorname{H}^{2}(G, \mathbb{Q}/\mathbb{Z}) \to \operatorname{H}^{2}(A, \mathbb{Q}/\mathbb{Z})$ is the usual cohomological restriction map.

The unramified Brauer group - reductive case

If G is reductive, the definition of $B_0(G)$ needs to be modified: Define

$$\mathcal{K}_{G} = \{ \gamma \in \mathsf{H}^{2}(G, \mathbb{Q}/\mathbb{Z}) \mid \mathsf{res}_{H}^{G} \gamma = 0 \text{ for every finite } H \leq G \}.$$

Let

$$\begin{split} \mathsf{B}_0(G) &= \{\gamma + \mathsf{K}_G \in \mathsf{H}^2(G, \mathbb{Q}/\mathbb{Z})/\mathsf{K}_G \mid \\ & \operatorname{res}_A^G \gamma = 0 \text{ for every finite abelian } A \leq G \}. \end{split}$$

Bogomolov (1988). $B_0(G) \cong H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z})$, where V is any generically free representation of G.

Saltman (1984). $B_0(PGL_n(k)) = 0.$

Bogomolov, Maciel, Petrov (2004). If G is a finite simple group of Lie type, then $B_0(G) = 0$.

Chu, Hu, Kang, Prokhorov (2009). $B_0(G) = 0$ for all groups G of order 32.

Chu, Hu, Kang, Kunyavskii (2009). $B_0(G)$ for all groups G of order 64. Nine of these have nontrivial B_0 .

Kunyavskii (2010). If G is a finite simple group, then $B_0(G) = 0$.

Let G be a group. We form a group $G \wedge G$, generated by the symbols $m \wedge n$, where $m, n \in G$, subject to the following relations:

$$mm' \wedge n = (^mm' \wedge ^mn)(m \wedge n),$$

 $m \wedge nn' = (m \wedge n)(^nm \wedge ^nn'),$
 $m \wedge m = 1,$

for all $m, m', n, n' \in G$.

Miller (1952). $M(G) = \ker(G \land G \to [G, G])$ is naturally isomorphic to $H_2(G, \mathbb{Z})$.

Homological description of $B_0(G)$ – finite case

Identify $H_2(G,\mathbb{Z})$ with M(G). Set

$$\mathsf{M}_0(G) = \langle \operatorname{cor}_G^A \mathsf{M}(A) \mid A \leq G, A \text{ abelian} \rangle.$$

It turns out that $M_0(G) = \langle x \land y \mid x, y \in G, [x, y] = 1 \rangle$.

Theorem

Let G be a finite group. Then $B_0(G)$ is naturally isomorphic to

 $\operatorname{Hom}(\operatorname{\mathsf{M}}(G)/\operatorname{\mathsf{M}}_0(G), \mathbb{Q}/\mathbb{Z}),$

hence $B_0(G) \cong M(G) / M_0(G)$ (non-canonically).

Homological description of $B_0(G)$ – reductive case

If G is reductive, set

$$ar{\mathsf{M}}({\mathit{G}}) = \langle \mathsf{cor}_{\mathit{G}}^{\mathit{H}} \, \mathsf{M}({\mathit{H}}) \mid {\mathit{H}} \leq {\mathit{G}}, |{\mathit{H}}| < \infty
angle$$

and

$$\begin{split} \bar{\mathsf{M}}_0(\mathcal{G}) &= \langle \mathsf{cor}_{\mathcal{G}}^{\mathcal{A}} \, \mathsf{M}(\mathcal{A}) \mid \mathcal{A} \leq \mathcal{G}, |\mathcal{A}| < \infty, \mathcal{A} \text{ abelian} \rangle \\ &= \langle x \wedge y \mid [x, y] = 1, |x| < \infty, |y| < \infty \rangle. \end{split}$$

Theorem

If G is a reductive group, then $\mathsf{B}_0(G)$ is naturally isomorphic to

Hom $(\overline{\mathsf{M}}(G)/\overline{\mathsf{M}}_0(G), \mathbb{Q}/\mathbb{Z})$.

Let G be any group. From here on we write

$$\mathsf{B}_0(G) = rac{\mathsf{M}(G)}{\mathsf{M}_0(G)} \qquad ext{and} \qquad ar{\mathsf{B}}_0(G) = rac{ar{\mathsf{M}}(G)}{ar{\mathsf{M}}_0(G)}.$$

Primož Moravec

Unramified Brauer groups

$\mathsf{B}_0 \text{ vs } \bar{\mathsf{B}}_0$

Theorem

Let G be a locally finite group. Then $B_0(G) \cong \overline{B}_0(G)$.

Example

Suppose m > 1 and let $n > 2^{48}$ be odd. Let F be a free group of rank m. Let $G = F/F^n$ be the **free Burnside group** of rank m and exponent n. Then $\overline{B}_0(G) = 0$ and $B_0(G) \cong H_2(G, \mathbb{Z})$ is free abelian of countable rank.

Example

If G is a **one-relator group with torsion**, then $\overline{B}_0(G) = 0$ by Newman's description of finite subgroups of G. Since all centralizers of nontrivial elements of G are cyclic, $M_0(G) = 0$ and therefore $B_0(G) \cong H_2(G, \mathbb{Z})$. The latter can be nontrivial (Lyndon, 1950).

Hopf formula and 5-term B₀-sequence

For a group G let K(G) be the **set** of all commutators in G.

Theorem

Let G be a group given by a free presentation G = F/R. Then

$$\mathsf{B}_0(G) \cong rac{\gamma_2(F) \cap R}{\langle \mathsf{K}(F) \cap R
angle}.$$

Theorem

Let G be a group and N a normal subgroup of G. Then we have the following exact sequence:

$$\mathsf{B}_0(G) o \mathsf{B}_0(G/N) o rac{N}{\langle \mathsf{K}(G) \cap N \rangle} o G^{\mathrm{ab}} o (G/N)^{\mathrm{ab}} o 0.$$

Some consequences

Explicit descriptions of $B_0(G)$ can be obtained for some G:

- G is a p-group of class 2,
- G is a split extension (in particular, Frobenius group),

 $B_0(G)$ is related to special types of central extensions:

A central extension (E, π, A) of a group G is a **CP-extension** if commuting elements of G lift to commuting elements in E. A CP-extension (U, ϕ, A) of G is **CP-universal** if for every CP-extension (E, ψ, B) of G there exists a homomorphism $\chi: U \to E$ that factors through G.

Theorem

A group G admits a CP-universal central extension if and only if it is perfect. In the latter case, $((G \land G) / M_0(G) /, \kappa, B_0(G))$ is the CP-universal central extension of G.

Computing $B_0(G)$ when G is polycyclic

Eick, Nickel (2008). Algorithm for computing $G \wedge G$ when G is polycyclic. This allows efficient computations of

$$\mathsf{M}(G) = \mathsf{ker}(G \land G \to [G,G])$$

and

$$\mathsf{M}_0(G) = \langle x \wedge y \mid x, y \in G, \ [x, y] = 1 \rangle,$$

and hence $B_0(G) = M(G)/M_0(G)$.

Can compute $B_0(G)$ for moderately large finite solvable groups G, and some infinite polycyclic groups. For groups of small order the results coincide with hand calculations. **But**:

Bogomolov (1988) claimed that if $|G| = p^5$, then $B_0(G) = 0$.

We have found three groups of order 243 with $B_0(G) \neq 0$. For these groups $k(V)^G/k$ is not stably rational.

Computational data

All solvable groups G of order \leq 729, apart from the orders 512, 576 and 640, with $B_0(G) \neq 0$.

n	# of groups of order n	# of G with $B_0(G) \neq 0$
64	267	9
128	2328	230
192	1543	54
243	67	3
256	56092	5953
320	1640	54
384	20169	1820
448	1396	54
486	261	3
704	1387	54
729	504	85

Table: Numbers of groups G with $B_0(G) \neq 0$.

Primož Moravec Unramified Brauer groups

B_0 in K-theory

Let Λ be a ring with 1. Let $E(\Lambda) \leq GL(\Lambda)$ be generated by all **elementary matrices**, and let $St(\Lambda)$ be the **Steinberg group**. The K_2 **functor** is defined by $K_2 \Lambda = Z(St(\Lambda))$. It is known that $K_2 \Lambda \cong H_2(E(\Lambda), \mathbb{Z})$.

Let $A, B \in E(\Lambda)$ commute, and choose their preimages $a, b \in St(\Lambda)$. Define $A \star B = [a, b] \in K_2 \Lambda$ to be the **Milnor element** induced by A and B.

Theorem

Denote $B_0 \Lambda = B_0(E(\Lambda))$.

- **2** $B_0 \Lambda = 0$ iff $K_2 \Lambda$ is generated by Milnor's elements.
- **3** $B_0 \Lambda$ is naturally isomorphic to $B_0(GL(\Lambda))$.

Conjecture (equivalent to the Bass conjecture)

 $B_0 \Lambda = 0 \ \text{for every unital ring } \Lambda.$