Unramified Brauer groups of finite and infinite groups

Primož Moravec

University of Ljubljana, Slovenia
Ischia Group Theory 2010

Stable rationality

A field extension K / k is stably rational if there exist r and s such that

$$
K\left(x_{1}, \ldots, x_{r}\right) \cong k\left(y_{1}, \ldots, y_{s}\right)
$$

Let k be an algebraically closed field of characteristic $0, V$ a finite dimensional vector space over k. Let $G \subset G L(V)$ be a finite group (or a reductive group acting almost freely on V).

Question
When is the field of invariants $k(V)^{G}$ (stably) rational over k ?
By the no-name lemma, the answer does not depend on V, but only on G itself.

$k(V)^{G} / k$ stably rational - examples

Positive answer

- Abelian groups, S_{n}, A_{5}.
- All groups of order $p^{n}, n \leq 4$.
- Special groups: $\mathrm{GL}_{n}(k), \mathrm{SL}_{n}(k), \mathrm{Sp}_{n}(k)$.
- Orthogonal groups: $\mathrm{O}_{n}(k), \mathrm{SO}_{n}(k)$.
- $\mathrm{PGL}_{n}(k)$ if n divides 420.

Counterexamples

- Saltman (1984). Counterexamples of G of order p^{9}.
- Bogomolov (1988). Counterexamples of G of order p^{6}.

Some open cases

- G finite nonabelian simple.
- G connected.

The unramified Brauer group - finite case

Artin, Mumford (1972) introduced the unramified Brauer group $\mathrm{H}_{\mathrm{nr}}^{2}\left(k(V)^{G}, \mathbb{Q} / \mathbb{Z}\right)$. It is a subgroup of $\operatorname{Br} k(V)^{G}$. If

$$
\mathrm{H}_{\mathrm{nr}}^{2}\left(k(V)^{G}, \mathbb{Q} / \mathbb{Z}\right) \neq 0,
$$

then $k(V)^{G} / k$ is not stably rational.

Bogomolov (1988). if G is finite, then $H_{n r}^{2}\left(k(V)^{G}, \mathbb{Q} / \mathbb{Z}\right) \cong \mathrm{B}_{0}(G)$, where

$$
\mathrm{B}_{0}(G)=\bigcap_{\substack{A \leq G, A \text { abelian }}} \operatorname{ker~res}_{A}^{G},
$$

where $\operatorname{res}_{A}^{G}: \mathrm{H}^{2}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow \mathrm{H}^{2}(A, \mathbb{Q} / \mathbb{Z})$ is the usual cohomological restriction map.

The unramified Brauer group - reductive case

If G is reductive, the definition of $B_{0}(G)$ needs to be modified:
Define

$$
K_{G}=\left\{\gamma \in \mathrm{H}^{2}(G, \mathbb{Q} / \mathbb{Z}) \mid \operatorname{res}_{H}^{G} \gamma=0 \text { for every finite } H \leq G\right\} .
$$

Let

$$
\begin{aligned}
\mathrm{B}_{0}(G)=\left\{\gamma+K_{G} \in\right. & \mathrm{H}^{2}(G, \mathbb{Q} / \mathbb{Z}) / K_{G} \mid \\
& \left.\operatorname{res}_{A}^{G} \gamma=0 \text { for every finite abelian } A \leq G\right\} .
\end{aligned}
$$

Bogomolov (1988). $\mathrm{B}_{0}(G) \cong \mathrm{H}_{\mathrm{nr}}^{2}\left(k(V)^{G}, \mathbb{Q} / \mathbb{Z}\right)$, where V is any generically free representation of G.

Computing $\mathrm{B}_{0}(G)$

Saltman (1984). $\mathrm{B}_{0}\left(\mathrm{PGL}_{n}(k)\right)=0$.
Bogomolov, Maciel, Petrov (2004). If G is a finite simple group of Lie type, then $\mathrm{B}_{0}(G)=0$.

Chu, Hu, Kang, Prokhorov (2009). $\mathrm{B}_{0}(G)=0$ for all groups G of order 32.

Chu, Hu, Kang, Kunyavskiï (2009). $\mathrm{B}_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial B_{0}.

Kunyavskiĭ (2010). If G is a finite simple group, then $\mathrm{B}_{0}(G)=0$.

The nonabelian exterior square of a group

Let G be a group. We form a group $G \wedge G$, generated by the symbols $m \wedge n$, where $m, n \in G$, subject to the following relations:

$$
\begin{aligned}
m m^{\prime} \wedge n & =\left({ }^{m} m^{\prime} \wedge{ }^{m} n\right)(m \wedge n) \\
m \wedge n n^{\prime} & =(m \wedge n)\left({ }^{n} m \wedge^{n} n^{\prime}\right) \\
m \wedge m & =1
\end{aligned}
$$

for all $m, m^{\prime}, n, n^{\prime} \in G$.

Miller (1952). $\mathrm{M}(G)=\operatorname{ker}(G \wedge G \rightarrow[G, G])$ is naturally isomorphic to $\mathrm{H}_{2}(G, \mathbb{Z})$.

Homological description of $\mathrm{B}_{0}(G)$ - finite case

Identify $\mathrm{H}_{2}(G, \mathbb{Z})$ with $\mathrm{M}(G)$. Set

$$
\left.\mathrm{M}_{0}(G)=\left\langle\operatorname{cor}_{G}^{A} \mathrm{M}(A)\right| A \leq G, A \text { abelian }\right\rangle .
$$

It turns out that $\mathrm{M}_{0}(G)=\langle x \wedge y \mid x, y \in G,[x, y]=1\rangle$.

Theorem
Let G be a finite group. Then $B_{0}(G)$ is naturally isomorphic to $\operatorname{Hom}\left(\mathrm{M}(G) / \mathrm{M}_{0}(G), \mathbb{Q} / \mathbb{Z}\right)$,
hence $\mathrm{B}_{0}(G) \cong \mathrm{M}(G) / \mathrm{M}_{0}(G)$ (non-canonically).

Homological description of $\mathrm{B}_{0}(G)$ - reductive case

If G is reductive, set

$$
\left.\overline{\mathrm{M}}(G)=\left\langle\operatorname{cor}_{G}^{H} \mathrm{M}(H)\right| H \leq G,|H|<\infty\right\rangle
$$

and

$$
\begin{aligned}
\overline{\mathrm{M}}_{0}(G) & \left.=\left\langle\operatorname{cor}_{G}^{A} \mathrm{M}(A)\right| A \leq G,|A|<\infty, A \text { abelian }\right\rangle \\
& =\langle x \wedge y|[x, y]=1,|x|<\infty,|y|<\infty\rangle
\end{aligned}
$$

Theorem
If G is a reductive group, then $B_{0}(G)$ is naturally isomorphic to

$$
\operatorname{Hom}\left(\bar{M}(G) / \bar{M}_{0}(G), \mathbb{Q} / \mathbb{Z}\right)
$$

Let G be any group. From here on we write

$$
\mathrm{B}_{0}(G)=\frac{\mathrm{M}(G)}{\mathrm{M}_{0}(G)} \quad \text { and } \quad \overline{\mathrm{B}}_{0}(G)=\frac{\overline{\mathrm{M}}(G)}{\overline{\mathrm{M}}_{0}(G)}
$$

B_{0} vs $\overline{\mathrm{B}}_{0}$

Theorem
Let G be a locally finite group. Then $\mathrm{B}_{0}(G) \cong \bar{B}_{0}(G)$.

Example

Suppose $m>1$ and let $n>2^{48}$ be odd. Let F be a free group of rank m. Let $G=F / F^{n}$ be the free Burnside group of rank m and exponent n. Then $\overline{\mathrm{B}}_{0}(G)=0$ and $\mathrm{B}_{0}(G) \cong \mathrm{H}_{2}(G, \mathbb{Z})$ is free abelian of countable rank.

Example

If G is a one-relator group with torsion, then $\overline{\mathrm{B}}_{0}(G)=0$ by Newman's description of finite subgroups of G. Since all centralizers of nontrivial elements of G are cyclic, $\mathrm{M}_{0}(G)=0$ and therefore $\mathrm{B}_{0}(G) \cong \mathrm{H}_{2}(G, \mathbb{Z})$. The latter can be nontrivial (Lyndon, 1950).

Hopf formula and 5 -term B_{0}-sequence

For a group G let $\mathrm{K}(G)$ be the set of all commutators in G.
Theorem
Let G be a group given by a free presentation $G=F / R$. Then

$$
\mathrm{B}_{0}(G) \cong \frac{\gamma_{2}(F) \cap R}{\langle\mathrm{~K}(F) \cap R\rangle}
$$

Theorem
Let G be a group and N a normal subgroup of G. Then we have the following exact sequence:

$$
\mathrm{B}_{0}(G) \rightarrow \mathrm{B}_{0}(G / N) \rightarrow \frac{N}{\langle\mathrm{~K}(G) \cap N\rangle} \rightarrow G^{\mathrm{ab}} \rightarrow(G / N)^{\mathrm{ab}} \rightarrow 0
$$

Some consequences

Explicit descriptions of $B_{0}(G)$ can be obtained for some G :

- G is a p-group of class 2 ,
- G is a split extension (in particular, Frobenius group),
$B_{0}(G)$ is related to special types of central extensions:
A central extension (E, π, A) of a group G is a CP-extension if commuting elements of G lift to commuting elements in E. A CP-extension (U, ϕ, A) of G is CP-universal if for every CP-extension (E, ψ, B) of G there exists a homomorphism $\chi: U \rightarrow E$ that factors through G.

Theorem
A group G admits a CP-universal central extension if and only if it is perfect. In the latter case, $\left((G \wedge G) / M_{0}(G) /, \kappa, B_{0}(G)\right)$ is the $C P$-universal central extension of G.

Computing $\mathrm{B}_{0}(G)$ when G is polycyclic

Eick, Nickel (2008). Algorithm for computing $G \wedge G$ when G is polycyclic. This allows efficient computations of

$$
\mathrm{M}(G)=\operatorname{ker}(G \wedge G \rightarrow[G, G])
$$

and

$$
M_{0}(G)=\langle x \wedge y \mid x, y \in G,[x, y]=1\rangle
$$

and hence $\mathrm{B}_{0}(G)=\mathrm{M}(G) / \mathrm{M}_{0}(G)$.
Can compute $B_{0}(G)$ for moderately large finite solvable groups G, and some infinite polycyclic groups. For groups of small order the results coincide with hand calculations. But:

Bogomolov (1988) claimed that if $|G|=p^{5}$, then $\mathrm{B}_{0}(G)=0$.

We have found three groups of order 243 with $\mathrm{B}_{0}(G) \neq 0$. For these groups $k(V)^{G} / k$ is not stably rational.

Computational data

All solvable groups G of order ≤ 729, apart from the orders 512, 576 and 640 , with $\mathrm{B}_{0}(G) \neq 0$.

n	$\#$ of groups of order n	$\#$ of G with $\mathrm{B}_{0}(G) \neq 0$
64	267	9
128	2328	230
192	1543	54
243	67	3
256	56092	5953
320	1640	54
384	20169	1820
448	1396	54
486	261	3
704	1387	54
729	504	85

Table: Numbers of groups G with $\mathrm{B}_{0}(G) \neq 0$.

B_{0} in K-theory

Let Λ be a ring with 1 . Let $\mathrm{E}(\Lambda) \leq \mathrm{GL}(\Lambda)$ be generated by all elementary matrices, and let $\operatorname{St}(\Lambda)$ be the Steinberg group.
The K_{2} functor is defined by $\mathrm{K}_{2} \Lambda=Z(\mathrm{St}(\Lambda))$. It is known that $\mathrm{K}_{2} \Lambda \cong \mathrm{H}_{2}(\mathrm{E}(\Lambda), \mathbb{Z})$.
Let $A, B \in \mathrm{E}(\Lambda)$ commute, and choose their preimages $a, b \in \operatorname{St}(\Lambda)$.
Define $A \star B=[a, b] \in \mathrm{K}_{2} \Lambda$ to be the Milnor element induced by A and B.

Theorem
Denote $\mathrm{B}_{0} \Lambda=B_{0}(\mathrm{E}(\Lambda))$.
(1) $\mathrm{B}_{0} \Lambda \cong \mathrm{~K}_{2} \Lambda /\left\langle\mathrm{K}(\mathrm{St}(\Lambda)) \cap \mathrm{K}_{2} \Lambda\right\rangle$.
(2) $\mathrm{B}_{0} \Lambda=0$ iff $\mathrm{K}_{2} \Lambda$ is generated by Milnor's elements.
(3) $\mathrm{B}_{0} \Lambda$ is naturally isomorphic to $\mathrm{B}_{0}(\mathrm{GL}(\Lambda))$.

Conjecture (equivalent to the Bass conjecture)
$\mathrm{B}_{0} \Lambda=0$ for every unital ring Λ.

