Localizations of finitely generated soluble groups

Niamh O'Sullivan

Localizations of finitely generated soluble groups

Niamh O'Sullivan

Dublin City University

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Localization

Localization: A functor which assigns to each group *G* a unique π -local group G_{π} (where π is a set of primes).

Definition

A group G is said to be π -local if the map

 $x \mapsto x^q$

is bijective for every prime $q \notin \pi$.

A π -localization of any group G is a homomorphism

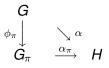
$$\phi_{\pi}: \boldsymbol{G}
ightarrow \boldsymbol{G}_{\pi}$$

where G_{π} is a π -local group, with the universal property that given any homomorphism $\alpha : G \to H$, with H π -local, there exists a unique homomorphism $\alpha_{\pi} : G_{\pi} \to H$ such that $\alpha_{\pi}\phi_{\pi} = \alpha$. Localizations of finitely generated soluble groups

Niamh O'Sullivan

Localization

If $\alpha : G \rightarrow H$, where *H* is π -local, then we have the following commutative diagram:



If $\alpha : G \rightarrow H$, then we have the following commutative diagram:

 $\begin{array}{cccc} G & \stackrel{\alpha}{\longrightarrow} & H \\ \phi_{\pi} & & & \downarrow \phi_{\pi} \\ G_{\pi} & \stackrel{\alpha_{\pi}}{\longrightarrow} & H_{\pi} \end{array}$

If *A* is an abelian normal subgroup of *G*, then the conjugation action of *G* on *A* induces an action of *G* on A_{π} .

Localizations of finitely generated soluble groups

Examples

Let π be a set of primes, we say $b \in \pi'$ if all the primes divisors of *b* are not in π . We will assume from now on that π is a proper subset of the set of all primes.

If G is a finite group, then

$$G_{\pi}=G/T_{\pi'}$$

where $T_{\pi'}$ is the subgroup generated by the π' -torsion elements of *G*.

$$\mathbb{Z}_{\pi} = \left\{ \left. rac{a}{b} \right| a, \, b \in \mathbb{Z}, \, b \in \pi'
ight\}.$$

If $N \leq Z(G)$, then $(G/N)_{\pi} \cong G_{\pi}/N_{\pi}$

Localizations of finitely generated soluble groups

Niamh O'Sullivan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Nilpotent and virtually nilpotent groups

Theorem If G is nilpotent of class c, then G_{π} is nilpotent of class $\leq c$ (Ribenboim 79).

If *G* is nilpotent, then $\text{Ker}(G \to G_{\pi}) = T_{\pi'}$.

If *G* is nilpotent and $x \in G_{\pi}$, then there exists $m \in \pi'$ such that $x^m \in \phi_{\pi}(G)$.

If *G* is nilpotent and $N \triangleleft G$, then N_{π} embeds in G_{π} and it's image is normal. Furthermore $(G/N)_{\pi} = G_{\pi}/N_{\pi}$.

Theorem

If G is virtually nilpotent, then G_{π} is virtually nilpotent (Casacuberta and Castellet 92).

Localizations of finitely generated soluble groups

Morphisms

Localizations of finitely generated soluble groups

Niamh O'Sullivan

If $\alpha : G \to H$ is an epimorphism, then $\alpha_{\pi} : G_{\pi} \to H_{\pi}$ is also an epimorphism.

However localization does not usually preserve monomorphisms:

If $\pi = \{3\}$, then we have the embedding $i : C_3 \rightarrow S_3$,

$$(C_3)_{\pi} = C_3, \ (S_3)_{\pi} = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

So that i_{π} is not a monomorphism.

Soluble groups

Localizations of finitely generated soluble groups

Niamh O'Sullivan

What can we say about localization and soluble groups?

B. Neumann (59) constructed a group *G* with unique π' -roots which did not embed in G_{π} .

Baumslag (60) defined a class of groups that could be embedded in a π -local group. Free groups are in this class.

Localizations of finitely generated soluble groups

Niamh O'Sullivan

What can we say about localization and soluble groups?

B. Neumann (59) constructed a group *G* with unique π' -roots which did not embed in G_{π} .

Baumslag (60) defined a class of groups that could be embedded in a π -local group. Free groups are in this class.

Localizations of finitely generated soluble groups

Niamh O'Sullivan

What can we say about localization and soluble groups?

B. Neumann (59) constructed a group *G* with unique π' -roots which did not embed in G_{π} .

Baumslag (60) defined a class of groups that could be embedded in a π -local group. Free groups are in this class.

Class \mathcal{P}_{π}

Definition

Let π be a set of primes. A group ${\it G}$ is said to be in the class ${\cal P}_{\pi}$ if

(i) G has unique π' -roots;

(ii) if $x \in G$ has no *m*-th root, for some $m \in \pi'$, and

$$D_G(x) = \{g \in G \mid C_G(x) \cap C_G(x)^g
eq 1\},$$

then $C_G(x)$ is torsion-free, $D_G(x)$ is a group and one of the following holds:

(a)
$$D_G(x) = C_G(x) \leq G$$
 so that $C_G(x)$ is malnormal;
(b) $|D_G(x) : C_G(x)| = 2$ and $C_G(x) \leq \mathbb{Z}_{\pi}$.

Theorem

If $G \in \mathcal{P}_{\pi}$, then G embeds in G_{π} . [Baumslag 60, Cassidy 88]

Localizations of finitely generated soluble groups

Soluble groups

Theorem

Let $G \in \mathcal{P}_{\pi}$ be a soluble group which is not π -local. Then G_{π} is not soluble.

Take $x \in G$ that has no *m*-th root, for some $m \in \pi'$, attach roots for *x*:

$$K = G *_{D_G(x)} P.$$

Then $G_{\pi} \cong K_{\pi}$, *K* embeds in G_{π} . If $g \in K^{(t)}$, then there exists $h \in K$ such that $[g, g^h] \neq 1$. *K* is not soluble and so G_{π} is not soluble. Localizations of finitely generated soluble groups

Niamh O'Sullivan

・ロト・日本・山下・山下・山下・山下

Free Soluble groups

Theorem

If G is a free soluble group of derived length at least 2, then G_{π} is not soluble.

Let *G* be a free metabelian group and let A = G'. Then $C_G(x)$ is manormal, for all $x \notin A$. Set

$$H = (A_{\pi} \rtimes G)/T$$
 where $T = \langle (\phi_{\pi}(a), a^{-1}) \mid a \in A \rangle^{Nc/2}$

We have the commutative diagram

 $G_{\pi} \cong H_{\pi}, \quad H \in \mathcal{P}_{\pi} \implies G_{\pi}$ is not soluble. As localization preserves epimorphisms, G_{π} is not soluble whenever *G* is a free soluble group of derived length at least 2.

Localizations of finitely generated soluble groups

Just Non-X groups

Localizations of finitely generated soluble groups

Niamh O'Sullivan

Definition

A group *G* is said to be just-non virtually nilpotent (JNVN) if *G* is not virtually nilpotent but every proper quotient of *G* is virtually nilpotent. [Robinson-Wilson 84, Zhang 91, De Falco 02]

Definition

A group *G* is said to be a $JNVN_{\pi}$ group if *G* has unique π' roots and is not virtually nilpotent but every proper quotient of *G* with unique π' roots is virtually nilpotent.

Metabelian groups

Theorem

Let G be a finitely generated metabelian $JNVN_{\pi}$ group with unique π' -roots. Then G_{π} is not soluble.

If *G* is a finitely generated metabelian $JNVN_{\pi}$ group, then choose *A* maximal subject to being abelian and containing *G*'.

If $A \leq N \triangleleft G$, then Z(N) = 1.

So $C_A(x) = 1$ and $C_G(x)$ is malnormal, for all $x \notin A$.

A is either an elementary abelian *p*-group or is torsion-free.

p-case: $G \in \mathcal{P}_{\pi}$.

Torsion-free case: Construct *H* as in the free case.

As before $G_{\pi} \cong H_{\pi}$, $H \in \mathcal{P}_{\pi}$.

Hence G_{π} is not soluble.

Localizations of finitely generated soluble groups

Niamh O'Sullivan

・ロト・西・・日・・日・・日・

Metabelian groups

Corollary

Let G be a finitely generated metabelian group. Then G_{π} is either virtually nilpotent or is not soluble.

Let G be a finitely generated metabelian group, then

either every quotient of *G* with unique π' -roots is virtually nilpotent and hence G_{π} is virtually nilpotent

or *G* has a $JNVN_{\pi}$ quotient and hence G_{π} is not soluble.

Localizations of finitely generated soluble groups

Soluble groups

Theorem

Let G be a finitely generated soluble group and let π be a set of primes such that π' is not finite. Then either G_{π} is virtually nilpotent or there exists a set of primes τ containing π such that $\tau \setminus \pi$ is a finite set and G_{τ} is not soluble.

Let G be a finitely generated soluble group. Then

either *G* is virtually nilpotent and so G_{π} is virtually nilpotent,

or G has a JNVN quotient.

In the second case $H = G^n$ is a finitely generated metabelian group, for some *n*.

Let $\tau = \pi \cup \pi(n)$.

Then G_{τ} is either virtually nilpotent and hence G_{π} is virtually nilpotent or G_{τ} is not soluble.

Localizations of finitely generated soluble groups