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Localization: A functor which assigns to each group G a e
unique w-local group G, (where 7 is a set of primes).

Definition
A group G is said to be 7w-local if the map

X — x9

is bijective for every prime g & .

A r-localization of any group G is a homomorphism
or G — Gy

where G, is a w-local group, with the universal property
that given any homomorphism « : G — H, with H
w—local, there exists a unique homomorphism

ar - Gy — Hsuch that o, ¢, = a.
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If o« : G — H, where H is w-local, then we have the Niamh O'Sulvan

following commutative diagram:

G
%l \ @
G oo

If o : G — H, then we have the following commutative
diagram:

G % H
ol e
G. “ H,

If Ais an abelian normal subgroup of G, then the
conjugation action of G on A induces an action of G on
Ar.
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Let = be a set of primes, we say b € «’ if all the primes

divisors of b are not in =. We will assume from now on
that 7 is a proper subset of the set of all primes.
If G is a finite group, then

G.=G/Ty

where T, is the subgroup generated by the =’-torsion
elements of G.

Zﬂ:{g‘a,bez,beﬂ}.

If N < Z(G), then (G/N), = G, /N,
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Theorem
If G is nilpotent of class c, then G, is nilpotent of class

< ¢ (Ribenboim 79).

If G is nilpotent, then Ker(G — G;) = T.

If G is nilpotent and x € G, then there exists m € 7’ such
that x™ ¢ ¢7T(G)

If G is nilpotent and N < G, then N, embeds in G, and it's
image is normal. Furthermore (G/N). = G;/N;.

Theorem
If G is virtually nilpotent, then G is virtually nilpotent
(Casacuberta and Castellet 92).
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If « : G — His an epimorphism, then o, : G, — H;, is
also an epimorphism.

However localization does not usually preserve
monomorphisms:

If 7 = {3}, then we have the embedding i : C3 — S3,
(C3)r = C3, (S3)r=1.

So that i is not a monomorphism.
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What can we say about localization and soluble
groups?
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What can we say about localization and soluble
groups?

B. Neumann (59) constructed a group G with unique
7’-roots which did not embed in G;.
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What can we say about localization and soluble
groups?

B. Neumann (59) constructed a group G with unique
m'-roots which did not embed in G;.

Baumslag (60) defined a class of groups that could
be embedded in a w-local group. Free groups are in
this class.
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Let = be a set of primes. A group G is said to be in the
class P if

(i) G has unique 7’-roots;
(i) if x € G has no m-th root, for some m € =/, and

Dg(x) = {g € G| Ca(x) N Ca(x)? # 1},

then Cg(x) is torsion-free, Dg(x) is a group and one
of the following holds:

(@) Dg(x) = Cg(x) < G so that Cg(x) is malnormal;

(b) [Da(x) : Ca(x)| =2 and Cg(X) < Zn.

Theorem
If G € P, then G embeds in G,. [Baumslag 60, Cassidy
88]
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Theorem

Let G € P, be a soluble group which is not w-local. Then
G is not soluble.

Take x € G that has no m-th root, for some m € =/,
attach roots for x:

K = G*D@(X) P.

Then G, = K., K embeds in G,.

If g € K, then there exists h € K such that
[9.9" # 1.

K is not soluble and so G; is not soluble.
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If G is a free soluble group of derived length at least 2,
then G is not soluble.

Let G be a free metabelian group and let A= G'. Then
Cgs(x) is manormal, for all x ¢ A. Set

H=(A: x G)/T where T =< (¢.(a),a ') |ac A>N.
We have the commutative diagram

1 - A — G — Q — 1

o

1 — A, — H — Q — 1.

G:=2H,, He P, = G;isnotsoluble. As
localization preserves epimorphisms, G, is not soluble
whenever G is a free soluble group of derived length at
least 2.
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Definition

A group G is said to be just-non virtually nilpotent (JNVN)
if G is not virtually nilpotent but every proper quotient of G
is virtually nilpotent. [Robinson-Wilson 84, Zhang 91, De
Falco 02]

Definition

A group G is said to be a JNVN,. group if G has unique 7’
roots and is not virtually nilpotent but every proper
quotient of G with unique 7’ roots is virtually nilpotent.
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Theorem
Let G be a finitely generated metabelian JNVN,. group
with unique =’-roots. Then G, is not soluble.

If G is afinitely generated metabelian JNVN,. group,
then choose A maximal subject to being abelian and
containing G'.

If A< N<G,then Z(N) =1.

So Ca(x) = 1 and Cg(x) is malnormal, for all x ¢ A.

A s either an elementary abelian p-group or is
torsion-free.

p-case: G € P;.

Torsion-free case: Construct H as in the free case.
As before G, = H,, H € P;.

Hence G, is not soluble.
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Corollary

Let G be a finitely generated metabelian group. Then G,
is either virtually nilpotent or is not soluble.

Let G be a finitely generated metabelian group, then

either every quotient of G with unique =’-roots is
virtually nilpotent and hence G; is virtually nilpotent

or G has a JNVN,. quotient and hence G; is not
soluble.
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Let G be a finitely generated soluble group and let = be a

set of primes such that ' is not finite. Then either G, is

virtually nilpotent or there exists a set of primes T

containing = such that T\r is a finite set and G is not

soluble.

Let G be a finitely generated soluble group. Then

either G is virtually nilpotent and so G is virtually
nilpotent,

or G has a JNVN quotient.

In the second case H = G" is a finitely generated
metabelian group, for some n.

Let 7 = 7 Um(n).

Then G- is either virtually nilpotent and hence G is
virtually nilpotent or G- is not soluble.



