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Localization
Localization: A functor which assigns to each group G a
unique π-local group Gπ (where π is a set of primes).

Definition
A group G is said to be π-local if the map

x 7→ xq

is bijective for every prime q 6∈ π.

A π-localization of any group G is a homomorphism

φπ : G→ Gπ

where Gπ is a π-local group, with the universal property
that given any homomorphism α : G→ H, with H
π−local, there exists a unique homomorphism
απ : Gπ → H such that απφπ = α.
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Localization

If α : G→ H, where H is π-local, then we have the
following commutative diagram:

G
φπ

y ↘ α

Gπ
απ−→ H

If α : G→ H, then we have the following commutative
diagram:

G α−→ H
φπ

y yφπ

Gπ
απ−→ Hπ

If A is an abelian normal subgroup of G, then the
conjugation action of G on A induces an action of G on
Aπ.
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Examples

Let π be a set of primes, we say b ∈ π′ if all the primes
divisors of b are not in π. We will assume from now on
that π is a proper subset of the set of all primes.

If G is a finite group, then

Gπ = G/Tπ′

where Tπ′ is the subgroup generated by the π′-torsion
elements of G.

Zπ =
{ a

b

∣∣∣a, b ∈ Z, b ∈ π′
}
.

If N ≤ Z (G), then (G/N)π
∼= Gπ/Nπ
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Nilpotent and virtually nilpotent groups

Theorem
If G is nilpotent of class c, then Gπ is nilpotent of class
≤ c (Ribenboim 79).

If G is nilpotent, then Ker(G→ Gπ) = Tπ′ .

If G is nilpotent and x ∈ Gπ, then there exists m ∈ π′ such
that xm ∈ φπ(G).

If G is nilpotent and N /G, then Nπ embeds in Gπ and it’s
image is normal. Furthermore (G/N)π = Gπ/Nπ.

Theorem
If G is virtually nilpotent, then Gπ is virtually nilpotent
(Casacuberta and Castellet 92).
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Morphisms

If α : G→ H is an epimorphism, then απ : Gπ → Hπ is
also an epimorphism.

However localization does not usually preserve
monomorphisms:

If π = {3}, then we have the embedding i : C3 → S3,

(C3)π = C3, (S3)π = 1.

So that iπ is not a monomorphism.
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Soluble groups

What can we say about localization and soluble
groups?

B. Neumann (59) constructed a group G with unique
π′-roots which did not embed in Gπ.

Baumslag (60) defined a class of groups that could
be embedded in a π-local group. Free groups are in
this class.
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Class Pπ

Definition
Let π be a set of primes. A group G is said to be in the
class Pπ if

(i) G has unique π′-roots;
(ii) if x ∈ G has no m-th root, for some m ∈ π′, and

DG(x) = {g ∈ G | CG(x) ∩ CG(x)g 6= 1},

then CG(x) is torsion-free, DG(x) is a group and one
of the following holds:
(a) DG(x) = CG(x) � G so that CG(x) is malnormal;
(b) |DG(x) : CG(x)| = 2 and CG(x) ≤ Zπ.

Theorem
If G ∈ Pπ, then G embeds in Gπ. [Baumslag 60, Cassidy
88]
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Soluble groups

Theorem
Let G ∈ Pπ be a soluble group which is not π-local. Then
Gπ is not soluble.

Take x ∈ G that has no m-th root, for some m ∈ π′,
attach roots for x :

K = G ∗DG(x) P.

Then Gπ
∼= Kπ, K embeds in Gπ.

If g ∈ K (t), then there exists h ∈ K such that
[g,gh] 6= 1.
K is not soluble and so Gπ is not soluble.
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Free Soluble groups
Theorem
If G is a free soluble group of derived length at least 2,
then Gπ is not soluble.
Let G be a free metabelian group and let A = G′. Then
CG(x) is manormal, for all x 6∈ A. Set

H = (Aπ oG)/T where T =< (φπ(a),a−1) | a ∈ A >Ncl .

We have the commutative diagram

1 −→ A −→ G −→ Q −→ 1
φπ

y y ‖
1 −→ Aπ −→ H −→ Q −→ 1.

Gπ
∼= Hπ, H ∈ Pπ =⇒ Gπ is not soluble. As

localization preserves epimorphisms, Gπ is not soluble
whenever G is a free soluble group of derived length at
least 2.
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Just Non-X groups

Definition
A group G is said to be just-non virtually nilpotent (JNVN)
if G is not virtually nilpotent but every proper quotient of G
is virtually nilpotent. [Robinson-Wilson 84, Zhang 91, De
Falco 02]

Definition
A group G is said to be a JNVNπ group if G has unique π′

roots and is not virtually nilpotent but every proper
quotient of G with unique π′ roots is virtually nilpotent.
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Metabelian groups

Theorem
Let G be a finitely generated metabelian JNVNπ group
with unique π′-roots. Then Gπ is not soluble.

If G is a finitely generated metabelian JNVNπ group,
then choose A maximal subject to being abelian and
containing G′.
If A � N /G, then Z (N) = 1.
So CA(x) = 1 and CG(x) is malnormal, for all x 6∈ A.
A is either an elementary abelian p-group or is
torsion-free.
p-case: G ∈ Pπ.
Torsion-free case: Construct H as in the free case.
As before Gπ

∼= Hπ, H ∈ Pπ.
Hence Gπ is not soluble.
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Metabelian groups

Corollary
Let G be a finitely generated metabelian group. Then Gπ

is either virtually nilpotent or is not soluble.
Let G be a finitely generated metabelian group, then

either every quotient of G with unique π′-roots is
virtually nilpotent and hence Gπ is virtually nilpotent

or G has a JNVNπ quotient and hence Gπ is not
soluble.
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Soluble groups

Theorem
Let G be a finitely generated soluble group and let π be a
set of primes such that π′ is not finite. Then either Gπ is
virtually nilpotent or there exists a set of primes τ
containing π such that τ\π is a finite set and Gτ is not
soluble.
Let G be a finitely generated soluble group. Then

either G is virtually nilpotent and so Gπ is virtually
nilpotent,
or G has a JNVN quotient.
In the second case H = Gn is a finitely generated
metabelian group, for some n.
Let τ = π ∪ π(n).
Then Gτ is either virtually nilpotent and hence Gπ is
virtually nilpotent or Gτ is not soluble.


