EXTERIOR SELF-QUOTIENT MODULES

Péter P. Pálfy Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences and Eötvös University, Budapest

Ischia, April 17, 2010

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Coauthors

Stephen P. Glasby

Central Washington University, Ellensburg, WA, USA

Csaba Schneider

Centro de Álgebra da Universidade de Lisboa, Portugal

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Unique Characteristic Subgroup

Definition. *G* is a **UCS-group** if it contains a unique non-trivial proper characteristic subgroup.

D. R. Taunt, Finite groups having unique proper characteristic subgroups I. *Proc. Cambridge Philos. Soc.* **51** (1955), 25–36.

Our setting: *P* a finite UCS *p*-group

Characteristically simple p-group = elementary abelian p-group

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

UCS *p*-group: The only characteristic subgroups are $1 < \Phi(P) < P$.

 $\Phi(P)$ is elementary abelian

Three cases

P abelian:

Three cases

P abelian: $P \cong C_{p^2} \times C_{p^2} \times \cdots \times C_{p^2}$ homocyclic group

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Three cases

$$P$$
 abelian: $P \cong C_{p^2} \times C_{p^2} \times \cdots \times C_{p^2}$ homocyclic group

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We deal with nonabelian UCS *p*-groups
Then
$$\Phi(P) = \mathbf{Z}(P) = P'$$

 $x^{p} \in \Phi(P)$, so $x^{p^{2}} = 1$
 $(xy)^{p} = x^{p}y^{p}[y, x]^{\binom{p}{2}} = x^{p}y^{p}$ if $p > 2$

- Case 1: *p* = 2
- Case 2: p > 2, P has exponent p
- Case 3: p > 2, P has exponent p^2

Action of the automorphism group

Let $V = P/\Phi(P)$ and $W = \Phi(P)$.

Both are vector spaces over the *p*-element field.

By the UCS property $\operatorname{Aut}(P)$ acts irreducibly both on V and W. The kernel of the action on V is $O_p(\operatorname{Aut}(P))$.

Let the image of the action be $G \leq GL(V)$.

The action of G on $V = P/\mathbf{Z}(P)$ determines its action on W = P'.

We classify nonabelian UCS *p*-groups where the number of generators is at most 4, i.e., if dim $P/\Phi(P) \leq 4$.

UCS-groups with p = 2

$\dim P/\Phi(P)$	$\dim \Phi(P)$	$\operatorname{Aut}(P)$ on $P/\Phi(P)$				
2	1	GL ₂ (2)				
3	3	$\Gamma L_1(2^3)$				
4	1	$O_{4}^{+}(2)$				
4	1	$O_{4}^{-}(2)$				
4	2	$\operatorname{GL}_2(2)\otimes\operatorname{GL}_2(2)$				
4	2	$\Gamma L_1(2^4)$				
4	4	$O_{4}^{+}(2)$				
4	4	$5 \cdot 4$				
4	4	5				
4	4	ΓL ₂ (2 ²)				

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 - のへで

UCS-groups with exponent p, p > 2

$\dim P/\Phi(P)$	$\dim \Phi(P)$	$\operatorname{Aut}(P)$ on $P/\Phi(P)$
2	1	$\operatorname{GL}_2(p)$
3	3	$\operatorname{GL}_3(p)$
4	1 or 5	$\mathrm{GSp}_4(p)$
4	2 or 4	$\operatorname{GL}_2(p) \wr C_2$
4	2 or 4	$\Gamma L_2(p^2)$
4	3	$\operatorname{GL}_2(p)\otimes\operatorname{GL}_2(p)$
4	6	$\operatorname{GL}_4(p)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 - のへで

UCS-groups with exponent p^2 , p > 2

$\dim P/\Phi(P) = \dim \Phi(P)$	condition	$\operatorname{Aut}(P)$ on $P/\Phi(P)$
3		$SO_3(p)$
4	p eq 5	5 · 4
4	$p\equiv\pm 2 \pmod{5}$	5

So the number of isomorphism types of UCS-groups of exponent $p^2 \ (p>2)$ with 4 generators is

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 0, if *p* = 5;
- 1, if $p \equiv \pm 1 \pmod{5}$;
- 2, if $p \equiv \pm 2 \pmod{5}$.

Exterior self-quotient modules

Let *P* be a UCS-group of exponent p^2 , p > 2.

 $x \mapsto x^p$ is a *G*-module isomorphism between $V = P/P^p$ and $W = P^p$

 $(x, y) \mapsto [x, y]$ can be considered as a *G*-module homomorphism from $V \wedge V$ onto W = P'

Definition. A *G*-module *V* is called an **exterior self-quotient module** (briefly **ESQ-module**) if $V \wedge V$ has a quotient module isomorphic to *V*. We also say that $G \leq GL(V)$ is an **ESQ-group**.

If P is a UCS-group of exponent p^2 (p > 2), and G is the action of Aut(P) on $V = P/\Phi(P)$, then V is an ESQ G-module.

Research problem

There exist a UCS-group of exponent p^2 (p > 2) with d generators (i.e., of order p^{2d}) if and only if there exists an irreducible subgroup $G \leq \operatorname{GL}_d(p)$ such that the natural G-module \mathbf{F}_p^d is an ESQ G-module.

Problem. For which pairs d, \mathbf{F} does there exist a finite irreducible group $G \leq \operatorname{GL}_d(\mathbf{F})$ such that the natural *G*-module is an ESQ *G*-module?

The Problem makes sense for any field, not just prime fields, and also for fields of characteristic 2 or 0 (although these cases have no relevance for the description of UCS p-groups).

Some examples of ESQ-modules (1)

Let $L_t = \{x \mapsto ax + b \mid a, b \in \mathbf{F}_t, a \neq 0\}$ be the group of linear functions acting as permutation matrices of degree t over a field \mathbf{F} , where t is a power of a prime different from the characteristic of \mathbf{F} . Then L acts absolutely irreducibly on the (t - 1)-dimensional subspace of vectors with coordinate sum 0, and this is an ESQ-module, since this is the only faithful irreducible representation of L over \mathbf{F} .

Let q be a prime power, r a prime number, and let d be the order of q modulo r. Assume that there exist 0 < i < j < d such that $q^i + q^j \equiv 1 \pmod{r}$. Then any cyclic subgroup of order r in $\operatorname{GL}_d(q)$ is an ESQ-group, since the eigenvalues of a linear transformation of order r are ϵ , ϵ^q , ..., $\epsilon^{q^{d-1}}$ (where ϵ is an r-th root of unity belonging to the field of order q^d), and the eigenvalues on the exterior square are $\epsilon^{q^i+q^j}$ for $0 \le i < j < d$.

Some examples of ESQ-modules (2)

Let $p \ge 5$ be a prime. Then the irreducible modules of $PSL_2(p)$ over \mathbf{F}_p are V_1, V_3, \ldots, V_p — one for each odd dimension up to p. We have

$$V_7 \wedge V_7 = V_3 \oplus V_7 \oplus V_{11},$$

so V_7 is an ESQ $PSL_2(p)$ -module if $p \ge 11$. (Actually, for p = 7 as well.) In fact, $PSL_2(p)$ is a *minimal* irreducible ESQ-subgroup of $GL_7(p)$.

Both of the two 7-dimensional irreducible representations of $G_2(2)$ over fields of characteristic different from 2 are ESQ.

Trivialities

Subgroups of ESQ-groups are ESQ-groups themselves. (But we can, of course, loose irreducibility.)

ESQ-groups remain ESQ-groups under field extensions. (But, again, irreducibility maybe lost.)

The dimension of an ESQ-module is at least 3. (Since dim $V \wedge V = {\dim V \choose 2}$.)

An ESQ-group cannot contain any scalar transformation except the identity. (Since λ acts as λ^2 on $V \wedge V$.)

If the eigenvalues of an element g in an ESQ-group are $\lambda_1, \ldots, \lambda_d$, then there is an injective map $i \mapsto (j, k)$ $(i = 1, \ldots, d; 1 \le j < k \le d)$ such that $\lambda_i = \lambda_j \lambda_k$. (Since the eigenvalues of g on V must occur among the eigenvalues of g on $V \wedge V$.)

ESQ-modules of dimension 3

Let $V = \mathbf{F}^3$, then $g \in \operatorname{GL}(V)$ acts on $V \wedge V$ as $\det(g)g^{-\top}$, hence $G \leq \operatorname{GL}(V)$ is an ESQ-group iff $G \leq \operatorname{SO}(V)$.

If $char(\mathbf{F}) \neq 2$, then $SO_3(\mathbf{F})$ is irreducible, so there exist 3-dimensional irreducible ESQ-modules.

If $char(\mathbf{F}) = 2$, then $SO_3(\mathbf{F})$ is not irreducible, so there is no 3-dimensional irreducible ESQ-module in this case.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ESQ-modules of dimension 4

Theorem. If the characteristic of **F** is not 5, then the group $L \leq GL_4(F)$ generated by the matrices

[0]	1	0	0		ΓO	1	0	0]
0	0	1	0		0	0	0	1
0	0 0	0	1	,	1	0	0	0
$\lfloor -1 \rfloor$	-1	-1	-1		0 0 1 0	0	1	0

is an ESQ-group of order 20.

Conversely, if $char(\mathbf{F}) \neq 2$ and $G \leq GL_4(\mathbf{F})$ is a finite irreducible ESQ-group, then $char(\mathbf{F}) \neq 5$, and G is conjugate to a subgroup of L, the order of G is divisible by 5, and if 5 is a square in \mathbf{F} , then |G| = 20.

ESQ-modules of dimension 5

Theorem. Let p be a prime, q a prime-power, and let G be a minimal irreducible ESQ-subgroup of $GL_p(q)$. Then one of the following holds:

(a) G is not absolutely irreducible, r = |G| is prime, $q^{p} \equiv 1 \pmod{r}$, $q \not\equiv 1 \pmod{r}$, and there exist 0 < i < j < psuch that $q^{i} + q^{j} \equiv 1 \pmod{r}$; (b) G is an absolutely irreducible non-abelian simple group; (c) G is absolutely irreducible, $|G| = pr^{s}$, where $r \neq p$ is prime, $q \equiv 1 \pmod{r}$, G' is a minimal normal subgroup of G of order r^{s} .

If p = 5 then case (b) does not occur — using results of Di Martino and Wagner. In case (a) |G| = 11, in case (c) |G| = 55. So there exists an irreducible ESQ-subgoup of $GL_5(q)$ iff $q^5 \equiv 1$ (mod 11).