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Unique Characteristic Subgroup

Definition. G is a UCS-group if it contains a unique non-trivial
proper characteristic subgroup.

D. R. Taunt, Finite groups having unique proper characteristic
subgroups I. Proc. Cambridge Philos. Soc. 51 (1955), 25–36.

Our setting: P a finite UCS p-group

Characteristically simple p-group = elementary abelian p-group

UCS p-group: The only characteristic subgroups are
1 < Φ(P) < P.

Φ(P) is elementary abelian



Three cases

P abelian:

P ∼= Cp2 × Cp2 × · · · × Cp2 homocyclic group

We deal with nonabelian UCS p-groups

Then Φ(P) = Z(P) = P ′

xp ∈ Φ(P), so xp2
= 1

(xy)p = xpyp[y , x ](
p
2) = xpyp if p > 2

• Case 1: p = 2

• Case 2: p > 2, P has exponent p

• Case 3: p > 2, P has exponent p2
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Action of the automorphism group

Let V = P/Φ(P) and W = Φ(P).

Both are vector spaces over the p-element field.

By the UCS property Aut(P) acts irreducibly both on V and W .

The kernel of the action on V is Op(Aut(P)).

Let the image of the action be G ≤ GL(V ).

The action of G on V = P/Z(P) determines its action on W = P ′.

We classify nonabelian UCS p-groups where the number of
generators is at most 4, i.e., if dim P/Φ(P) ≤ 4.



UCS-groups with p = 2

dim P/Φ(P) dim Φ(P) Aut(P) on P/Φ(P)

2 1 GL2(2)
3 3 ΓL1(2

3)
4 1 O+

4 (2)
4 1 O−

4 (2)
4 2 GL2(2)⊗GL2(2)
4 2 ΓL1(2

4)
4 4 O+

4 (2)
4 4 5 · 4
4 4 5
4 4 ΓL2(2

2)



UCS-groups with exponent p, p > 2

dim P/Φ(P) dim Φ(P) Aut(P) on P/Φ(P)

2 1 GL2(p)
3 3 GL3(p)
4 1 or 5 GSp4(p)
4 2 or 4 GL2(p) o C2

4 2 or 4 ΓL2(p
2)

4 3 GL2(p)⊗GL2(p)
4 6 GL4(p)



UCS-groups with exponent p2, p > 2

dim P/Φ(P) = dim Φ(P) condition Aut(P) on P/Φ(P)

3 SO3(p)
4 p 6= 5 5 · 4
4 p ≡ ±2 (mod 5) 5

So the number of isomorphism types of UCS-groups of exponent
p2 (p > 2) with 4 generators is

• 0, if p = 5;
• 1, if p ≡ ±1 (mod 5);
• 2, if p ≡ ±2 (mod 5).



Exterior self-quotient modules

Let P be a UCS-group of exponent p2, p > 2.

x 7→ xp is a G -module isomorphism between V = P/Pp and
W = Pp

(x , y) 7→ [x , y ] can be considered as a G -module homomorphism
from V ∧ V onto W = P ′

Definition. A G -module V is called an exterior self-quotient
module (briefly ESQ-module) if V ∧ V has a quotient module
isomorphic to V . We also say that G ≤ GL(V ) is an ESQ-group.

If P is a UCS-group of exponent p2 (p > 2), and G is the action of
Aut(P) on V = P/Φ(P), then V is an ESQ G -module.



Research problem

There exist a UCS-group of exponent p2 (p > 2) with d generators
(i.e., of order p2d) if and only if there exists an irreducible
subgroup G ≤ GLd(p) such that the natural G -module Fd

p is an
ESQ G -module.

Problem. For which pairs d , F does there exist a finite irreducible
group G ≤ GLd(F) such that the natural G -module is an ESQ
G -module?

The Problem makes sense for any field, not just prime fields, and
also for fields of characteristic 2 or 0 (although these cases have no
relevance for the description of UCS p-groups).



Some examples of ESQ-modules (1)

Let Lt = {x 7→ ax + b | a, b ∈ Ft , a 6= 0} be the group of linear
functions acting as permutation matrices of degree t over a field F,
where t is a power of a prime different from the characteristic of F.
Then L acts absolutely irreducibly on the (t − 1)-dimensional
subspace of vectors with coordinate sum 0, and this is an
ESQ-module, since this is the only faithful irreducible
representation of L over F.

Let q be a prime power, r a prime number, and let d be the order
of q modulo r . Assume that there exist 0 < i < j < d such that
qi + qj ≡ 1 (mod r). Then any cyclic subgroup of order r in
GLd(q) is an ESQ-group, since the eigenvalues of a linear

transformation of order r are ε, εq, . . . , εq
d−1

(where ε is an r -th
root of unity belonging to the field of order qd), and the

eigenvalues on the exterior square are εq
i+qj

for 0 ≤ i < j < d .



Some examples of ESQ-modules (2)

Let p ≥ 5 be a prime. Then the irreducible modules of PSL2(p)
over Fp are V1, V3, . . . , Vp — one for each odd dimension up to
p. We have

V7 ∧ V7 = V3 ⊕ V7 ⊕ V11,

so V7 is an ESQ PSL2(p)-module if p ≥ 11. (Actually, for p = 7
as well.) In fact, PSL2(p) is a minimal irreducible ESQ-subgroup
of GL7(p).

Both of the two 7-dimensional irreducible representations of G2(2)
over fields of characteristic different from 2 are ESQ.



Trivialities

Subgroups of ESQ-groups are ESQ-groups themselves. (But we
can, of course, loose irreducibility.)

ESQ-groups remain ESQ-groups under field extensions. (But,
again, irreducibility maybe lost.)

The dimension of an ESQ-module is at least 3. (Since
dim V ∧ V =

(dimV
2

)
.)

An ESQ-group cannot contain any scalar transformation except the
identity. (Since λ acts as λ2 on V ∧ V .)

If the eigenvalues of an element g in an ESQ-group are λ1, . . . ,
λd , then there is an injective map i 7→ (j , k) (i = 1, . . . , d ;
1 ≤ j < k ≤ d) such that λi = λjλk . (Since the eigenvalues of g
on V must occur among the eigenvalues of g on V ∧ V .)



ESQ-modules of dimension 3

Let V = F3, then g ∈ GL(V ) acts on V ∧ V as det(g)g−>,
hence G ≤ GL(V ) is an ESQ-group iff G ≤ SO(V ).

If char(F) 6= 2, then SO3(F) is irreducible, so there exist
3-dimensional irreducible ESQ-modules.

If char(F) = 2, then SO3(F) is not irreducible, so there is no
3-dimensional irreducible ESQ-module in this case.



ESQ-modules of dimension 4

Theorem. If the characteristic of F is not 5, then the group
L ≤ GL4(F) generated by the matrices

0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −1 −1

 ,


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


is an ESQ-group of order 20.

Conversely, if char(F) 6= 2 and G ≤ GL4(F) is a finite irreducible
ESQ-group, then char(F) 6= 5, and G is conjugate to a subgroup
of L, the order of G is divisible by 5, and if 5 is a square in F, then
|G | = 20.



ESQ-modules of dimension 5

Theorem. Let p be a prime, q a prime-power, and let G be a
minimal irreducible ESQ-subgroup of GLp(q). Then one of the
following holds:
(a) G is not absolutely irreducible, r = |G | is prime,
qp ≡ 1 (mod r), q 6≡ 1 (mod r), and there exist 0 < i < j < p
such that qi + qj ≡ 1 (mod r);
(b) G is an absolutely irreducible non-abelian simple group;
(c) G is absolutely irreducible, |G | = pr s , where r 6= p is prime,
q ≡ 1 (mod r), G ′ is a minimal normal subgroup of G of order r s .

If p = 5 then case (b) does not occur — using results of Di
Martino and Wagner. In case (a) |G | = 11, in case (c) |G | = 55.
So there exists an irreducible ESQ-subgoup of GL5(q) iff q5 ≡ 1
(mod 11).


