EXTERIOR SELF-QUOTIENT MODULES

Péter P. Pálfy

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences and Eötvös University, Budapest

Ischia, April 17, 2010

Coauthors

Stephen P. Glasby

Central Washington University, Ellensburg, WA, USA

Csaba Schneider

Centro de Álgebra da Universidade de Lisboa, Portugal

Unique Characteristic Subgroup

Definition. G is a UCS-group if it contains a unique non-trivial proper characteristic subgroup.
D. R. Taunt, Finite groups having unique proper characteristic subgroups I. Proc. Cambridge Philos. Soc. 51 (1955), 25-36.

Our setting: P a finite UCS p-group
Characteristically simple p-group $=$ elementary abelian p-group
UCS p-group: The only characteristic subgroups are $1<\Phi(P)<P$.
$\Phi(P)$ is elementary abelian

Three cases

P abelian:

Three cases

P abelian: $P \cong C_{p^{2}} \times C_{p^{2}} \times \cdots \times C_{p^{2}}$ homocyclic group

Three cases

P abelian: $P \cong C_{p^{2}} \times C_{p^{2}} \times \cdots \times C_{p^{2}}$ homocyclic group

We deal with nonabelian UCS p-groups
Then $\Phi(P)=\mathbf{Z}(P)=P^{\prime}$
$x^{p} \in \Phi(P)$, so $x^{p^{2}}=1$
$(x y)^{p}=x^{p} y^{p}[y, x]^{\binom{p}{2}}=x^{p} y^{p}$ if $p>2$

- Case 1: $p=2$
- Case 2: $p>2, P$ has exponent p
- Case 3: $p>2, P$ has exponent p^{2}

Action of the automorphism group

Let $V=P / \Phi(P)$ and $W=\Phi(P)$.
Both are vector spaces over the p-element field.
By the UCS property $\operatorname{Aut}(P)$ acts irreducibly both on V and W.
The kernel of the action on V is $\mathbf{O}_{p}(\operatorname{Aut}(P))$.
Let the image of the action be $G \leq \mathrm{GL}(V)$.
The action of G on $V=P / \mathbf{Z}(P)$ determines its action on $W=P^{\prime}$.
We classify nonabelian UCS p-groups where the number of generators is at most 4, i.e., if $\operatorname{dim} P / \Phi(P) \leq 4$.

UCS-groups with $p=2$

$\operatorname{dim} P / \Phi(P)$	$\operatorname{dim} \Phi(P)$	$\operatorname{Aut}(P)$ on $P / \Phi(P)$
2	1	$\mathrm{GL}_{2}(2)$
3	3	$\Gamma \mathrm{~L}_{1}\left(2^{3}\right)$
4	1	$\mathrm{O}_{4}^{+}(2)$
4	1	$\mathrm{O}_{4}^{-}(2)$
4	2	$\mathrm{GL}_{2}(2) \otimes \mathrm{GL}_{2}(2)$
4	2	$\Gamma \mathrm{~L}_{1}\left(2^{4}\right)$
4	4	$\mathrm{O}_{4}^{+}(2)$
4	4	$5 \cdot 4$
4	4	5
4	4	$\Gamma \mathrm{~L}_{2}\left(2^{2}\right)$

UCS-groups with exponent $p, p>2$

$\operatorname{dim} P / \Phi(P)$	$\operatorname{dim} \Phi(P)$	$\operatorname{Aut}(P)$ on $P / \Phi(P)$
2	1	$\mathrm{GL}_{2}(p)$
3	3	$\mathrm{GL}_{3}(p)$
4	1 or 5	$\mathrm{GSp}_{4}(p)$
4	2 or 4	$\mathrm{GL}_{2}(p) \imath C_{2}$
4	2 or 4	$\Gamma \mathrm{LL}_{2}\left(p^{2}\right)$
4	3	$\mathrm{GL}_{2}(p) \otimes \mathrm{GL}_{2}(p)$
4	6	$\mathrm{GL}_{4}(p)$

UCS-groups with exponent $p^{2}, p>2$

$\operatorname{dim} P / \Phi(P)=\operatorname{dim} \Phi(P)$	condition	$\operatorname{Aut}(P)$ on $P / \Phi(P)$
3		$\mathrm{SO}_{3}(p)$
4	$p \neq 5$	$5 \cdot 4$
4	$p \equiv \pm 2(\bmod 5)$	5

So the number of isomorphism types of UCS-groups of exponent $p^{2}(p>2)$ with 4 generators is

- 0 , if $p=5$;
- 1, if $p \equiv \pm 1(\bmod 5)$;
- 2 , if $p \equiv \pm 2(\bmod 5)$.

Exterior self-quotient modules

Let P be a UCS-group of exponent $p^{2}, p>2$.
$x \mapsto x^{p}$ is a G-module isomorphism between $V=P / P^{p}$ and $W=P^{p}$
$(x, y) \mapsto[x, y]$ can be considered as a G-module homomorphism from $V \wedge V$ onto $W=P^{\prime}$

Definition. A G-module V is called an exterior self-quotient module (briefly ESQ-module) if $V \wedge V$ has a quotient module isomorphic to V. We also say that $G \leq \mathrm{GL}(V)$ is an ESQ-group.

If P is a UCS-group of exponent $p^{2}(p>2)$, and G is the action of $\operatorname{Aut}(P)$ on $V=P / \Phi(P)$, then V is an ESQ G-module.

Research problem

There exist a UCS-group of exponent $p^{2}(p>2)$ with d generators (i.e., of order $p^{2 d}$) if and only if there exists an irreducible subgroup $G \leq \mathrm{GL}_{d}(p)$ such that the natural G-module \mathbf{F}_{p}^{d} is an ESQ G-module.

Problem. For which pairs d, \mathbf{F} does there exist a finite irreducible group $G \leq \mathrm{GL}_{d}(\mathbf{F})$ such that the natural G-module is an ESQ G-module?

The Problem makes sense for any field, not just prime fields, and also for fields of characteristic 2 or 0 (although these cases have no relevance for the description of UCS p-groups).

Some examples of ESQ-modules (1)

Let $L_{t}=\left\{x \mapsto a x+b \mid a, b \in \mathbf{F}_{t}, a \neq 0\right\}$ be the group of linear functions acting as permutation matrices of degree t over a field \mathbf{F}, where t is a power of a prime different from the characteristic of \mathbf{F}. Then L acts absolutely irreducibly on the $(t-1)$-dimensional subspace of vectors with coordinate sum 0 , and this is an ESQ-module, since this is the only faithful irreducible representation of L over \mathbf{F}.

Let q be a prime power, r a prime number, and let d be the order of q modulo r. Assume that there exist $0<i<j<d$ such that $q^{i}+q^{j} \equiv 1(\bmod r)$. Then any cyclic subgroup of order r in $\mathrm{GL}_{d}(q)$ is an ESQ-group, since the eigenvalues of a linear transformation of order r are $\epsilon, \epsilon^{q}, \ldots, \epsilon^{q^{d-1}}$ (where ϵ is an r-th root of unity belonging to the field of order q^{d}), and the eigenvalues on the exterior square are $\epsilon^{q^{i}+q^{j}}$ for $0 \leq i<j<d$.

Some examples of ESQ-modules (2)

Let $p \geq 5$ be a prime. Then the irreducible modules of $\mathrm{PSL}_{2}(p)$ over \mathbf{F}_{p} are $V_{1}, V_{3}, \ldots, V_{p}$ - one for each odd dimension up to p. We have

$$
V_{7} \wedge V_{7}=V_{3} \oplus V_{7} \oplus V_{11}
$$

so V_{7} is an ESQ $\operatorname{PSL}_{2}(p)$-module if $p \geq 11$. (Actually, for $p=7$ as well.) In fact, $\mathrm{PSL}_{2}(p)$ is a minimal irreducible ESQ-subgroup of $\mathrm{GL}_{7}(p)$.

Both of the two 7-dimensional irreducible representations of $G_{2}(2)$ over fields of characteristic different from 2 are ESQ.

Trivialities

Subgroups of ESQ-groups are ESQ-groups themselves. (But we can, of course, loose irreducibility.)

ESQ-groups remain ESQ-groups under field extensions. (But, again, irreducibility maybe lost.)

The dimension of an ESQ-module is at least 3. (Since $\operatorname{dim} V \wedge V=\left(\begin{array}{c}\operatorname{dim}_{2} V\end{array}\right)$.)

An ESQ-group cannot contain any scalar transformation except the identity. (Since λ acts as λ^{2} on $V \wedge V$.)

If the eigenvalues of an element g in an ESQ-group are λ_{1}, \ldots, λ_{d}, then there is an injective map $i \mapsto(j, k)(i=1, \ldots, d$; $1 \leq j<k \leq d$) such that $\lambda_{i}=\lambda_{j} \lambda_{k}$. (Since the eigenvalues of g on V must occur among the eigenvalues of g on $V \wedge V$.)

ESQ-modules of dimension 3

Let $V=\mathbf{F}^{3}$, then $g \in \mathrm{GL}(V)$ acts on $V \wedge V$ as $\operatorname{det}(g) g^{-\top}$, hence $G \leq \mathrm{GL}(V)$ is an ESQ-group iff $G \leq \mathrm{SO}(V)$.

If $\operatorname{char}(\mathbf{F}) \neq 2$, then $\mathrm{SO}_{3}(\mathbf{F})$ is irreducible, so there exist 3-dimensional irreducible ESQ-modules.

If $\operatorname{char}(\mathbf{F})=2$, then $\mathrm{SO}_{3}(\mathbf{F})$ is not irreducible, so there is no 3-dimensional irreducible ESQ-module in this case.

ESQ-modules of dimension 4

Theorem. If the characteristic of \mathbf{F} is not 5, then the group
$L \leq \mathrm{GL}_{4}(\mathbf{F})$ generated by the matrices

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1
\end{array}\right], \quad\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

is an ESQ-group of order 20.
Conversely, if $\operatorname{char}(\mathbf{F}) \neq 2$ and $G \leq \mathrm{GL}_{4}(\mathbf{F})$ is a finite irreducible ESQ-group, then $\operatorname{char}(\mathbf{F}) \neq 5$, and G is conjugate to a subgroup of L, the order of G is divisible by 5 , and if 5 is a square in F, then $|G|=20$.

ESQ-modules of dimension 5

Theorem. Let p be a prime, q a prime-power, and let G be a minimal irreducible ESQ-subgroup of $\mathrm{GL}_{p}(q)$. Then one of the following holds:
(a) G is not absolutely irreducible, $r=|G|$ is prime, $q^{p} \equiv 1(\bmod r), q \not \equiv 1(\bmod r)$, and there exist $0<i<j<p$ such that $q^{i}+q^{j} \equiv 1(\bmod r)$;
(b) G is an absolutely irreducible non-abelian simple group;
(c) G is absolutely irreducible, $|G|=p r^{s}$, where $r \neq p$ is prime, $q \equiv 1(\bmod r), G^{\prime}$ is a minimal normal subgroup of G of order r^{s}.

If $p=5$ then case (b) does not occur - using results of Di Martino and Wagner. In case (a) $|G|=11$, in case (c) $|G|=55$. So there exists an irreducible ESQ-subgoup of $\operatorname{GL}_{5}(q)$ iff $q^{5} \equiv 1$ $(\bmod 11)$.

