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Let R = (R,+, ·) be an associative ring, not necessarily

with an identity element. Then the set of all elements

of R forms a monoid with neutral element 0 ∈ R under

the ”circle” operation r ◦ s = r + s+ rs for all r, s ∈ R
which is called the adjoint monoid of R . The group of

all invertible elements of this monoid is said to be the

adjoint group of R and usually denoted by R◦ . The ring

R is called radical (in sense of N. Jacobson) if R = R◦

which means that R coincides with its Jacobson radical.



If R is a ring with an identity 1, then the set of all non-

zero elements of R forms the multiplicative monoid of

R whose group of all invertible elements is called the

multiplicative group of R and denoted by R∗ . In this

case the mapping r 7→ 1 + r with r ∈ R◦ determines

a group isomorphism from R◦ onto R∗ . In fact, R∗ =

1 +R◦ . Recall that R is a division ring if R∗ = R \ {0} .

It is well-known that every ring R can be embedded in

a ring R1 with 1, for instance, if we put R1 = R ⊕ Z
and extend the multiplication in R1 by distributivity.



The best known examples of radical rings are the nilpo-

tent rings. A ring R is nilpotent if there exists a positive

integer n such that every product of n+1 elements from

R is 0. For instance, rings of strictly upper triangular

square matrices over a ring are well-known examples of

nilpotent rings. If every finitely generated subring of R

is nilpotent, then R is locally nilpotent. It is obvious

that the adjoint group of every (locally) nilpotent ring

is (locally) nilpotent.



A ring R is nil, if every element r of R is nilpotent, i.e.

there exists a positive integer n = n(r) with rn = 0.

Every locally nilpotent ring is nil. In 1964, for any prime

p , E.S. Golod constructed a finitely generated nil alge-

bra over the Galois field GF (p) which is not nilpotent

and whose adjoint group is a p-group containing finitely

generated infinite periodic subgroups.



Triply factorized groups associated with

radical rings



Let P be a right ideal of the radical ring R , so that
M = R/P is a right R -module. Then A = R◦ operates
on M via the rule ma = m + ma for a in A and m in
M . If G = M oA is the semidirect product of M by A
and B = {am | m = a+P, a ∈ A} , then B is a subgroup
of G and

G = M oA = M oB = AB

with A ∩B isomorphic to P ◦ .

If in particular P = 0, then M is isomorphic to R+ and
A ∩B = 1. In this case G is isomorphic to the matrix
group (

1 R
0 1 +R

)
in which M =

(
1 R
0 1

)
, A =

(
1 0
0 1 +R

)
and B =

{
(

1 r
0 1 + r

)
| r ∈ R}.



The adjoint group of the matrix ring M2(R) is isomor-
phic to

G(R) =

(
1 +R R
R 1 +R

)
and the following assertion can directly be verified.

Let tij(r) be the transvection with the element r in the
position (i, j).

Theorem 1. If A =

(
1 +R 0

0 1 +R

)
, B = t12(−1)At12(1)

and C = t21(−1)At21(1) , then G(R) = ABC and AB =
BA , AC = CA and BC = CB .

Clearly if R is commutative, then the subgroups A , B

and C of G(R) are abelian.



Corollary 2. Let Qp be the set of all rational num-
bers whose denominators are not divisible by p . Then
R = pQp is a radical subring of Q and the group G(R)
contains a non-abelian free subgroup generated by ma-

trices

(
1 p
0 1

)
and

(
1 0
p 1

)
. Therefore G(R) is a

non-soluble linear group over Q which is a product of
three pairwise permutable abelian subgroups.

Corollary 3. Let p be a prime and R = pZpm for p odd
or R = 4Z2m for p = 2 where m ≥ 3 . Then the fac-
tor group G(R)/Z(G(R)) is a product of three pairwise
permutable cyclic subgroups of orders pm−1 or 2m−2 ,
respectively, and its derived length is at least log2(m) .



The structure of the adjoint group of a

radical ring



The next theorem proved by B. Amberg, O. Dicken-
schied and myself (1998) shows that the adjoint group
of any radical ring satisfies some solubility condition.
Recall that a group G is an SN -group if it has a series
with abelian factors which is equivalent to the property
that every finitely generated subgroup of G is different
from its derived subgroup.

In what follows, if the other is not claimed, R is always
a radical ring.

Theorem 4. The adjoint group R◦ of R is an SN -group
in which every finite subgroup is nilpotent.

Using Zelmanov’s theorem on the Restricted Burnside
Problem, from Theorem 6 one can deduce the following.

Corollary 5. Let G be a subgroup of R◦ and suppose
that one of the following conditions holds:

• G is locally finite,

• G has finite exponent,

• G is an n-Engel group for some n ≥ 1 ,

• G is locally artinian.

Then the group G is locally nilpotent.

It should be noted that an essential contribution to the

theory of Engel groups was made by K. Gruenberg.



The question of B.I. Plotkin in Kourovka Notebook
(1969, Question 2.65) whether R◦ has a series with cen-
tral factors was negatively answered by O.M. Neroslavskii
(1973). His counterexample was constructed in the fol-
lowing way.

Let F be the algebra of formal power series without

constant terms in two non-commuting indeterminates

x and y over Fp with p > 2 . Then the elements

u = (1 + x)−1y(1 + x)− y2 − 2y and yp of F

generate the ideal I in F such that the factor algebra

R = F/I is a radical algebra whose adjoint group R◦

contains a subgroup which is isomorphic to the group

G = < b > o< a > with a−1ba = b2 where a is of infinite

order and b has order p . In particular G is metacyclic,

but not nilpotent.



As Golod’s example shows, the periodic subgroups of
R◦ need not be locally nilpotent. However the following
assertion holds.

Theorem 6. If G is a periodic subgroup of R◦ and Z is
the center of G , then the factor group G/Z is the direct
product of its primary components. In particular, every
two elements of coprime orders of G are permutable.

The question whether every periodic subgroup of R◦ is
a direct product of its primary components is open. It
can be reduced to the following more general problem
which is of independent interest.

Does every central extension G of a cyclic p-group by

a periodic p′ -group split if G is an SN -group?



It should be noted that if G is not an SN -group, then an
example of S.I. Adjan (The Burnside problem and iden-
tities in groups, Springer-Verlag, Berlin (1978)., p. 276,
VII.1.9) shows that there exists such a non-split exten-
sion.

The following result was obtained by P. Cohn (1971 -
1973). We reformulate his result as follows.

Theorem 7. Every radical subalgebra of a division ring
can be embedded in a radical algebra R (again con-
tained in a division ring) whose adjoint group R◦ has
only two conjugacy classes of elements.

This means in particular that there exist SN -groups in

which every two non-identity elements are conjugate.



Recall that a group is hyperabelian if it has an ascending
normal series with abelian factors. The following result
was obtained by F. Catino, M.M. Miccoli and myself
(2007).

Theorem 8. If R has no non-zero nilpotent ideal and
Z is the center of R , then the factor group R◦/Z◦ has
no non-trivial soluble-by-finite normal subgroup.

As a corollary, we have

Corollary 9. Let H be a hyperabelian normal subgroup
of R◦ . Then the derived subgroup H ′ is locally nilpo-
tent.



An abelian group G is said to be of finite torsion-free
rank if it has a finitely generated torsion-free subgroup
A such that the factor group G/A is periodic.

Corollary 10. If the adjoint group R◦ is hyperabelian
and the commutator factor group of R◦ has finite torsion-
free rank, then the ring R (and so the adjoint group
R◦ ) is locally nilpotent. In particular, every radical ring
whose adjoint group is finitely generated and hyper-
abelian must be nilpotent.

In this connection a natural question arises

whether every radical ring R with finitely generated ad-
joint group is nilpotent.

In the case when R◦ is generated by two elements, the
answer is positive and essentially depends on the follow-
ing result of Amberg and L.S. Kazarin (2003).

Lemma 11. Let G be a finite p-group with two gen-
erators. If G occur as the adjoint group of a nilpotent
p-algebra, then the order of G is bounded by p5 .



Nilpotent groups isomorphic to the

adjoint group of a radical ring



Clearly every abelian group A occurs as the adjoint
group of the ring with trivial multiplication on A .

L. Kaloujnine (1954) has shown that every finite p-
group of class 2 with odd p is isomorphic to the adjoint
group of some nilpotent ring. In fact, all groups of or-
der p , p2 and p3 occur as the adjoint group of some
nilpotent ring, but a group of order p4 , if and only if,
it is nilpotent of class ≤ 2 (R.L. Kruse and D.T. Price,
Nilpotent rings, 1967, Chapter I, Section 6). Groups of
class 3 and of order p5 for odd primes p are described
by K.I. Tahara and A. Hosomi (1983).

Every finitely generated nilpotent group of class at most

2 is the adjoint group of some nilpotent ring (R. San-

dling, 1974).



A.W. Hales and I.B.S. Passi (1978) have shown that a

nilpotent group G of class 2 is the adjoint group of a

nilpotent ring R with R2 = 0 provided that its commu-

tator factor group G/G′ is either a direct sum of cyclic

groups, or divisible, or torsion, or torsion-free and com-

pletely decomposable. Furthermore, they constructed

a torsion-free nilpotent group G of class 2 with Prüfer

rank r(G) = 3 which cannot be the adjoint group of

such a nilpotent ring and asked ”whether this G oc-

curs as the adjoint group of some nilpotent ring R with

Rn = 0 for n > 2 (or, for that matter, of any radi-

cal ring)”. The answer is negative because radical ring

R whose adjoint group R◦ is torsion-free of rank n is

nilpotent with Rn = 0 (Amberg and myself, 2001).



Adjoint groups of finite nilpotent

p-algebras



Associative algebras over the Galois field GF (p) for
some prime p are called p-algebras. The adjoint group
of every nilpotent p-algebra is a p-group.

Which finite p-groups can occur as the adjoint group
R◦ of a nilpotent p-algebra R?

Clearly R◦ is elementary abelian p-group if R2 = 0.

If R◦ is cyclic, then either |R◦| = p or |R◦| = 4 (I.
Fischer and K. Eldridge, 1969).

If R◦ is metacyclic, then R◦ is either elementary abelian

of order at most p2 , or p = 3 and R◦ ' Z9 × Z3 , or

p = 2 and R◦ is one of the following: Z4,Z2 × Z4,Z4 ×
Z4,Z2 × Z8,Z4 o Z4, D8, Q8 (B.O. Gorlov, 1995).



If R◦ is 2-generated and p > 2, then either R◦ is a
metacyclic group or a non-abelian group of order p3

and of exponent p ; if p = 2, then |R◦| ≤ 25 ( Amberg,
Kazarin, 1999).

The case of a commutative nilpotent p-algebra is of
special interest. A conjecture of N.H. Eggert (1971)
says that for every commutative nilpotent p-algebra R
we have
dimR ≥ pdimR(1) , where R(1) = {xp | x ∈ R} .
In some special cases it was affirmed by R. Bautista
(1976), C. Stack (1996) and some others authors. A
proof of L. Hammoudi (Pacific J. Math. 202 (2002), 93
-97) has an error which was admitted by himself. The
Eggert conjecture can also be reformulated as follows:

if R is a commutative p-algebra, then r(R+) ≤ p
p−1

r(R◦).

This implies in particular that if G = AB is a finite p-

group with abelian subgroups A and B , then r(G) ≤
2(r(A) + r(B)). At the present time it is even unknown

whether there exists a linear function f such that r(G) ≤
f(r(A), r(B)).



Relations between the adjoint and Lie

structures in radical rings



Every ring R can be viewed as a Lie ring under the
Lie multiplication [r, s] = rs − sr for all r, s ∈ R which
is called the associated Lie ring of R and denoted by
R(−) .

General question. Which relations exist between the
group structure of R◦ and the Lie structure of R and
what influence do they have on the ring structure of R?

An obvious example of such relations is the following:

Rad is abelian if and only if the Lie ring R(−) is abelian.

If r1, r2, . . . are elements of R , the Lie-commutators

[r1, . . . , rn+1] are defined inductively by [r1, . . . , rn+1] =

[[r1, . . . , rn], rn+1] for all n ≥ 2.



The ring R is called Lie-nilpotent if R(−) is nilpotent,
i.e. there exists a positive integer n such that

[r1, . . . , rn+1] = 0 for all r1, . . . rn+1 of R .

The least n with this property is the class of Lie-nilpotency
of R . We will also say that R is locally Lie-nilpotent
if every finitely generated subring of R is Lie-nilpotent.
Obviously in this case the Lie ring R(−) is locally nilpo-
tent.

It was proved by S.A. Jennings (1955) that a radical ring
R is Lie-nilpotent if and only if its adjoint group R◦ is
nilpotent. He conjectured also that the classes of nilpo-
tency of both structures coincide. This was confirmed
by X. Du (1992) even in more strong form, namely

Zn(R(−)) = Zn(R◦) for each positive integer n .

It is trivial for n = 1 and was shown by H. Laue (1984)

for n = 2 before. Later Du (2001) proved also that if

2R = R , then Zα(R(−)) = Zα(R◦) for every ordinal num-

ber α . It is unknown at present whether the condition

2R = R can be removed.



A natural generalization of the concept of nilpotency of
groups is that of nilpotency of semigroups in the sense
of A. Mal’cev or B.H. Neumann and T. Taylor whose
precise definition can be given as follows.

Let X be a countable set of non-commuting indetermi-
nates and let the sequence W1(x, y), W2(x, y, z1),...,Wn(x, y, z1, . . . , zn−1),
... of words in the indeterminates x , y , z1, . . . , zn, . . .
of X be defined by the rule

W1(x, y) = xy and Wn+1(x, y, z1, . . . , zn) = Wn(x, y, z1, . . . , zn−1)znWn(y, x, z1, . . . , zn−1)

for every n ≥ 1. A semigroup A is said to be nilpotent
if there exists a positive integer n such that

Wn(a, b, c1, . . . , cn−1) = Wn(b, a, c1, . . . , cn−1)

for any elements a, b, c1, . . . , cn−1 of A . The least n

with this property is called the class of nilpotency of the

semigroup A .



In answer to a question posed by A.N. Krasil’nikov (1997)
and independently by D. Riley and V. Tasić (1999) it
was proved by Amberg and myself (2001) that

for each positive integer n , the adjoint monoid of a ring
R is nilpotent of class n if and only if R is Lie-nilpotent
of class n .

Furthemore, we also proved (2003) that

the adjoint monoid of R is locally nilpotent if and only

if R is locally Lie-nilpotent.



The ring R is Engel if [r, s, . . . , s] = 0 for each pair of
elements r and s in R , and n-Engel if s appears exactly
n times.

Theorem 12. (Amberg and myself, 2000) The adjoint
group R◦ of R is an n-Engel group for some positive
integer n if and only if R is an m-Engel ring for some
positive integer m depending only on n .

It is trivial that n = 1 implies m = 1. The question
which relationship exists between n and m was con-
sidered by Dickenshied in his dissertation (1997). He
proved that m = n if n = 2 or n = 3 and R+ contains
no elements of order 2. No other relations are known.

Since

[x, ny] =
n∑
i=0

(−1)i+1
(n
i

)
yixyn−i.

for all x, y ∈ R and n ≥ 1, every nil ring is Engel. This

leads to the question whether the adjoint group of every

nil ring is Engel.



For any additive subgroups V and W of R , let [V,W ]
be the additive subgroup of R generated by all Lie-
commutators [v, w] with v ∈ V and w ∈W . The derived
chain of a Lie ring R is defined inductively as

δ0(R) = R and δn+1(R) = [δn(R), δn(R)] for each integer
n ≥ 0.

The ring R is called Lie-soluble of length at most m if
δm(R) = 0. Lie-soluble rings of length at most 2 are
called Lie-metabelian.

A.E. Zalesskii and M.B. Smirnov (1982) and indepen-

dently R.K. Sharma and J.B. Srivastava (1985) proved

that every Lie-soluble ring R has a nilpotent ideal I

whose factor ring R/I is center-by-metabelian as a Lie

ring. However the adjoint group R◦ of R need not be

soluble in this case.



Indeed, if R is the ring of all 2 × 2-matrices over any
commutative radical domain S of characteristic 2, say
S = { xf(x)

1+xf(x)
| f(x) ∈ F2[x]} , then R is center-by-metabelian

and R◦ contains free subgroup generated by the matri-

ces

(
1 t
0 1

)
and

(
1 0
t 1

)
.

On the other hand, Krasil’nikov (1992) and indepen-
dently Sharma and Srivastava (1992) proved that the
adjoint group of every Lie-metabelian ring is metabelian.

By analogy with the nilpotent case, the question arises
whether every radical ring with soluble adjoint group is
Lie-soluble.

A positive answer for nil algebras over infinite fields was
obtained by Smirnov (1985). Furthermore, Krasil’nikov
(1992) proved that every nil ring with metabelian adjoint
group is Lie-metabelian.

The following theorem of Amberg and myself (2002)

yields a complete answer to this question.



Theorem 13. Let R be a radical ring. Then the ad-
joint group R◦ is soluble if and only if the following
statements hold:

(1) R is Lie-soluble, and

(2) there exists a chain

0 = I0 ⊆ I1 ⊆ . . . ⊆ Im = R

of ideals of R such that every factor Ii/Ii−1 is gener-
ated by commutative ideals of R/Ii−1 for 1 ≤ i ≤ m .

Moreover, if R◦ is soluble of length n for some n ≥ 1
and L the Levitzki radical of R , then there exist positive
integers k, l and m depending only on n such that:

(3) R satisfies the identity [x, y]k = 0 for all x, y ∈ R ;

(4) the factor ring R/L is commutative and L satis-
fies the identity [x, y, . . . , y] = 0 with y repeated l
times, i.e. L is an l -Engel ring;

(5) the derived subgroup of R◦ is an m-Engel group.



Furthermore, in answer to a question of Krasilnikov
and Sharma and Srivastava (1992), Amberg and my-
self (2004) proved the following.

Theorem 14. The adjoint group R◦ of a radical ring R
is metabelian if and only if R is Lie metabelian.

Finally, the ring R is Lie-supersoluble if R has an as-
cending series of Lie-ideals whose factors are cyclic as
additive groups. The next assertion proved by Catino,
Miccoli and myself (2009)

Theorem 15. If R is a semilocal ring (i.e. R is artinian
modulo its Jacobson radical) whose adjoint group is lo-
cally supersoluble, then R is locally Lie-supersoluble and
contains a locally Lie-nilpotent ideal I of finite index
such that the factor ring R/I is a direct sum of ideals
each of which is isomorphic either to the Galois field Fp
of prime order p or the matrix algebra M2(F2) .

In particular, if R is radical, then R◦ is locally supersol-

uble if and only if R◦ is locally nilpotent.


