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A ZG-module M is said to admit a complete
resolution (F,P,n) if there is an acyclic com-
plex F = {(F;,9;)| i € Z} of projective modules,
and a projective resolution P = {(P;,d;)| ¢ €
Z,i > 0} of M such that F and P coincide in

dimensions greater than n
In
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The number n is called the coincidence index
of the complete resolution.



Ikenaga (1984) defined generalized Tate coho-
mology for the class of groups G which admit

e complete resolutions

and for which the generalized cohomological
dimension of (G

o CdG <

where

cdG =sup{k: Ext} (A, F)#0, A Z—free, F ZG—-free}

HY(G,B) = H'(Homy~(F,B)),i € Z,

where F is a complete resolution of the trivial
ZG-module Z

generalized Tate cohomology



cd@G < n is equivalent to the following exten-
sion condition

For every exact sequence of ZG-modules

O—>kerdn—>Pn@> 1 — - —>FPp—>A—0

~
/
e

P/

P, projective 0 < 1 < n A Z-free, any map
kerd,, — P,P projective, extends to a map

If G admits a complete resolution and cdG < oo
then cdG = min{n| n coincidence index of a

complete resolution of G}



The generalized Tate cohomology defined by
Ikenaga coincides with

e Tate cohomology for finite groups

e Farrell-Tate cohomology for groups of
finite virtual cohomological dimension,
vcdG < oo



e If G is a virtually torsion free group and
vcdG < oo then vecd@G = cddG

o CdG =sup{k: Ext} (A,F)#0, A Z—free, F ZG—free}

cdG <silpzZG < cdG +1

Gedrich and Gruenberg (1987) in their study
of complete cohomological functors considered
the invariants silp ZG and spliZG and showed

o SilpZG < spliZG and if spliZG < oo then
Silp ZG = spli ZG

o If spliZG < oo then G admits a complete
resolution
SO generalized Tate cohomology or com-
plete cohomology is defined for G.



Mislin (1994) defined complete cohomology or
generalized Tate cohomology for any group G
via satellites as follows

Exty (A, B) = lim S JExt:ti(A B
76(A, B) Mo 70 (A, B)

where S—jExtiZEj(A, ) denotes the j-th left satel-
lite of the functor Ext,17(A, ).

The family {H*(G,_) : i € Z} forms a cohomo-
logical functor which is the P-completion of
ordinary cohomology (or completion with re-
spect to projective modules)

i.e. H'(G,projective)=0 for all i € Z and there
is a morphism HY (G, ) 5 HY(G, ) such that
if {V', i € Z} is a cohomological functor with
Vi(projective) = 0 for all s € Z, and HY(G, ) 5
V% a morphism of cohomological functors, then
o factors uniquely through .



Alternative but equivalent definitions were also
introduced by Benson and Carlson (1992) and
Vogel (1992)

pdyM < oo if and only if Extoa(M, M) = 0
Kropholler (1993).

It was shown by Cornick and Kropholler (1998)
that if a group G admits a complete resolution
in the strong sense (F,P,n), i.e. Homyo(F, P)
is acyclic for every projective ZG-module P
then complete cohomology can be calculated
using complete resolutions in the strong sense,
I.e.

HY(G,B) ~ H'(Homy(F,B)) i € Z



The advantage with this approach is that one
has computational devices such as

Eckmann - Shapiro lemma

certain spectral sequences

Complete cohomology is not always calculated
via complete resolutions as they do not always
exist

If G admits a complete resolution of coinci-
dence index n then

findimZG <n (Mislin 4+ T, 2000)

The finitistic dimension of ZG, findim ZG, is
the supremum of the projective dimensions of
the ZG-modules of finite projective dimension

Any group which contains a free abelian sub-
group of infinite rank does not admit a com-
plete resolution



For any group G

findim ZG < silp ZG < spli ZG
Emmanouil (2008) spliZG < silp ZG

The kernels in a complete resolution (F,P,n)
in the strong sense are the Gorenstein projec-
tive modules over ZG.

The Gorenstein projective dimension of a ZG-
module M, GpdyoM, is defined via resolutions
by Gorenstein projective modules, i.e.
GpdyoaM < n if and only if M has a Gorenstein
projective resolution of length n.

The Gorenstein projective dimension was de-
fined by Enochs and Jenda (1995) and is re-
lated to the G-dimension defined by Auslan-
der (1966) for finitely generated modules over
commutative Noetherian rings.



For any group G
GcdyG = cdG (Bahlekeh, Dembegioti, T 2009)

cdG <silpZG = spliZG < cdG + 1

If GedyG < oo then
GecdyG = sup{s : H*(G,P) # 0, P projective}
(Holm, 2004)

Thm: Let G be an H§E-group of type FP.
Then there is a finite dimensional model for
EG, the classifying space for proper actions
(Kropholler - Mislin, 1993).
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Def: A group GG is said to be of type @& if it
has the property that for every ZG-module M,
pdyzaM < oo if and only if pdygM < oo for
every finite subgroup H of G (T, 2007)

Thm: If G is a group such that No(H)/H is
of type & for every finite subgroup H of G
and dim|A(G)| < oo, then G admits a finite
dimensional model for EG.

IAN(G)| is the G-simplicial complex determined
by the poset of the non trivial finite subgroups
of G.
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Properties of GcdyG (Bahlekeh, Dembegioti,
T, 2009)

(1) If H <G then GCdzH < GCde.

(2) If1 - N—G— K — 1 is an extension of
groups, then GecdyG < Gedy N + Gedyz K.

(3) Ifl -— N —-G — K — 1 is an extension
of groups with |N| < oo then GcdyG =
GCde.

(4)If1 >N — G — K — 1 is an extension
of groups with |K| < oo then GcdyG =
GCdzN.

(5) If F is a finite subgroup of G, and Ng(F)
its normalizer in G, then Gcdy(Ng(F)/F) <
GCde.
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Conjecture A (T 2007)
The following are equivalent for a group GG

(1) G admits a finite dimensional model for
EG.

(2) There is a resolution of finite length by
permutation modules induced from finite
subgroups of GG

0— P Z(G/Gip) == B, e1, L(G/Gig)—Z—0
in€ln

(3) G is of type &.

(4) GecdyG < oo

(GcdyG = cdG
cdG <silpZG = spliZG <cdG+1)

(5) findimZG <
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(1) =(2)=@3) = (4) = (5)
Kropholler Mislin (5) = (1) if G is an HF-group
with dim|A(G)| < .

The class HF was defined by Kropholler (1993)
as the smallest class of groups which contains
the class of finite groups and whenever a group
G admits a finite dimensional contractible G-
CW-complex with stabilizers in H§, then G is
in HY.
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Another characterization of the finiteness of
GCde
The following are equivalent for a group G

1. GCde < 0

2. G admits a complete resolution and every
complete resolution of G is a complete res-
olution in the strong sense

3. Complete cohomology can be calculated
using complete resolutions

4. The Eckmann-Shapiro lemma is valid for
complete cohomology (Dembegioti, T to

appear)

Conj. C

A group G admits a complete resolution if and
only if G admits a complete resolution in the
strong sense
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Remark I
Part of Conj. A
GcdyG < oo if and only if

0— B Z(G/Gin) ==y ery LG/ Gig)—L—0
in€In

Gy, finite
If vedG < oo then vedG = GedyG

There are groups G such that

1 F—-G—-K—1

with |F| < oo cdy K < co and G does not have
a torsion free subgroup of finite index. An ex-
ample of such a group is the following

G:A*H#)B

where A~ B~ (Z X Z X 7 X Zp) <7 and
H~7Z X7 X 7 X Lp.
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A=(a1,a,a3,a,d/

[a’iaa’j] — [a”iad] — [CL,d] =dP=1 7a6{:a27ag:a’37a’%:a’1a53a§>

B=(b1,b2,b3,b,e/

[b3,b;1=[bie]=[b,e] =eP=1,b} =by bh=b3 by =b1 b; °b3)

H = (a1,d5,a3,d) < A and ¢ : H—B with
2, U3

p(a1) = ble, p(ah) = by, p(az) = b5, (d) =e.
Note that, and vcdA = vcdB = 4.

It follows that (d) < N{N < G| |G : N| < o},
hence G does not have a torsion free subgroup
of finite index. Moreover, there is a group ex-
tension 1—(d)—>G—K—1 with cdK < oo.

This group was constructed by Dyer (1968) as
a counterexample to a conjecture related to
residual finiteness.
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A group G is finite if and only if spliZG=1 if
and only if GcdyG = 0. (Dembegioti, T 2008)

Conjecture B: spliZG = cdG + 1
(Dembegioti, T 2008)

Thm: GcdyG < 1 if and only if the group G
acts on a tree with finite stabilizers. (Bahlekeh,
Dembegioti, T 2009)
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