On complete resolutions

Olympia Talelli

A $\mathbb{Z}G$ -module M is said to admit a complete resolution $(\mathcal{F}, \mathcal{P}, n)$ if there is an acyclic complex $\mathcal{F} = \{(F_i, \vartheta_i) | i \in \mathbb{Z}\}$ of projective modules, and a projective resolution $\mathcal{P} = \{(P_i, d_i) | i \in \mathbb{Z}, i \geq 0\}$ of M such that \mathcal{F} and \mathcal{P} coincide in dimensions greater than n

The number n is called the coincidence index of the complete resolution.

Ikenaga (1984) defined generalized Tate cohomology for the class of groups G which admit

• complete resolutions

and for which the generalized cohomological dimension of ${\cal G}$

• $\underline{\operatorname{cd}} G < \infty$

where

 $\underline{cd}G = \sup\{k: \operatorname{Ext}_{\mathbb{Z}G}^k(A,F) \neq 0, A \ \mathbb{Z}-free, F \ \mathbb{Z}G-free\}$

 $\hat{H}^{i}(G,B) = H^{i}(\operatorname{Hom}_{\mathbb{Z}G}(\mathcal{F},B)), i \in \mathbb{Z},$ where \mathcal{F} is a complete resolution of the trivial $\mathbb{Z}G$ -module \mathbb{Z} generalized Tate cohomology $\underline{\mathrm{cd}} G \leq n$ is equivalent to the following extension condition

For every exact sequence of $\mathbb{Z}G$ -modules $0 \rightarrow \ker d_n \rightarrow P_n \xrightarrow{d_n} P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow A \rightarrow 0$ \downarrow P^{\checkmark}

 P_i projective $0 \leq i \leq n$ A \mathbb{Z} -free, any map ker $d_n \rightarrow P, P$ projective, extends to a map $P_n \rightarrow P$.

If G admits a complete resolution and $\underline{cd}G < \infty$ then $\underline{cd}G = \min\{n | n \text{ coincidence index of a }$ complete resolution of $G\}$ The generalized Tate cohomology defined by Ikenaga coincides with

- Tate cohomology for finite groups
- Farrell-Tate cohomology for groups of finite virtual cohomological dimension, $vcdG < \infty$

- If G is a virtually torsion free group and $vcdG < \infty$ then $vcdG = \underline{cd}G$
- $\underline{cd}G = \sup\{k: \operatorname{Ext}_{\mathbb{Z}G}^k(A,F) \neq 0, A \mathbb{Z} \text{free}, F \mathbb{Z}G \text{free}\}$

$\underline{\operatorname{cd}} G \leq \operatorname{silp} \mathbb{Z} G \leq \underline{\operatorname{cd}} G + 1$

Gedrich and Gruenberg (1987) in their study of complete cohomological functors considered the invariants silp $\mathbb{Z}G$ and spli $\mathbb{Z}G$ and showed

- silp $\mathbb{Z}G \leq$ spli $\mathbb{Z}G$ and if spli $\mathbb{Z}G < \infty$ then silp $\mathbb{Z}G =$ spli $\mathbb{Z}G$
- If spli ZG < ∞ then G admits a complete resolution
 so generalized Tate cohomology or complete cohomology is defined for G.

Mislin (1994) defined complete cohomology or generalized Tate cohomology for any group G via satellites as follows

$$\widehat{\mathsf{Ext}}^{i}_{\mathbb{Z}G}(A,B) = \lim_{\to j \ge 0} S^{-j} \mathsf{Ext}^{i+j}_{\mathbb{Z}G}(A,B)$$

where $S^{-j} \operatorname{Ext}_{\mathbb{Z}G}^{i+j}(A, _)$ denotes the *j*-th left satellite of the functor $\operatorname{Ext}_{\mathbb{Z}G}^{i+j}(A, _)$.

The family $\{\hat{H}^i(G,): i \in \mathbb{Z}\}\$ forms a cohomological functor which is the *P*-completion of ordinary cohomology (or completion with respect to projective modules)

i.e. $\hat{H}^{i}(G, \text{projective})=0$ for all $i \in \mathbb{Z}$ and there is a morphism $H^{i}(G, _) \xrightarrow{\tau} \hat{H}^{i}(G, _)$ such that if $\{V^{i}, i \in \mathbb{Z}\}$ is a cohomological functor with $V^{i}(\text{projective}) = 0$ for all $i \in \mathbb{Z}$, and $H^{i}(G, _) \xrightarrow{\sigma} V^{i}$ a morphism of cohomological functors, then σ factors uniquely through τ . Alternative but equivalent definitions were also introduced by Benson and Carlson (1992) and Vogel (1992)

 $pd_{\mathbb{Z}G}M < \infty$ if and only if $\widehat{Ext}^0_{\mathbb{Z}G}(M, M) = 0$ Kropholler (1993).

It was shown by Cornick and Kropholler (1998) that if a group G admits a complete resolution in the strong sense $(\mathcal{F}, \mathcal{P}, n)$, i.e. $\operatorname{Hom}_{\mathbb{Z}G}(\mathcal{F}, P)$ is acyclic for every projective $\mathbb{Z}G$ -module P then complete cohomology can be calculated using complete resolutions in the strong sense, i.e.

$$\widehat{H}^{i}(G,B) \simeq H^{i}(\operatorname{Hom}_{\mathbb{Z}G}(\mathcal{F},B)) \ i \in \mathbb{Z}$$

The advantage with this approach is that one has computational devices such as Eckmann - Shapiro lemma certain spectral sequences

Complete cohomology is not always calculated via complete resolutions as they do not always exist

If *G* admits a complete resolution of coincidence index *n* then findim $\mathbb{Z}G \leq n$ (Mislin + T, 2000) The finitistic dimension of $\mathbb{Z}G$, findim $\mathbb{Z}G$, is the supremum of the projective dimensions of

the $\mathbb{Z}G$ -modules of finite projective dimension

Any group which contains a free abelian subgroup of infinite rank does not admit a complete resolution For any group ${\cal G}$

findim $\mathbb{Z}G \leq \operatorname{silp} \mathbb{Z}G \leq \operatorname{spli} \mathbb{Z}G$ Emmanouil (2008) spli $\mathbb{Z}G \leq \operatorname{silp} \mathbb{Z}G$

The kernels in a complete resolution $(\mathcal{F}, \mathcal{P}, n)$ in the strong sense are the Gorenstein projective modules over $\mathbb{Z}G$.

The Gorenstein projective dimension of a $\mathbb{Z}G$ module M, $\operatorname{Gpd}_{\mathbb{Z}G}M$, is defined via resolutions by Gorenstein projective modules, i.e. $\operatorname{Gpd}_{\mathbb{Z}G}M \leq n$ if and only if M has a Gorenstein projective resolution of length n.

The Gorenstein projective dimension was defined by Enochs and Jenda (1995) and is related to the G-dimension defined by Auslander (1966) for finitely generated modules over commutative Noetherian rings. For any group G $Gcd_{\mathbb{Z}}G = \underline{cd}G$ (Bahlekeh, Dembegioti, T 2009) $\underline{cd}G \leq \operatorname{silp} \mathbb{Z}G = \operatorname{spli} \mathbb{Z}G \leq \underline{cd}G + 1$

If $Gcd_{\mathbb{Z}}G < \infty$ then $Gcd_{\mathbb{Z}}G = \sup\{i : H^i(G, P) \neq 0, P \text{ projective}\}$ (Holm, 2004)

Thm: Let G be an $\mathbf{H}\mathfrak{F}$ -group of type FP_{∞} . Then there is a finite dimensional model for $\underline{E}G$, the classifying space for proper actions (Kropholler - Mislin, 1993). **Def:** A group G is said to be of type Φ if it has the property that for every $\mathbb{Z}G$ -module M, $pd_{\mathbb{Z}G}M < \infty$ if and only if $pd_{\mathbb{Z}H}M < \infty$ for every finite subgroup H of G (T, 2007)

Thm: If G is a group such that $N_G(H)/H$ is of type Φ for every finite subgroup H of G and dim $|\Lambda(G)| < \infty$, then G admits a finite dimensional model for <u>E</u>G.

 $|\Lambda(G)|$ is the *G*-simplicial complex determined by the poset of the non trivial finite subgroups of *G*.

- Properties of $\operatorname{Gcd}_{\mathbb{Z}}G$ (Bahlekeh, Dembegioti, T, 2009)
- (1) If $H \leq G$ then $\operatorname{Gcd}_{\mathbb{Z}} H \leq \operatorname{Gcd}_{\mathbb{Z}} G$.
- (2) If $1 \to N \to G \to K \to 1$ is an extension of groups, then $\operatorname{Gcd}_{\mathbb{Z}}G \leq \operatorname{Gcd}_{\mathbb{Z}}N + \operatorname{Gcd}_{\mathbb{Z}}K$.
- (3) If $1 \to N \to G \to K \to 1$ is an extension of groups with $|N| < \infty$ then $\operatorname{Gcd}_{\mathbb{Z}}G = \operatorname{Gcd}_{\mathbb{Z}}K$.
- (4) If $1 \to N \to G \to K \to 1$ is an extension of groups with $|K| < \infty$ then $\operatorname{Gcd}_{\mathbb{Z}}G = \operatorname{Gcd}_{\mathbb{Z}}N$.
- (5) If F is a finite subgroup of G, and $N_G(F)$ its normalizer in G, then $\operatorname{Gcd}_{\mathbb{Z}}(N_G(F)/F) \leq \operatorname{Gcd}_{\mathbb{Z}}G$.

Conjecture A $(\top 2007)$

The following are equivalent for a group ${\cal G}$

- (1) G admits a finite dimensional model for $\underline{E}G$.
- (2) There is a resolution of finite length by permutation modules induced from finite subgroups of G
 - $0 \to \bigoplus_{i_n \in I_n} \mathbb{Z}(G/G_{i_n}) \to \cdots \to \bigoplus_{i_n \in I_0} \mathbb{Z}(G/G_{i_0}) \to \mathbb{Z} \to 0$
- (3) G is of type Φ .
- (4) $\operatorname{Gcd}_{\mathbb{Z}}G < \infty$ $(\operatorname{Gcd}_{\mathbb{Z}}G = \underline{cd}G$ $\underline{cd}G \leq \operatorname{silp}\mathbb{Z}G = \operatorname{spli}\mathbb{Z}G \leq \underline{cd}G + 1)$
- (5) findim $\mathbb{Z}G < \infty$

 $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ Kropholler Mislin $(5) \Rightarrow (1)$ if G is an H \mathfrak{F} -group with dim $|\Lambda(G)| < \infty$.

The class $H\mathfrak{F}$ was defined by Kropholler (1993) as the smallest class of groups which contains the class of finite groups and whenever a group G admits a finite dimensional contractible G-CW-complex with stabilizers in $H\mathfrak{F}$, then G is in $H\mathfrak{F}$.

Another characterization of the finiteness of $\operatorname{Gcd}_{\mathbb Z} G$

The following are equivalent for a group ${\cal G}$

- 1. $\operatorname{Gcd}_{\mathbb{Z}}G < \infty$
- 2. G admits a complete resolution and every complete resolution of G is a complete resolution in the strong sense
- 3. Complete cohomology can be calculated using complete resolutions
- The Eckmann-Shapiro lemma is valid for complete cohomology (Dembegioti, T to appear)

Conj. C

A group G admits a complete resolution if and only if G admits a complete resolution in the strong sense

Remark I

Part of Conj. A $\operatorname{Gcd}_{\mathbb{Z}}G < \infty \text{ if and only if}$

$$0 \to \bigoplus_{i_n \in I_n} \mathbb{Z}(G/G_{i_n}) \to \cdots \to \bigoplus_{i_n \in I_0} \mathbb{Z}(G/G_{i_0}) \to \mathbb{Z} \to 0$$

 G_{i_i} finite

If $\operatorname{vcd} G < \infty$ then $\operatorname{vcd} G = \operatorname{Gcd}_{\mathbb{Z}} G$

There are groups G such that $1 \to F \to G \to K \to 1$ with $|F| < \infty \operatorname{cd}_{\mathbb{Z}} K < \infty$ and G does not have a torsion free subgroup of finite index. An example of such a group is the following

$$G = A *_{H,\varphi} B$$

where $A \simeq B \simeq (\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_p) \lhd \mathbb{Z}$ and $H \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_p$.

16

$$A = \langle a_1, a_2, a_3, a, d \rangle$$

$$[a_i, a_j] = [a_i, d] = [a, d] = d^p = 1, a_1^a = a_2, a_2^a = a_3, a_3^a = a_1 a_2^{-3} a_3^2 \rangle$$

$$B = \langle b_1, b_2, b_3, b, e \rangle$$

$$[b_i, b_j] = [b_i, e] = [b, e] = e^p = 1, b_1^b = b_2, b_2^b = b_3, b_3^b = b_1 b_2^{-3} b_3^2 \rangle$$

$$H = \langle a_1, a_2^p, a_3, d \rangle \leq A \text{ and } \varphi : H \to B \text{ with } \varphi(a_1) = b_1^p e, \ \varphi(a_2^p) = b_2, \ \varphi(a_3) = b_3^p, \ \varphi(d) = e.$$

It follows that $\langle d \rangle \leq \cap \{N \leq G | |G : N| < \infty\}$, hence G does not have a torsion free subgroup of finite index. Moreover, there is a group extension $1 \rightarrow \langle d \rangle \rightarrow G \rightarrow K \rightarrow 1$ with $cdK < \infty$.

Note that, and vcdA = vcdB = 4.

This group was constructed by Dyer (1968) as a counterexample to a conjecture related to residual finiteness. A group G is finite if and only if spli $\mathbb{Z}G=1$ if and only if $\operatorname{Gcd}_{\mathbb{Z}}G=0$. (Dembegioti, T 2008)

Conjecture B: spli $\mathbb{Z}G = \underline{cd}G + 1$

(Dembegioti, T 2008)

Thm: $\operatorname{Gcd}_{\mathbb{Z}}G \leq 1$ if and only if the group G acts on a tree with finite stabilizers. (Bahlekeh, Dembegioti, T 2009)