Uniform ($2, k$)-generation of matrix groups of small rank

M. Chiara Tamburini

Dedicated to Karl Gruenberg

Ischia, 16 April 2010

L. Scott' Theorem (1977)

Let G be a group acting linearly overe a f.d. vector space V.

L. Scott' Theorem (1977)

Let G be a group acting linearly overe a f.d. vector space V.
For a subset X of G, let

$$
v(X), \quad v\left(X^{*}\right)
$$

denote respectively the codimension of the fixed space of X in V and in V^{*} (the dual space).

L. Scott' Theorem (1977)

Let G be a group acting linearly overe a f.d. vector space V.
For a subset X of G, let

$$
v(X), \quad v\left(X^{*}\right)
$$

denote respectively the codimension of the fixed space of X in V and in V^{*} (the dual space).

Theorem
Suppose $G=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ with $\prod_{i=1}^{m} x_{i}=1$.
Then:

$$
\sum_{i=1}^{n} v\left(x_{i}\right) \geq v(G)+v\left(G^{*}\right)
$$

Consider a triple

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}\right) \tag{1}
\end{equation*}
$$

of elements $x_{i} \in \mathrm{GL}_{n}(\mathbb{F})$, with $x_{1} x_{2} x_{3}=1$, and assume that

$$
G=\left\langle x_{1}, x_{2}\right\rangle
$$

is absolutely irreducible.

Consider a triple

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}\right) \tag{1}
\end{equation*}
$$

of elements $x_{i} \in \mathrm{GL}_{n}(\mathbb{F})$, with $x_{1} x_{2} x_{3}=1$, and assume that

$$
G=\left\langle x_{1}, x_{2}\right\rangle
$$

is absolutely irreducible.
Scott's formula, applied to the conjugation action of G on $V=\operatorname{Mat}_{n}(\mathbb{F})$, gives:

$$
\begin{equation*}
\sum_{i=1}^{3} \operatorname{dim}\left(C_{\operatorname{Mat}_{n}(\mathbb{F})}\left(x_{i}\right)\right) \leq n^{2}+2 \tag{2}
\end{equation*}
$$

Consider a triple

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}\right) \tag{1}
\end{equation*}
$$

of elements $x_{i} \in \mathrm{GL}_{n}(\mathbb{F})$, with $x_{1} x_{2} x_{3}=1$, and assume that

$$
G=\left\langle x_{1}, x_{2}\right\rangle
$$

is absolutely irreducible.
Scott's formula, applied to the conjugation action of G on $V=\operatorname{Mat}_{n}(\mathbb{F})$, gives:

$$
\begin{equation*}
\sum_{i=1}^{3} \operatorname{dim}\left(C_{\operatorname{Mat}_{n}(\mathbb{F})}\left(x_{i}\right)\right) \leq n^{2}+2 \tag{2}
\end{equation*}
$$

If equality holds, then the triple is said to be linearly rigid.

Consider another triple

$$
\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \quad \text { with } \quad \prod_{i=1}^{3} x_{i}^{\prime}=1
$$

and assume that $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ are respectively conjugate to x_{1}, x_{2}, x_{3}.

Consider another triple

$$
\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \quad \text { with } \quad \prod_{i=1}^{3} x_{i}^{\prime}=1
$$

and assume that $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ are respectively conjugate to x_{1}, x_{2}, x_{3}.
If $\left(x_{1}, x_{2}, x_{3}\right)$ is rigid,there exists $g \in \mathrm{GL}_{n}(\mathbb{F})$ which does the conjugations simultaneously (Strambach and Völklein (1999)).

Consider another triple

$$
\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \quad \text { with } \quad \prod_{i=1}^{3} x_{i}^{\prime}=1
$$

and assume that $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ are respectively conjugate to x_{1}, x_{2}, x_{3}.
If $\left(x_{1}, x_{2}, x_{3}\right)$ is rigid,there exists $g \in \mathrm{GL}_{n}(\mathbb{F})$ which does the conjugations simultaneously (Strambach and Völklein (1999)).

In particular

$$
\left\langle x_{1}^{\prime}, x_{2}^{\prime}\right\rangle=\left\langle x_{1}^{g}, x_{2}^{g}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle^{g} .
$$

Corollary

Let \mathbb{F} / \mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K}.

Corollary

Let \mathbb{F} / \mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K}.
Let $(x, y, x y)$ be a rigid triple in $\mathrm{GL}_{n}(\mathbb{F})$ and assume that

$$
x^{\sigma}, y^{\sigma},(x y)^{\sigma}
$$

are respectively conjugate to

$$
x^{-1}, y^{-1},(x y)^{-1}
$$

Corollary

Let \mathbb{F} / \mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K}.
Let $(x, y, x y)$ be a rigid triple in $\mathrm{GL}_{n}(\mathbb{F})$ and assume that

$$
x^{\sigma}, y^{\sigma},(x y)^{\sigma}
$$

are respectively conjugate to

$$
x^{-1}, y^{-1},(x y)^{-1}
$$

Then $\langle x, y\rangle$ fixes a non-degenerate bilinear form J.

Corollary

Let \mathbb{F} / \mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K}.
Let $(x, y, x y)$ be a rigid triple in $\mathrm{GL}_{n}(\mathbb{F})$ and assume that

$$
x^{\sigma}, y^{\sigma},(x y)^{\sigma}
$$

are respectively conjugate to

$$
x^{-1}, y^{-1},(x y)^{-1}
$$

Then $\langle x, y\rangle$ fixes a non-degenerate bilinear form J.
If $\sigma=i d, J$ is symmetric or skew-symmetric.
If σ has order $2, J$ is hermitian.

Hint of the proof.
Let J conjugate x^{σ} to $\left(x^{-1}\right)^{t}$, and y^{σ} to $\left(y^{-1}\right)^{t}$.

Hint of the proof.
Let J conjugate x^{σ} to $\left(x^{-1}\right)^{t}$, and y^{σ} to $\left(y^{-1}\right)^{t}$.
It follows:

$$
x^{t} J x^{\sigma}=J, \quad y^{t} J y^{\sigma}=J
$$

The aim of my talk is to exemplify the efficiency of these results in the study of finitely generated, absolutely irreducible subgroups of $\mathrm{GL}_{n}(\mathbb{F})$, for small values of n.

The aim of my talk is to exemplify the efficiency of these results in the study of finitely generated, absolutely irreducible subgroups of $\mathrm{GL}_{n}(\mathbb{F})$, for small values of n.

The contribution of \mathbf{A}. Zalesskii in the development of methods has been substantial.

The aim of my talk is to exemplify the efficiency of these results in the study of finitely generated, absolutely irreducible subgroups of $\mathrm{GL}_{n}(\mathbb{F})$, for small values of n.

The contribution of \mathbf{A}. Zalesskii in the development of methods has been substantial.

Definition

A group is said to be $(2, k)$-generated if it can be generated by a pair of elements of respective orders 2 and k.

The aim of my talk is to exemplify the efficiency of these results in the study of finitely generated, absolutely irreducible subgroups of $\mathrm{GL}_{n}(\mathbb{F})$, for small values of n.

The contribution of \mathbf{A}. Zalesskii in the development of methods has been substantial.

Definition

A group is said to be $(2, k)$-generated if it can be generated by a pair of elements of respective orders 2 and k.

My exemplification concerns the uniform $(2, k)$ generation $(k \geq 3)$ of the finite classical simple groups of degree 4.

Previous work, concerning the (2,3)-generation of $\mathrm{PSL}_{4}(q)$ and $\mathrm{PSp}_{4}(q)$, was made by several authors.
E.g.:

Previous work, concerning the (2,3)-generation of $\mathrm{PSL}_{4}(q)$ and $\mathrm{PSp}_{4}(q)$, was made by several authors.
E.g.:
M. Cazzola and L. Di Martino (1993),
C.T. and S. Vassallo (1994)

Manolov P. and K.Tchakerian (2004).

Previous work, concerning the (2,3)-generation of $\mathrm{PSL}_{4}(q)$ and $\mathrm{PSp}_{4}(q)$, was made by several authors.
E.g.:
M. Cazzola and L. Di Martino (1993),
C.T. and S. Vassallo (1994)

Manolov P. and K.Tchakerian (2004).
But there are restrictions on the field characteristic. Moreover the generators are not uniform.

Uniform ($2, k$) generation

Uniform ($2, k$) generation

The results are joint work with M. Pellegrini and M. Vsemirnov.

Uniform ($2, k$) generation

The results are joint work with M. Pellegrini and M. Vsemirnov.
Let \mathbb{F} be an algebraically closed field of characteristic p.

Uniform ($2, k$) generation

The results are joint work with M. Pellegrini and M. Vsemirnov.
Let \mathbb{F} be an algebraically closed field of characteristic p.
We fix $k \geq 3$ such that $(p, k)=1$, or $k \in\{p, 2 p\}$.

Uniform (2, k) generation

The results are joint work with M. Pellegrini and M. Vsemirnov.
Let \mathbb{F} be an algebraically closed field of characteristic p.
We fix $k \geq 3$ such that $(p, k)=1$, or $k \in\{p, 2 p\}$.
We look for $x, y \in \mathrm{SL}_{4}(\mathbb{F})$ such that

- their projective images have respective orders 2 and k;
- $\langle x, y\rangle$ is irreducible.

The similarity invariants of x can only be

$$
t^{2} \pm 1, \quad t^{2} \pm 1
$$

The similarity invariants of x can only be

$$
t^{2} \pm 1, \quad t^{2} \pm 1
$$

It follows that $\operatorname{dim} C(x)=8$.

The similarity invariants of x can only be

$$
t^{2} \pm 1, \quad t^{2} \pm 1
$$

It follows that $\operatorname{dim} C(x)=8$.
If $k=3(p \neq 3)$ the only possibilities for Jordan form of y are:

$$
\operatorname{diag}\left(\epsilon, \epsilon, \epsilon^{-1}, \epsilon^{-1}\right) \quad \text { or } \quad \operatorname{diag}\left(1,1, \epsilon, \epsilon^{-1}\right) .
$$

The similarity invariants of x can only be

$$
t^{2} \pm 1, \quad t^{2} \pm 1
$$

It follows that $\operatorname{dim} C(x)=8$.
If $k=3(p \neq 3)$ the only possibilities for Jordan form of y are:

$$
\operatorname{diag}\left(\epsilon, \epsilon, \epsilon^{-1}, \epsilon^{-1}\right) \quad \text { or } \quad \operatorname{diag}\left(1,1, \epsilon, \epsilon^{-1}\right) .
$$

In first case $\operatorname{dim} C(y)=8$, against Scott's formula, as

$$
8+8+4>4^{2}+2
$$

The similarity invariants of x can only be

$$
t^{2} \pm 1, \quad t^{2} \pm 1
$$

It follows that $\operatorname{dim} C(x)=8$.
If $k=3(p \neq 3)$ the only possibilities for Jordan form of y are:

$$
\operatorname{diag}\left(\epsilon, \epsilon, \epsilon^{-1}, \epsilon^{-1}\right) \quad \text { or } \quad \operatorname{diag}\left(1,1, \epsilon, \epsilon^{-1}\right) .
$$

In first case $\operatorname{dim} C(y)=8$, against Scott's formula, as

$$
8+8+4>4^{2}+2
$$

So, for all $k \geq 3$, we choose y (when semisimple) with Jordan form of the second type, i.e. with similarity invariants

So, for all $k \geq 3$, we choose y (when semisimple) with Jordan form of the second type, i.e. with similarity invariants

$$
t-1, \quad t^{3}-\left(1+\epsilon+\epsilon^{-1}\right) t^{2}+\left(1+\epsilon+\epsilon^{-1}\right) t-1
$$

So, for all $k \geq 3$, we choose y (when semisimple) with Jordan form of the second type, i.e. with similarity invariants

$$
t-1, \quad t^{3}-\left(1+\epsilon+\epsilon^{-1}\right) t^{2}+\left(1+\epsilon+\epsilon^{-1}\right) t-1
$$

$\epsilon:=$ a primitive k-th root of 1 in \mathbb{F}, if $(k, p)=1$.
$\epsilon:=1$ if $k=p ; \quad \epsilon:=-1$ if $k=2 p$.

As the fixed points space of y has dimension 2, may assume that y fixes e_{1}, e_{2}.

As the fixed points space of y has dimension 2, may assume that y fixes e_{1}, e_{2}. As $\langle x, y\rangle$ must be irreducible, may assume that $e_{3} x=e_{1}, e_{4} x=e_{2}$.

As the fixed points space of y has dimension 2, may assume that y fixes e_{1}, e_{2}. As $\langle x, y\rangle$ must be irreducible, may assume that $e_{3} x=e_{1}, e_{4} x=e_{2}$.
Hence (up to conjugation under $C(x)$), our generators have shapes:

As the fixed points space of y has dimension 2, may assume that y fixes e_{1}, e_{2}. As $\langle x, y\rangle$ must be irreducible, may assume that $e_{3} x=e_{1}, e_{4} x=e_{2}$.
Hence (up to conjugation under $C(x)$), our generators have shapes:

$$
x=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
d & 0 & 0 & 0 \\
0 & d & 0 & 0
\end{array}\right), d= \pm 1, \quad y=\left(\begin{array}{cccc}
1 & 0 & r_{1} & r_{2} \\
0 & 1 & r_{3} & r_{4} \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & \epsilon+\epsilon^{-1}
\end{array}\right)
$$

As the fixed points space of y has dimension 2, may assume that y fixes e_{1}, e_{2}. As $\langle x, y\rangle$ must be irreducible, may assume that $e_{3} x=e_{1}, e_{4} x=e_{2}$.
Hence (up to conjugation under $C(x)$), our generators have shapes:
$x=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0\end{array}\right), d= \pm 1, \quad y=\left(\begin{array}{cccc}1 & 0 & r_{1} & r_{2} \\ 0 & 1 & r_{3} & r_{4} \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon+\epsilon^{-1}\end{array}\right)$.
$\operatorname{dim} C(x)=8, \operatorname{dim} C(y)=6 \Longrightarrow \operatorname{dim} C(x y)=4$.

As the fixed points space of y has dimension 2, may assume that y fixes e_{1}, e_{2}. As $\langle x, y\rangle$ must be irreducible, may assume that $e_{3} x=e_{1}, e_{4} x=e_{2}$.
Hence (up to conjugation under $C(x)$), our generators have shapes:
$x=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0\end{array}\right), d= \pm 1, \quad y=\left(\begin{array}{cccc}1 & 0 & r_{1} & r_{2} \\ 0 & 1 & r_{3} & r_{4} \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon+\epsilon^{-1}\end{array}\right)$.
$\operatorname{dim} C(x)=8, \operatorname{dim} C(y)=6 \Longrightarrow \operatorname{dim} C(x y)=4$.
$8+6+4=4^{2}+2$. Hence the triple $(x, y, x y)$ is rigid.

Negative results

Application of Scott's formula to the action of $\langle x, y\rangle$ on the symmetric square S of \mathbb{F}^{4} gives the following:

Negative results

Application of Scott's formula to the action of $\langle x, y\rangle$ on the symmetric square S of \mathbb{F}^{4} gives the following:
Theorem
i) $S L_{4}(2)$ is not $(2,3)$-generated;
ii) If $p=2,3$, then $\mathrm{PSp}_{4}(q)$ is not $(2,3)$-generated.
iii) If $p=2$, then $\mathrm{Sp}_{4}(q)$ cannot be generated elements having the same similarity invariants as x and y.

Negative results

Application of Scott's formula to the action of $\langle x, y\rangle$ on the symmetric square S of \mathbb{F}^{4} gives the following:
Theorem
i) $S L_{4}(2)$ is not $(2,3)$-generated;
ii) If $p=2,3$, then $\mathrm{PSp}_{4}(q)$ is not $(2,3)$-generated.
iii) If $p=2$, then $\mathrm{Sp}_{4}(q)$ cannot be generated elements having the same similarity invariants as x and y.
$i)$ is known (Miller, 1901).

Negative results

Application of Scott's formula to the action of $\langle x, y\rangle$ on the symmetric square S of \mathbb{F}^{4} gives the following:
Theorem
i) $S L_{4}(2)$ is not $(2,3)$-generated;
ii) If $p=2,3$, then $\mathrm{PSp}_{4}(q)$ is not $(2,3)$-generated.
iii) If $p=2$, then $\mathrm{Sp}_{4}(q)$ cannot be generated elements having the same similarity invariants as x and y.
i) is known (Miller, 1901).
ii) is known (Liebeck and Shalev, 1996).

Negative results

Application of Scott's formula to the action of $\langle x, y\rangle$ on the symmetric square S of \mathbb{F}^{4} gives the following:
Theorem
i) $S L_{4}(2)$ is not $(2,3)$-generated;
ii) If $p=2,3$, then $\mathrm{PSp}_{4}(q)$ is not $(2,3)$-generated.
iii) If $p=2$, then $\mathrm{Sp}_{4}(q)$ cannot be generated elements having the same similarity invariants as x and y.
i) is known (Miller, 1901).
ii) is known (Liebeck and Shalev, 1996).
iii) The only infinite class excluded by our choice of y.

For $H=\langle x, y\rangle$ acting on S :

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y} \leq \frac{n(n+1)}{2}+d_{S}^{H}+\widehat{d_{S}^{H}} .
$$

For $H=\langle x, y\rangle$ acting on S :

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y} \leq \frac{n(n+1)}{2}+d_{S}^{H}+\widehat{d_{S}^{H}} .
$$

Lemma
a) $1 \geq d_{S}^{H} \geq \widehat{d_{S}{ }^{H}}$;

For $H=\langle x, y\rangle$ acting on S :

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y} \leq \frac{n(n+1)}{2}+d_{S}^{H}+\widehat{d_{S}^{H}} .
$$

Lemma
a) $1 \geq d_{S}^{H} \geq \widehat{d_{S}{ }^{H}}$;
b) if $\widehat{d_{S}^{H}}=1$ then H is contained in an orthogonal group;

For $H=\langle x, y\rangle$ acting on S :

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y} \leq \frac{n(n+1)}{2}+d_{S}^{H}+\widehat{d_{S}^{H}} .
$$

Lemma
a) $1 \geq d_{S}^{H} \geq \widehat{d_{S}{ }^{H}}$;
b) if $\widehat{d_{S}^{H}}=1$ then H is contained in an orthogonal group;

For $\operatorname{PSp}(4, q)$ with $(p=2)$, we get:

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y}=11>\frac{4(4+1)}{2}
$$

For $H=\langle x, y\rangle$ acting on S :

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y} \leq \frac{n(n+1)}{2}+d_{S}^{H}+\widehat{d_{S}^{H}} .
$$

Lemma
a) $1 \geq d_{S}^{H} \geq \widehat{d_{S}{ }^{H}}$;
b) if $\widehat{d_{S}^{H}}=1$ then H is contained in an orthogonal group;

For $\operatorname{PSp}(4, q)$ with $(p=2)$, we get:

$$
d_{S}^{x}+d_{S}^{y}+d_{S}^{x y}=11>\frac{4(4+1)}{2}
$$

Hence $d_{S}^{H}+\widehat{d_{S}^{H}}>0$. By the rigidity $d_{S}^{H}=\widehat{d_{S}^{H}}=1$.

Positive results

For our purposes it is enough to consider generators of shapes:

$$
x:=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
d & 0 & 0 & 0 \\
0 & d & 0 & 0
\end{array}\right), \quad y:=\left(\begin{array}{cccc}
1 & 0 & 0 & u \\
0 & 1 & 0 & r \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & \epsilon+\epsilon^{-1}
\end{array}\right)
$$

where $d= \pm 1, u, r \in \mathbb{F}$.

Positive results

For our purposes it is enough to consider generators of shapes:

$$
x:=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
d & 0 & 0 & 0 \\
0 & d & 0 & 0
\end{array}\right), \quad y:=\left(\begin{array}{cccc}
1 & 0 & 0 & u \\
0 & 1 & 0 & r \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & \epsilon+\epsilon^{-1}
\end{array}\right)
$$

where $d= \pm 1, u, r \in \mathbb{F}$.

Lemma

$\langle x, y\rangle$ is absolutely irreducible, except:
(i) $u=\delta\left(\epsilon^{j}-1\right), r=\delta\left(\epsilon^{-j}-1\right)$,
(ii) $u+r=\delta(2-s)$;
(iii) $u=-\epsilon^{j} r$.
$x y$ has a unique similarity invariant, since:

$$
\operatorname{dim}\left(C_{\operatorname{Mat}_{4}(\mathbb{F})}(x y)\right)=4
$$

$x y$ has a unique similarity invariant, since:

$$
\operatorname{dim}\left(C_{\operatorname{Mat}_{4}(\mathbb{F})}(x y)\right)=4
$$

In particular, for any field automorphism σ,

$$
\begin{equation*}
(x y)^{-1} \text { and }(x y)^{\sigma} \text { are conjugate } \tag{3}
\end{equation*}
$$

if and only if they have the same characteristic polynomial.
$x y$ has a unique similarity invariant, since:

$$
\operatorname{dim}\left(C_{\operatorname{Mat}_{4}(\mathbb{F})}(x y)\right)=4
$$

In particular, for any field automorphism σ,

$$
\begin{equation*}
(x y)^{-1} \text { and }(x y)^{\sigma} \text { are conjugate } \tag{3}
\end{equation*}
$$

if and only if they have the same characteristic polynomial.

$$
\begin{array}{ll}
\operatorname{char}(x y) & =t^{4}-d r t^{3}-d\left(\epsilon+\epsilon^{-1}\right) t^{2}-u t+1 \\
\operatorname{char}\left((x y)^{-1}\right. & =t^{4}-u t^{3}-d\left(\epsilon+\epsilon^{-1}\right) t^{2}-d r t+1
\end{array}
$$

$x y$ has a unique similarity invariant, since:

$$
\operatorname{dim}\left(C_{\operatorname{Mat}_{4}(\mathbb{F})}(x y)\right)=4
$$

In particular, for any field automorphism σ,

$$
\begin{equation*}
(x y)^{-1} \text { and }(x y)^{\sigma} \text { are conjugate } \tag{3}
\end{equation*}
$$

if and only if they have the same characteristic polynomial.

$$
\begin{array}{ll}
\operatorname{char}(x y) & =t^{4}-d r t^{3}-d\left(\epsilon+\epsilon^{-1}\right) t^{2}-u t+1 \\
\operatorname{char}\left((x y)^{-1}\right. & =t^{4}-u t^{3}-d\left(\epsilon+\epsilon^{-1}\right) t^{2}-d r t+1
\end{array}
$$

For a fixed r, it is easy to define u so that (3) holds.

Theorem
Let $0 \neq r \in \mathbb{F}_{q}$ and assume $\mathbb{F}_{p}\left(r^{2}, \epsilon+\epsilon^{-1}\right)=\mathbb{F}_{q}$. Then, up to a finite number of values of r :

Theorem
Let $0 \neq r \in \mathbb{F}_{q}$ and assume $\mathbb{F}_{p}\left(r^{2}, \epsilon+\epsilon^{-1}\right)=\mathbb{F}_{q}$. Then, up to a finite number of values of r :

1) if $d= \pm 1, \quad u=0$,

$$
\langle x, y\rangle=\mathrm{SL}_{4}(q)
$$

Theorem
Let $0 \neq r \in \mathbb{F}_{q}$ and assume $\mathbb{F}_{p}\left(r^{2}, \epsilon+\epsilon^{-1}\right)=\mathbb{F}_{q}$. Then, up to a finite number of values of r :

1) if $d= \pm 1, \quad u=0$,

$$
\langle x, y\rangle=\mathrm{SL}_{4}(q)
$$

2) if $d= \pm 1, \quad u=r^{\sqrt{q}}, \quad r \in \mathbb{F}_{q} \backslash \mathbb{F}_{\sqrt{q}}$,

$$
\langle x, y\rangle=\mathrm{SU}_{4}\left(q^{2}\right)
$$

Theorem
Let $0 \neq r \in \mathbb{F}_{q}$ and assume $\mathbb{F}_{p}\left(r^{2}, \epsilon+\epsilon^{-1}\right)=\mathbb{F}_{q}$. Then, up to a finite number of values of r :

1) if $d= \pm 1, \quad u=0$,

$$
\langle x, y\rangle=\mathrm{SL}_{4}(q)
$$

2) if $d= \pm 1, \quad u=r^{\sqrt{q}}, \quad r \in \mathbb{F}_{q} \backslash \mathbb{F}_{\sqrt{q}}$,

$$
\langle x, y\rangle=\mathrm{SU}_{4}\left(q^{2}\right)
$$

3) if $d=-1, \quad u=-r$ and $p>2, k \neq p, 2 p$,

$$
\langle x, y\rangle=\operatorname{Sp}_{4}(q) .
$$

In case 3), for $d=1$, the groups obtained are orthogonal.

In case 3), for $d=1$, the groups obtained are orthogonal.
The orthogonal groups in dimension 4 are not new classes of simple groups, as:

In case 3), for $d=1$, the groups obtained are orthogonal.
The orthogonal groups in dimension 4 are not new classes of simple groups, as:
$\Omega_{4}^{+} \sim \operatorname{SL}_{2}(q) \circ \mathrm{SL}_{2}(q)$
$\Omega_{4}^{-} \sim \operatorname{PSL}_{2}\left(q^{2}\right)$.

The exceptional values of r are always less than those available (except for $\mathrm{SU}(4,9)$ which requires slightly different generators).

The exceptional values of r are always less than those available (except for $\mathrm{SU}(4,9)$ which requires slightly different generators).

Corollary
Let $3 \leq k$. Assume $k \mid(q-1)$ or $k \mid(q+1)$ or $k \in\{p, 2 p\}$.
The following groups are $(2, k)$-generated:

The exceptional values of r are always less than those available (except for $\mathrm{SU}(4,9)$ which requires slightly different generators).

Corollary
Let $3 \leq k$. Assume $k \mid(q-1)$ or $k \mid(q+1)$ or $k \in\{p, 2 p\}$.
The following groups are $(2, k)$-generated:

- $\mathrm{SL}_{4}(q)$ and $\mathrm{PSL}_{4}(q)$;
- $\mathrm{SU}_{4}(q)$ and $\mathrm{PSU}_{4}(q)$.
- $\mathrm{PSp}_{4}(q), p>2, k \neq p, 2 p$;

The proof is based on the classification of maximal subgroups of the finite classical simple groups of rank 4.

The proof is based on the classification of maximal subgroups of the finite classical simple groups of rank 4.
H. Mitchell (1913),
B.Mwene (1976),
I.Suprunenko and A.Zalesskii (1976),
I.Suprunenko (1981),
P. Kleidman (PHD thesis),

Sample of proofs

Sample of proofs

For $p \geq 5$, the symplectic group $\mathrm{PSp}_{4}(q)$ has a class of maximal subgroups whose socle is isomorphic to $\mathrm{PSL}_{2}(q)$. This class arises from the homomorphism

$$
\phi: \mathrm{SL}_{2}(q) \rightarrow \mathrm{SL}_{4}(q)
$$

induced by the action of $\mathrm{SL}_{2}(q)$ on cubic polynomials in two variables.

Sample of proofs

For $p \geq 5$, the symplectic group $\mathrm{PSp}_{4}(q)$ has a class of maximal subgroups whose socle is isomorphic to $\mathrm{PSL}_{2}(q)$. This class arises from the homomorphism

$$
\phi: \mathrm{SL}_{2}(q) \rightarrow \mathrm{SL}_{4}(q)
$$

induced by the action of $\mathrm{SL}_{2}(q)$ on cubic polynomials in two variables.

By the canonical form of y, (the projective image of) $\langle x, y\rangle$ can lie in a maximal subgroup of this class, only when $k=3$. In this case:

Lemma

Let $k=3, d=-1, u=-r$ and $p \neq 2$, 3. The group $\langle x, y\rangle$ is conjugate to $\phi(H)$ for some $H \leq \mathrm{SL}_{2}(q)$ if and only if $r^{4}=-3$.

Lemma

Let $k=3, d=-1, u=-r$ and $p \neq 2,3$. The group $\langle x, y\rangle$ is conjugate to $\phi(H)$ for some $H \leq \mathrm{SL}_{2}(q)$ if and only if $r^{4}=-3$.

Most of the exceptional values of r arise just when y has order $k=3$, i.e. for the (2,3)-generation, which is the most difficult.

