Uniform (2, k)-generation of matrix groups of small rank

M. Chiara Tamburini

Dedicated to Karl Gruenberg

Ischia, 16 April 2010

(ロ)、(型)、(E)、(E)、 E、 の(の)

L. Scott' Theorem (1977)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Let G be a group acting linearly overe a f.d. vector space V.

L. Scott' Theorem (1977)

Let G be a group acting linearly overe a f.d. vector space V.

For a subset X of G, let

$$v(X), v(X^*)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

denote respectively the codimension of the fixed space of X in V and in V^* (the dual space).

L. Scott' Theorem (1977)

Let G be a group acting linearly overe a f.d. vector space V.

For a subset X of G, let

$$v(X), v(X^*)$$

denote respectively the codimension of the fixed space of X in V and in V^* (the dual space).

Theorem Suppose $G = \langle x_1, \dots, x_m \rangle$ with $\prod_{i=1}^m x_i = 1$. Then: $\sum_{i=1}^n v(x_i) \ge v(G) + v(G^*)$.

Consider a triple

$$(x_1, x_2, x_3)$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

of elements $x_i \in \operatorname{GL}_n(\mathbb{F})$, with $x_1x_2x_3 = 1$, and assume that

$$G = \langle x_1, x_2 \rangle$$

is absolutely irreducible.

Consider a triple

$$(x_1, x_2, x_3)$$
 (1)

of elements $x_i \in \operatorname{GL}_n(\mathbb{F})$, with $x_1x_2x_3 = 1$, and assume that

$$G = \langle x_1, x_2 \rangle$$

is absolutely irreducible.

Scott's formula, applied to the conjugation action of G on $V = Mat_n(\mathbb{F})$, gives:

$$\sum_{i=1}^{3} \dim \left(C_{\operatorname{Mat}_{n}(\mathbb{F})}(x_{i}) \right) \leq n^{2} + 2.$$
(2)

Consider a triple

$$(x_1, x_2, x_3)$$
 (1)

of elements $x_i \in GL_n(\mathbb{F})$, with $x_1x_2x_3 = 1$, and assume that

$$G = \langle x_1, x_2 \rangle$$

is absolutely irreducible.

Scott's formula, applied to the conjugation action of G on $V = Mat_n(\mathbb{F})$, gives:

$$\sum_{i=1}^{3} \dim \left(C_{\operatorname{Mat}_{n}(\mathbb{F})}(x_{i}) \right) \leq n^{2} + 2.$$
(2)

If equality holds, then the triple is said to be linearly rigid.

Consider another triple

$$(x'_1, x'_2, x'_3)$$
 with $\prod_{i=1}^3 x'_i = 1$

and assume that x'_1, x'_2, x'_3 are respectively conjugate to x_1, x_2, x_3 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Consider another triple

$$\begin{pmatrix} x_1', x_2', x_3' \end{pmatrix}$$
 with $\prod_{i=1}^3 x_i' = 1$

and assume that x'_1, x'_2, x'_3 are respectively conjugate to x_1, x_2, x_3 .

If (x_1, x_2, x_3) is rigid, there exists $g \in GL_n(\mathbb{F})$ which does the conjugations simultaneously (**Strambach and Völklein** (1999)).

Consider another triple

$$(x_1', x_2', x_3')$$
 with $\prod_{i=1}^3 x_i' = 1$

and assume that x'_1, x'_2, x'_3 are respectively conjugate to x_1, x_2, x_3 .

If (x_1, x_2, x_3) is rigid, there exists $g \in GL_n(\mathbb{F})$ which does the conjugations simultaneously (**Strambach and Völklein** (1999)).

In particular

$$\langle x_1', x_2' \rangle = \langle x_1^g, x_2^g \rangle = \langle x_1, x_2 \rangle^g$$
.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let \mathbb{F}/\mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Let \mathbb{F}/\mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K} . Let (x, y, xy) be a rigid triple in $GL_n(\mathbb{F})$ and assume that

$$x^{\sigma}, y^{\sigma}, (xy)^{\sigma}$$

are respectively conjugate to

$$x^{-1}, y^{-1}, (xy)^{-1}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let \mathbb{F}/\mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K} . Let (x, y, xy) be a rigid triple in $GL_n(\mathbb{F})$ and assume that

$$x^{\sigma}, y^{\sigma}, (xy)^{\sigma}$$

are respectively conjugate to

$$x^{-1}, y^{-1}, (xy)^{-1}.$$

Then $\langle x, y \rangle$ fixes a non-degenerate bilinear form J.

Let \mathbb{F}/\mathbb{K} be a field extension, σ be an automorphism of \mathbb{F} over \mathbb{K} . Let (x, y, xy) be a rigid triple in $GL_n(\mathbb{F})$ and assume that

$$x^{\sigma}, y^{\sigma}, (xy)^{\sigma}$$

are respectively conjugate to

$$x^{-1}, y^{-1}, (xy)^{-1}.$$

Then $\langle x, y \rangle$ fixes a non-degenerate bilinear form J. If $\sigma = id$, J is symmetric or skew-symmetric. If σ has order 2, J is hermitian.

Hint of the proof.

Let J conjugate x^{σ} to $(x^{-1})^t$, and y^{σ} to $(y^{-1})^t$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Hint of the proof.

Let J conjugate x^{σ} to $(x^{-1})^t$, and y^{σ} to $(y^{-1})^t$. It follows:

$$x^t J x^\sigma = J, \quad y^t J y^\sigma = J.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The contribution of **A. Zalesskii** in the development of methods has been substantial.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The contribution of **A. Zalesskii** in the development of methods has been substantial.

Definition

A group is said to be (2, k)-generated if it can be generated by a pair of elements of respective orders 2 and k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The contribution of **A. Zalesskii** in the development of methods has been substantial.

Definition

A group is said to be (2, k)-generated if it can be generated by a pair of elements of respective orders 2 and k.

My exemplification concerns the uniform (2, k) generation $(k \ge 3)$ of the finite classical simple groups of degree 4.

Previous work, concerning the (2,3)-generation of $PSL_4(q)$ and $PSp_4(q)$, was made by several authors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

E.g.:

Previous work, concerning the (2,3)-generation of $PSL_4(q)$ and $PSp_4(q)$, was made by several authors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

E.g.:

M. Cazzola and L. Di Martino (1993),

C.T. and S. Vassallo (1994)

Manolov P. and K.Tchakerian (2004).

Previous work, concerning the (2, 3)-generation of $PSL_4(q)$ and $PSp_4(q)$, was made by several authors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

E.g.:

M. Cazzola and L. Di Martino (1993),

C.T. and S. Vassallo (1994)

Manolov P. and K.Tchakerian (2004).

But there are restrictions on the field characteristic. Moreover the generators are not uniform.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The results are joint work with **M. Pellegrini** and **M. Vsemirnov**.

The results are joint work with M. Pellegrini and M. Vsemirnov.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Let \mathbb{F} be an algebraically closed field of characteristic p.

The results are joint work with **M. Pellegrini** and **M. Vsemirnov**.

- ロ ト - 4 回 ト - 4 □ - 4

Let \mathbb{F} be an algebraically closed field of characteristic p.

We fix $k \ge 3$ such that (p, k) = 1, or $k \in \{p, 2p\}$.

The results are joint work with **M. Pellegrini** and **M. Vsemirnov**.

Let \mathbb{F} be an algebraically closed field of characteristic p.

We fix $k \ge 3$ such that (p, k) = 1, or $k \in \{p, 2p\}$.

We look for $x, y \in SL_4(\mathbb{F})$ such that

- their projective images have respective orders 2 and k;
- $\langle x, y \rangle$ is irreducible.

$$t^2 \pm 1, \quad t^2 \pm 1.$$

$$t^2 \pm 1$$
, $t^2 \pm 1$.

It follows that dim C(x) = 8.

$$t^2 \pm 1, \quad t^2 \pm 1.$$

It follows that dim C(x) = 8.

If k = 3 ($p \neq 3$) the only possibilities for Jordan form of y are:

diag
$$(\epsilon, \epsilon, \epsilon^{-1}, \epsilon^{-1})$$
 or diag $(1, 1, \epsilon, \epsilon^{-1})$.

$$t^2 \pm 1, \quad t^2 \pm 1.$$

It follows that dim C(x) = 8.

If k = 3 ($p \neq 3$) the only possibilities for Jordan form of y are:

diag
$$(\epsilon, \epsilon, \epsilon^{-1}, \epsilon^{-1})$$
 or diag $(1, 1, \epsilon, \epsilon^{-1})$.

In first case dim C(y) = 8, against Scott's formula, as

$$8+8+4 > 4^2+2.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$t^2 \pm 1, \quad t^2 \pm 1.$$

It follows that dim C(x) = 8.

If k = 3 ($p \neq 3$) the only possibilities for Jordan form of y are:

diag
$$(\epsilon, \epsilon, \epsilon^{-1}, \epsilon^{-1})$$
 or diag $(1, 1, \epsilon, \epsilon^{-1})$.

In first case dim C(y) = 8, against Scott's formula, as

$$8+8+4 > 4^2+2.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

So, for all $k \ge 3$, we choose y (when semisimple) with Jordan form of the second type, i.e. with similarity invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

So, for all $k \ge 3$, we choose y (when semisimple) with Jordan form of the second type, i.e. with similarity invariants

$$t-1, \quad t^3 \; - \; (1+\epsilon+\epsilon^{-1}) \; t^2 \; + \; (1+\epsilon+\epsilon^{-1}) \; t \; - \; 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So, for all $k \ge 3$, we choose y (when semisimple) with Jordan form of the second type, i.e. with similarity invariants

$$t-1, \quad t^3 \; - \; (1+\epsilon+\epsilon^{-1}) \; t^2 \; + \; (1+\epsilon+\epsilon^{-1}) \; t \; - \; 1.$$

うして ふぼう ふほう ふほう しょうくの

 $\epsilon :=$ a primitive k-th root of 1 in \mathbb{F} , if (k, p) = 1.

 $\epsilon := 1$ if k = p; $\epsilon := -1$ if k = 2p.
As the fixed points space of y has dimension 2, may assume that y fixes e_1, e_2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence (up to conjugation under C(x)), our generators have shapes:

Hence (up to conjugation under C(x)), our generators have shapes:

$$x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix}, \ d = \pm 1, \quad y = \begin{pmatrix} 1 & 0 & r_1 & r_2 \\ 0 & 1 & r_3 & r_4 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon + \epsilon^{-1} \end{pmatrix}$$

٠

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Hence (up to conjugation under C(x)), our generators have shapes:

$$x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix}, \ d = \pm 1, \quad y = \begin{pmatrix} 1 & 0 & r_1 & r_2 \\ 0 & 1 & r_3 & r_4 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon + \epsilon^{-1} \end{pmatrix}$$

.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

dim C(x) = 8, dim $C(y) = 6 \implies$ dim C(xy) = 4.

Hence (up to conjugation under C(x)), our generators have shapes:

$$x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix}, \ d = \pm 1, \quad y = \begin{pmatrix} 1 & 0 & r_1 & r_2 \\ 0 & 1 & r_3 & r_4 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon + \epsilon^{-1} \end{pmatrix}$$

.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

dim C(x) = 8, dim $C(y) = 6 \implies$ dim C(xy) = 4. 8+6+4=4²+2. Hence the triple (x, y, xy) is rigid.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Application of Scott's formula to the action of $\langle x, y \rangle$ on the symmetric square S of \mathbb{F}^4 gives the following:

Application of Scott's formula to the action of $\langle x, y \rangle$ on the symmetric square S of \mathbb{F}^4 gives the following:

Theorem

i)
$$SL_4(2)$$
 is not $(2,3)$ -generated;

ii) If p = 2, 3, then $PSp_4(q)$ is not (2, 3)-generated.

iii) If p = 2, then $\text{Sp}_4(q)$ cannot be generated elements having the same similarity invariants as x and y.

Application of Scott's formula to the action of $\langle x, y \rangle$ on the symmetric square S of \mathbb{F}^4 gives the following:

Theorem

ii) If p = 2, 3, then $PSp_4(q)$ is not (2, 3)-generated.

iii) If p = 2, then $\text{Sp}_4(q)$ cannot be generated elements having the same similarity invariants as x and y.

i) is known (**Miller**, 1901).

Application of Scott's formula to the action of $\langle x, y \rangle$ on the symmetric square S of \mathbb{F}^4 gives the following:

Theorem

ii) If p = 2, 3, then $PSp_4(q)$ is not (2, 3)-generated.

iii) If p = 2, then $\text{Sp}_4(q)$ cannot be generated elements having the same similarity invariants as x and y.

i) is known (**Miller**, 1901). *ii*) is known (**Liebeck and Shalev**, 1996).

Application of Scott's formula to the action of $\langle x, y \rangle$ on the symmetric square S of \mathbb{F}^4 gives the following:

Theorem

i) $SL_4(2)$ is not (2,3)-generated;

ii) If p = 2, 3, then $PSp_4(q)$ is not (2, 3)-generated.

iii) If p = 2, then $\text{Sp}_4(q)$ cannot be generated elements having the same similarity invariants as x and y.

- *i*) is known (**Miller**, 1901).
- ii) is known (Liebeck and Shalev, 1996).
- *iii*) The only infinite class excluded by our choice of *y*.

For $H = \langle x, y \rangle$ acting on S: $d_S^x + d_S^y + d_S^{xy} \leq \frac{n(n+1)}{2} + d_S^H + \widehat{d_S^H}.$

For
$$H = \langle x, y \rangle$$
 acting on S :
$$d_S^x + d_S^y + d_S^{xy} \leq \frac{n(n+1)}{2} + d_S^H + \widehat{d_S^H}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Lemma a) $1 \ge d_S^H \ge \widehat{d_S^H};$

For $H = \langle x, y \rangle$ acting on S: $d_S^{\mathsf{x}} + d_S^{\mathsf{y}} + d_S^{\mathsf{xy}} \leq \frac{n(n+1)}{2} + d_S^{\mathsf{H}} + \widehat{d_S^{\mathsf{H}}}.$ Lemma a) $1 \ge d_S^H \ge \widehat{d_S^H}$;

b) if $\widehat{d_{\varsigma}^{H}} = 1$ then H is contained in an orthogonal group;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $H = \langle x, y \rangle$ acting on S: $d_S^{\mathsf{x}} + d_S^{\mathsf{y}} + d_S^{\mathsf{xy}} \leq \frac{n(n+1)}{2} + d_S^{\mathsf{H}} + \widehat{d_S^{\mathsf{H}}}.$ Lemma a) $1 \ge d_S^H \ge \widehat{d_S^H}$; b) if $\hat{d}_{c}^{H} = 1$ then H is contained in an orthogonal group; For PSp(4, q) with (p = 2), we get:

$$d_S^{x} + d_S^{y} + d_S^{xy} = 11 > \frac{4(4+1)}{2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For
$$H = \langle x, y \rangle$$
 acting on S :
 $d_S^x + d_S^y + d_S^{xy} \leq \frac{n(n+1)}{2} + d_S^H + \widehat{d_S^H}$.
Lemma
a) $1 \geq d_S^H \geq \widehat{d_S^H}$;
b) if $\widehat{d_S^H} = 1$ then H is contained in an orthogonal group;
For $PSp(4, q)$ with $(p = 2)$, we get:
 $d_S^x + d_S^y + d_S^{xy} = 11 > \frac{4(4+1)}{2}$.

Hence $d_S^H + \widehat{d_S^H} > 0$. By the rigidity $d_S^H = \widehat{d_S^H} = 1$.

Positive results

For our purposes it is enough to consider generators of shapes:

$$x := \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix}, \quad y := \begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & r \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon + \epsilon^{-1} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

where $d = \pm 1$, $u, r \in \mathbb{F}$.

Positive results

For our purposes it is enough to consider generators of shapes:

$$x := \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix}, \quad y := \begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & r \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & \epsilon + \epsilon^{-1} \end{pmatrix}$$

where $d = \pm 1$, $u, r \in \mathbb{F}$.

Lemma $\langle x, y \rangle$ is absolutely irreducible, except: (i) $u = \delta(e^j - 1), r = \delta(e^{-j} - 1),$ (ii) $u + r = \delta(2 - s);$ (iii) $u = -e^j r.$

 $\dim \, (\, C_{\operatorname{Mat}_4(\mathbb{F})}(xy)) = 4.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

 $\dim \left(C_{\mathrm{Mat}_4(\mathbb{F})}(xy) \right) = 4.$

In particular, for any field automorphism σ ,

$$(xy)^{-1}$$
 and $(xy)^{\sigma}$ are conjugate (3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

if and only if they have the same characteristic polynomial.

 $\dim \left(C_{\mathrm{Mat}_4(\mathbb{F})}(xy) \right) = 4.$

In particular, for any field automorphism σ ,

$$(xy)^{-1}$$
 and $(xy)^{\sigma}$ are conjugate (3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

if and only if they have the same characteristic polynomial.

char(xy) =
$$t^4 - drt^3 - d(\epsilon + \epsilon^{-1})t^2 - ut + 1;$$

char((xy)⁻¹ = $t^4 - ut^3 - d(\epsilon + \epsilon^{-1})t^2 - drt + 1.$

 $\dim \left(C_{\mathrm{Mat}_4(\mathbb{F})}(xy) \right) = 4.$

In particular, for any field automorphism σ ,

$$(xy)^{-1}$$
 and $(xy)^{\sigma}$ are conjugate (3)

if and only if they have the same characteristic polynomial.

char(xy) =
$$t^4 - drt^3 - d(\epsilon + \epsilon^{-1})t^2 - ut + 1;$$

char((xy)⁻¹ = $t^4 - ut^3 - d(\epsilon + \epsilon^{-1})t^2 - drt + 1.$

For a fixed r, it is easy to define u so that (3) holds.

Theorem Let $0 \neq r \in \mathbb{F}_q$ and assume $\mathbb{F}_p(r^2, \epsilon + \epsilon^{-1}) = \mathbb{F}_q$. Then, up to a finite number of values of r:

Theorem Let $0 \neq r \in \mathbb{F}_q$ and assume $\mathbb{F}_p(r^2, \epsilon + \epsilon^{-1}) = \mathbb{F}_q$. Then, up to a finite number of values of r: 1) if $d = \pm 1$, u = 0,

$$\langle x,y\rangle = \mathrm{SL}_4(q)$$

Theorem Let $0 \neq r \in \mathbb{F}_q$ and assume $\mathbb{F}_p(r^2, \epsilon + \epsilon^{-1}) = \mathbb{F}_q$. Then, up to a finite number of values of r: 1) if $d = \pm 1$, u = 0,

$$\langle x,y\rangle = \mathrm{SL}_4(q).$$

2) if
$$d = \pm 1$$
, $u = r^{\sqrt{q}}$, $r \in \mathbb{F}_q \setminus \mathbb{F}_{\sqrt{q}}$, $\langle x, y \rangle = \mathrm{SU}_4(q^2)$.

Theorem Let $0 \neq r \in \mathbb{F}_q$ and assume $\mathbb{F}_p(r^2, \epsilon + \epsilon^{-1}) = \mathbb{F}_q$. Then, up to a finite number of values of r: 1) if $d = \pm 1$, u = 0, $\langle x, y \rangle = \mathrm{SL}_4(q)$.

2) if $d = \pm 1$, $u = r\sqrt{q}$, $r \in \mathbb{F}_q \setminus \mathbb{F}_{\sqrt{q}}$, $\langle x, y \rangle = \mathrm{SU}_4(q^2)$. 3) if d = -1, u = -r and p > 2, $k \neq p, 2p$, $\langle x, y \rangle = \mathrm{Sp}_4(q)$.

In case 3), for d = 1, the groups obtained are orthogonal.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

In case 3), for d = 1, the groups obtained are orthogonal.

The orthogonal groups in dimension 4 are not new classes of simple groups, as:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

In case 3), for d = 1, the groups obtained are orthogonal.

The orthogonal groups in dimension 4 are not new classes of simple groups, as:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $egin{aligned} \Omega_4^+ &\sim \mathrm{SL}_2(q) \circ \mathrm{SL}_2(q) \ \Omega_4^- &\sim \mathrm{PSL}_2(q^2). \end{aligned}$

The exceptional values of r are always less than those available (except for SU(4, 9) which requires slightly different generators).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The exceptional values of r are always less than those available (except for SU(4,9) which requires slightly different generators).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary Let $3 \le k$. Assume k|(q-1) or k|(q+1) or $k \in \{p, 2p\}$. The following groups are (2, k)-generated:

The exceptional values of r are always less than those available (except for SU(4, 9) which requires slightly different generators).

Corollary

Let $3 \leq k$. Assume k|(q-1) or k|(q+1) or $k \in \{p, 2p\}$.

The following groups are (2, k)-generated:

- $SL_4(q)$ and $PSL_4(q)$;
- $SU_4(q)$ and $PSU_4(q)$.
- $\operatorname{PSp}_4(q)$, p>2, $k\neq p, 2p;$

The proof is based on the classification of maximal subgroups of the finite classical simple groups of rank 4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The proof is based on the classification of maximal subgroups of the finite classical simple groups of rank 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
H. Mitchell (1913),
B.Mwene (1976),
I.Suprunenko and A.Zalesskii (1976),
I.Suprunenko (1981),
P. Kleidman (PHD thesis),
```

. . .

Sample of proofs

<□ > < @ > < E > < E > E のQ @

Sample of proofs

For $p \ge 5$, the symplectic group $PSp_4(q)$ has a class of maximal subgroups whose socle is isomorphic to $PSL_2(q)$. This class arises from the homomorphism

$$\phi: \mathrm{SL}_2(q) \to \mathrm{SL}_4(q)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

induced by the action of $SL_2(q)$ on cubic polynomials in two variables.
Sample of proofs

For $p \ge 5$, the symplectic group $PSp_4(q)$ has a class of maximal subgroups whose socle is isomorphic to $PSL_2(q)$. This class arises from the homomorphism

$$\phi: \mathrm{SL}_2(q) \to \mathrm{SL}_4(q)$$

induced by the action of $SL_2(q)$ on cubic polynomials in two variables.

By the canonical form of y, (the projective image of) $\langle x, y \rangle$ can lie in a maximal subgroup of this class, only when k = 3. In this case:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lemma Let k = 3, d = -1, u = -r and $p \neq 2,3$. The group $\langle x, y \rangle$ is conjugate to $\phi(H)$ for some $H \leq SL_2(q)$ if and only if $r^4 = -3$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma Let k = 3, d = -1, u = -r and $p \neq 2,3$. The group $\langle x, y \rangle$ is conjugate to $\phi(H)$ for some $H \leq SL_2(q)$ if and only if $r^4 = -3$.

Most of the exceptional values of r arise just when y has order k = 3, i.e. for the (2, 3)-generation, which is the most difficult.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <