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L. Scott’ Theorem (1977)

Let G be a group acting linearly overe a f.d. vector space V .

For a subset X of G , let

v(X ), v(X ∗)

denote respectively the codimension of the fixed space of X in V
and in V ∗ (the dual space).

Theorem
Suppose G = 〈x1, . . . , xm〉 with

∏m
i=1 xi = 1.

Then:
n∑

i=1

v(xi ) ≥ v(G ) + v (G ∗) .
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Consider a triple
(x1, x2, x3) (1)

of elements xi ∈ GLn(F), with x1x2x3 = 1, and assume that

G = 〈x1, x2〉

is absolutely irreducible.

Scott’s formula, applied to the conjugation action of G on
V = Matn(F), gives:

3∑
i=1

dim
(
CMatn(F)(xi )

)
≤ n2 + 2. (2)

If equality holds, then the triple is said to be linearly rigid.
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Consider another triple

(
x ′1, x

′
2, x

′
3

)
with

3∏
i=1

x ′i = 1

and assume that x ′1, x
′
2, x

′
3 are respectively conjugate to x1, x2, x3.

If (x1, x2, x3) is rigid,there exists g ∈ GLn(F) which does the
conjugations simultaneously (Strambach and Völklein (1999)).

In particular 〈
x ′1, x

′
2

〉
=

〈
xg
1 , xg

2

〉
= 〈x1, x2〉g .



Consider another triple

(
x ′1, x

′
2, x

′
3

)
with

3∏
i=1

x ′i = 1

and assume that x ′1, x
′
2, x

′
3 are respectively conjugate to x1, x2, x3.

If (x1, x2, x3) is rigid,there exists g ∈ GLn(F) which does the
conjugations simultaneously (Strambach and Völklein (1999)).

In particular 〈
x ′1, x

′
2

〉
=

〈
xg
1 , xg

2

〉
= 〈x1, x2〉g .



Consider another triple

(
x ′1, x

′
2, x

′
3

)
with

3∏
i=1

x ′i = 1

and assume that x ′1, x
′
2, x

′
3 are respectively conjugate to x1, x2, x3.

If (x1, x2, x3) is rigid,there exists g ∈ GLn(F) which does the
conjugations simultaneously (Strambach and Völklein (1999)).

In particular 〈
x ′1, x

′
2

〉
=

〈
xg
1 , xg

2

〉
= 〈x1, x2〉g .



Corollary

Let F/K be a field extension, σ be an automorphism of F over K.

Let (x , y , xy) be a rigid triple in GLn(F) and assume that

xσ, yσ, (xy)σ

are respectively conjugate to

x−1, y−1, (xy)−1.

Then 〈x , y〉 fixes a non-degenerate bilinear form J.

If σ = id, J is symmetric or skew-symmetric.
If σ has order 2, J is hermitian.
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Hint of the proof.

Let J conjugate xσ to
(
x−1

)t
, and yσ to

(
y−1

)t
.

It follows:
x tJxσ = J, y tJyσ = J.
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The aim of my talk is to exemplify the efficiency of these results in
the study of finitely generated, absolutely irreducible subgroups of
GLn(F), for small values of n.

The contribution of A. Zalesskii in the development of methods
has been substantial.

Definition
A group is said to be (2, k)-generated if it can be generated by a
pair of elements of respective orders 2 and k.

My exemplification concerns the uniform (2, k) generation (k ≥ 3)
of the finite classical simple groups of degree 4.
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Previous work, concerning the (2, 3)-generation of PSL4(q) and
PSp4(q), was made by several authors.

E.g.:

M. Cazzola and L. Di Martino (1993),

C.T. and S. Vassallo (1994)

Manolov P. and K.Tchakerian (2004).

But there are restrictions on the field characteristic.
Moreover the generators are not uniform.
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Uniform (2, k) generation

The results are joint work with M. Pellegrini and M. Vsemirnov.

Let F be an algebraically closed field of characteristic p.

We fix k ≥ 3 such that (p, k) = 1, or k ∈ {p, 2p}.

We look for x , y ∈ SL4(F) such that

• their projective images have respective orders 2 and k;

• 〈x , y〉 is irreducible.
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The similarity invariants of x can only be

t2 ± 1, t2 ± 1.

It follows that dim C (x) = 8.

If k = 3 (p 6= 3) the only possibilities for Jordan form of y are:

diag
(
ε, ε, ε−1, ε−1

)
or diag

(
1, 1, ε, ε−1

)
.

In first case dim C (y) = 8, against Scott’s formula, as

8 + 8 + 4 > 42 + 2.
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So, for all k ≥ 3, we choose y (when semisimple) with Jordan form
of the second type, i.e. with similarity invariants

t − 1, t3 − (1 + ε + ε−1) t2 + (1 + ε + ε−1) t − 1.

ε := a primitive k-th root of 1 in F, if (k, p) = 1.

ε := 1 if k = p; ε := −1 if k = 2p.
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As the fixed points space of y has dimension 2, may assume that y
fixes e1, e2.

As 〈x , y〉 must be irreducible, may assume that
e3x = e1, e4x = e2.

Hence (up to conjugation under C (x)), our generators have shapes:

x =


0 0 1 0
0 0 0 1
d 0 0 0
0 d 0 0

 , d = ±1, y =


1 0 r1 r2
0 1 r3 r4
0 0 0 −1
0 0 1 ε + ε−1

 .

dim C (x) = 8, dim C (y) = 6 =⇒ dim C (xy) = 4.

8 + 6 + 4 = 42 + 2. Hence the triple (x , y , xy) is rigid.
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Negative results

Application of Scott’s formula to the action of 〈x , y〉 on the
symmetric square S of F4 gives the following:

Theorem

i) SL4(2) is not (2, 3)-generated;

ii) If p = 2, 3, then PSp4(q) is not (2, 3)-generated.

iii) If p = 2, then Sp4(q) cannot be generated elements having the
same similarity invariants as x and y.

i) is known (Miller, 1901).
ii) is known (Liebeck and Shalev, 1996).
iii) The only infinite class excluded by our choice of y .
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For H = 〈x , y〉 acting on S :

dx
S + dy

S + dxy
S ≤ n(n + 1)

2
+ dH

S + d̂H
S .

Lemma
a) 1 ≥ dH

S ≥ d̂S
H ;

b) if d̂H
S = 1 then H is contained in an orthogonal group;

For PSp(4, q) with (p = 2), we get:

dx
S + dy

S + dxy
S = 11 >

4(4 + 1)

2
.

Hence dH
S + d̂H

S > 0. By the rigidity dH
S = d̂H

S = 1.
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Positive results

For our purposes it is enough to consider generators of shapes:

x :=


0 0 1 0
0 0 0 1
d 0 0 0
0 d 0 0

 , y :=


1 0 0 u
0 1 0 r
0 0 0 −1
0 0 1 ε + ε−1


where d = ±1, u, r ∈ F.

Lemma
〈x , y〉 is absolutely irreducible, except:
(i) u = δ(εj − 1), r = δ(ε−j − 1),
(ii) u + r = δ(2− s);
(iii) u = −εj r .
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xy has a unique similarity invariant, since:

dim (CMat4(F)(xy)) = 4.

In particular, for any field automorphism σ,

(xy)−1 and (xy)σ are conjugate (3)

if and only if they have the same characteristic polynomial.

char(xy) = t4 − drt3 − d
(
ε + ε−1

)
t2 − ut + 1;

char((xy)−1 = t4 − ut3 − d
(
ε + ε−1

)
t2 − drt + 1.

For a fixed r , it is easy to define u so that (3) holds.
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Theorem
Let 0 6= r ∈ Fq and assume Fp

(
r2, ε + ε−1

)
= Fq.

Then, up to a finite number of values of r :

1) if d = ±1, u = 0,

〈x , y〉 = SL4(q).

2) if d = ±1, u = r
√

q, r ∈ Fq \ F√q,

〈x , y〉 = SU4(q
2).

3) if d = −1, u = −r and p > 2, k 6= p, 2p,

〈x , y〉 = Sp4(q).
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In case 3), for d = 1, the groups obtained are orthogonal.

The orthogonal groups in dimension 4 are not new classes of
simple groups, as:

Ω+
4 ∼ SL2(q) ◦ SL2(q)

Ω−
4 ∼ PSL2(q

2).



In case 3), for d = 1, the groups obtained are orthogonal.

The orthogonal groups in dimension 4 are not new classes of
simple groups, as:

Ω+
4 ∼ SL2(q) ◦ SL2(q)

Ω−
4 ∼ PSL2(q

2).



In case 3), for d = 1, the groups obtained are orthogonal.

The orthogonal groups in dimension 4 are not new classes of
simple groups, as:

Ω+
4 ∼ SL2(q) ◦ SL2(q)

Ω−
4 ∼ PSL2(q

2).



The exceptional values of r are always less than those available
(except for SU(4, 9) which requires slightly different generators).

Corollary

Let 3 ≤ k. Assume k|(q − 1) or k |(q + 1) or k ∈ {p, 2p}.

The following groups are (2, k)-generated:

• SL4(q) and PSL4(q);

• SU4(q) and PSU4(q).

• PSp4(q), p > 2, k 6= p, 2p;
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The proof is based on the classification of maximal subgroups of
the finite classical simple groups of rank 4.
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B.Mwene (1976),
I.Suprunenko and A.Zalesskii (1976),
I.Suprunenko (1981),
P. Kleidman (PHD thesis),
. . .
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Sample of proofs

For p ≥ 5, the symplectic group PSp4(q) has a class of maximal
subgroups whose socle is isomorphic to PSL2(q). This class arises
from the homomorphism

φ : SL2(q) → SL4(q)

induced by the action of SL2(q) on cubic polynomials in two
variables.

By the canonical form of y , (the projective image of) 〈x , y〉 can lie
in a maximal subgroup of this class, only when k = 3. In this case:
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Lemma
Let k = 3, d = −1, u = −r and p 6= 2, 3. The group 〈x , y〉 is
conjugate to φ(H) for some H ≤ SL2(q) if and only if r4 = −3.

Most of the exceptional values of r arise just when y has order
k = 3, i.e. for the (2, 3)-generation, which is the most difficult.
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