Symplectic nil-algebras

M. Tota (joint work with A. Tortora and G. Traustason)

Università di Salerno

Conference: Ischia Group Theory 2010

1 Symplectic Alternating Algebras (SAA)

- 1 Symplectic Alternating Algebras (SAA)
- 2 Symplectic nil-2 algebras

- 1 Symplectic Alternating Algebras (SAA)
- Symplectic nil-2 algebras
- Symplectic nil-3 algebras

- 1 Symplectic Alternating Algebras (SAA)
- Symplectic nil-2 algebras
- Symplectic nil-3 algebras

Let F be a field. A symplectic alternating algebra over F is a triple $(V,(\ ,\),\cdot)$ where V is a symplectic vector space over F with respect to a non degenerate alternating form $(\ ,\)$ and \cdot is a bilinear and alternating binary operation on V such that

$$(u\cdot v,w)=(v\cdot w,u)$$

for all $u, v, w \in V$.

Let F be a field. A symplectic alternating algebra over F is a triple $(V,(\ ,\),\cdot)$ where V is a symplectic vector space over F with respect to a non degenerate alternating form $(\ ,\)$ and \cdot is a bilinear and alternating binary operation on V such that

$$(u\cdot v,w)=(v\cdot w,u)$$

for all $u, v, w \in V$.

Self-adjoint property

$$(u \cdot x, v) = (x \cdot v, u) = -(v \cdot x, u) = (u, v \cdot x)$$

Does there exist a finite 2-Engel 3-group, G, of class 3 such that $Aut G = Aut_c G \cdot Inn G$?

Does there exist a finite 2-Engel 3-group, G, of class 3 such that $Aut\ G = Aut_c\ G \cdot Inn\ G$?

Moravec and Traustason

Does there exist a finite 2-Engel 3-group, G, of class 3 such that $Aut\ G = Aut_c\ G \cdot Inn\ G$?

Moravec and Traustason

Let L be a SAA over the field with 3 elements, $\dim L = 2m$. Then \exists a 2-Engel group F(L) of class 3, $\exp F(L) = 27$ and rank 2m + 1

Does there exist a finite 2-Engel 3-group, G, of class 3 such that $Aut\ G = Aut_c\ G \cdot Inn\ G$?

Moravec and Traustason

Let L be a SAA over the field with 3 elements, $\dim L = 2m$. Then \exists a 2-Engel group F(L) of class 3, $\exp F(L) = 27$ and rank 2m+1 and one can see that for F(L) to be an example for Caranti's question, the automorphism group of L would have to be trivial.

Does there exist a finite 2-Engel 3-group, G, of class 3 such that $Aut\ G = Aut_c\ G \cdot Inn\ G$?

Moravec and Traustason

Let L be a SAA over the field with 3 elements, $\dim L = 2m$. Then \exists a 2-Engel group F(L) of class 3, $\exp F(L) = 27$ and rank 2m+1 and one can see that for F(L) to be an example for Caranti's question, the automorphism group of L would have to be trivial.

Question

Does there exsist a (non trivial) SAA over the field with 3 elements with trivial automorphism group?

Does there exist a finite 2-Engel 3-group, G, of class 3 such that $Aut\ G = Aut_c\ G \cdot Inn\ G$?

Moravec and Traustason

Let L be a SAA over the field with 3 elements, $\dim L = 2m$. Then \exists a 2-Engel group F(L) of class 3, $\exp F(L) = 27$ and rank 2m+1 and one can see that for F(L) to be an example for Caranti's question, the automorphism group of L would have to be trivial.

Question

Does there exsist a (non trivial) SAA over the field with 3 elements with trivial automorphism group?

Answer to Caranti's question

YES! (Abdollahi, Faghihi, Linton, O'Brien)

Notation

If we have a SAA of dimension 2m then we will refer to a basis $x_1, y_1, \dots, x_m, y_m$ with the property that $(x_i, x_j) = (y_i, y_j) = 0$ and $(x_i, y_j) = \delta_{ij}$ as a standard basis.

Notation

If we have a SAA of dimension 2m then we will refer to a basis $x_1, y_1, \dots, x_m, y_m$ with the property that $(x_i, x_j) = (y_i, y_j) = 0$ and $(x_i, y_j) = \delta_{ij}$ as a standard basis.

We will also adopt the left-normed convention for multiple products:

$$x_1x_2\cdots x_n=(\cdots(x_1x_2)\cdots)x_n$$

• We say that a SAA is nilpotent if $x_1x_2 \cdots x_n = 0$ for every $x_1, x_2, \dots, x_n \in L$ and for some integer $n \ge 1$.

- We say that a SAA is nilpotent if $x_1x_2 \cdots x_n = 0$ for every $x_1, x_2, \dots, x_n \in L$ and for some integer $n \ge 1$.
- We define the nilpotency class of L as the smallest $c \ge 0$ such that $x_1x_2 \cdots x_{c+1} = 0$ for every $x_1, x_2, \dots, x_{c+1} \in L$.

- We say that a SAA is nilpotent if $x_1x_2 \cdots x_n = 0$ for every $x_1, x_2, \dots, x_n \in L$ and for some integer $n \ge 1$.
- We define the nilpotency class of L as the smallest $c \ge 0$ such that $x_1x_2\cdots x_{c+1}=0$ for every $x_1,x_2,\ldots,x_{c+1}\in L$.
- If k is a positive integer, we say that an alternating algebra (not necessarily symplectic) is nil-k if $xy^k = 0$ for every $x, y \in L$ and k is the smallest positive integer enjoying this property.

- We say that a SAA is nilpotent if $x_1x_2 \cdots x_n = 0$ for every $x_1, x_2, \dots, x_n \in L$ and for some integer $n \ge 1$.
- We define the nilpotency class of L as the smallest $c \ge 0$ such that $x_1x_2\cdots x_{c+1}=0$ for every $x_1,x_2,\ldots,x_{c+1}\in L$.
- If k is a positive integer, we say that an alternating algebra (not necessarily symplectic) is nil-k if $xy^k = 0$ for every $x, y \in L$ and k is the smallest positive integer enjoying this property.
- More generally, we define alternating nil-algebras to be alternating nil-k algebras for some positive integer k.

- We say that a SAA is nilpotent if $x_1x_2 \cdots x_n = 0$ for every $x_1, x_2, \dots, x_n \in L$ and for some integer $n \ge 1$.
- We define the nilpotency class of L as the smallest $c \ge 0$ such that $x_1x_2\cdots x_{c+1}=0$ for every $x_1,x_2,\ldots,x_{c+1}\in L$.
- If k is a positive integer, we say that an alternating algebra (not necessarily symplectic) is nil-k if $xy^k = 0$ for every $x, y \in L$ and k is the smallest positive integer enjoying this property.
- More generally, we define alternating nil-algebras to be alternating nil-k algebras for some positive integer k.

Symplectic alternating abelian algebras are nilpotent

- We say that a SAA is nilpotent if $x_1x_2 \cdots x_n = 0$ for every $x_1, x_2, \dots, x_n \in L$ and for some integer $n \ge 1$.
- We define the nilpotency class of L as the smallest $c \ge 0$ such that $x_1x_2\cdots x_{c+1}=0$ for every $x_1,x_2,\ldots,x_{c+1}\in L$.
- If k is a positive integer, we say that an alternating algebra (not necessarily symplectic) is nil-k if $xy^k = 0$ for every $x, y \in L$ and k is the smallest positive integer enjoying this property.
- More generally, we define alternating nil-algebras to be alternating nil-k algebras for some positive integer k.

Symplectic alternating abelian algebras are nilpotent and SAA which are nilpotent are clearly nil.

Question

- ?? What can one say about the structure of symplectic nil-algebras??
- ??Does a symplectic nil-algebra have to be nilpotent ??

- 1 Symplectic Alternating Algebras (SAA)
- Symplectic nil-2 algebras
- Symplectic nil-3 algebras

Obviously, every SAA which is associative is also nil-2.

Obviously, every SAA which is associative is also nil-2.

The following characterization shows that if char F = 2, then every symplectic nil-2 algebra over F is associative.

Proposition

Let *L* be a SAA. Then the following are equivalent:

- (*i*) *L* is nil-2;
- (ii) xyz = -xzy, $\forall x, y, z \in L$;
- (iii) $x(yz) = xzy, \ \forall x, y, z \in L$.

$$L$$
 SAA, $dim L = 2 \Rightarrow L$ abelian

L SAA,
$$dim L = 2 \Rightarrow L$$
 abelian

$$\Downarrow$$

$$L: \begin{array}{l} x_1 x_2 = 0 \\ y_1 y_2 = -y_1. \end{array}$$

L SAA,
$$dim L = 2 \Rightarrow L$$
 abelian

$$L: \begin{array}{c} & & & \\ x_1 x_2 = 0 \\ y_1 y_2 = -y_1. \end{array}$$

and L is not nil: $y_1y_2^k = (-1)^k y_1$, $\forall k \geq 1$.

L SAA,
$$dim L = 2 \Rightarrow L$$
 abelian

$$L: \begin{array}{c} & & & \\ x_1 x_2 = 0 \\ & & & \\ y_1 y_2 = -y_1. \end{array}$$

and *L* is not nil: $y_1y_2^k = (-1)^k y_1, \ \forall \ k \ge 1.$

L SAA,
$$dim L = 6$$
, $|F| = 3$

L SAA,
$$dim L = 2 \Rightarrow L$$
 abelian

$$L: \begin{array}{c} & & & \\ x_1 x_2 = 0 \\ y_1 y_2 = -y_1. \end{array}$$

and *L* is not nil: $y_1y_2^k = (-1)^k y_1, \ \forall \ k \ge 1.$

L SAA,
$$dim L = 6$$
, $|F| = 3$

L non abelian nil-algebra $\Leftrightarrow L = O \oplus C_1$

$$x_1x_2 = 0$$
 $y_1y_2 = y_3$
 $O: x_2x_3 = 0$ $C_1: y_2y_3 = 0$
 $x_3x_1 = 0$ $y_3y_1 = 0$.

Proposition

If *L* is a symplectic nil-2 algebra $\dim L = 6$, then either *L* is abelian or isomorphic to $O \oplus C_1$.

Proposition

If *L* is a symplectic nil-2 algebra $\dim L = 6$, then either *L* is abelian or isomorphic to $O \oplus C_1$.

In particular, *L* is nilpotent of class at most 2.

Theorem

Let L be a SAA over a field F of characteristic $\neq 2$. If L is nil-2, then L is nilpotent of class at most 3.

Theorem

Let L be a SAA over a field F of characteristic $\neq 2$. If L is nil-2, then L is nilpotent of class at most 3.

Theorem

Let F be a field of characteristic 2 and let L be a SAA of dimension n = 2m over F.

If L is nil-2, then L is nilpotent of class at most $\lfloor \log_2(m+1) \rfloor$.

Theorem

Let L be a SAA over a field F of characteristic $\neq 2$. If L is nil-2, then L is nilpotent of class at most 3.

Theorem

Let F be a field of characteristic 2 and let L be a SAA of dimension n = 2m over F.

If L is nil-2, then L is nilpotent of class at most $\lfloor \log_2(m+1) \rfloor$.

The bounds we have just got are the best possible!

Examples

• Let F be any field. There exists a symplectic nil-2 algebra L which is nilpotent of class 3 and $\dim L = 14$.

Examples

- Let F be any field. There exists a symplectic nil-2 algebra L which is nilpotent of class 3 and $\dim L = 14$.
- Let F be the field with 2 elements and let r > 3. There exists a symplectic nil-2 algebra L over F of dimension $2(2^{r-1}-1)$ which is nilpotent of class r-1.

Examples

- Let F be any field. There exists a symplectic nil-2 algebra L which is nilpotent of class 3 and $\dim L = 14$.
- Let F be the field with 2 elements and let r > 3. There exists a symplectic nil-2 algebra L over F of dimension $2(2^{r-1}-1)$ which is nilpotent of class r-1.

Proposition

Let F be a field and L a symplectic nil-2 algebra over F which is nilpotent of class 3.

- If char F = 2 then $\dim L \ge 14$;
- if char $F \neq 2$ then dim $L \geq 8$.

- Symplectic Alternating Algebras (SAA)
- Symplectic nil-2 algebras
- Symplectic nil-3 algebras

Lemma

Let F be a field such that |F| > 2 and let L be a symplectic nil-3 algebra over F.

Then L is not simple.

Lemma

Let F be a field such that |F| > 2 and let L be a symplectic nil-3 algebra over F.

Then L is not simple.

Proposition

If L is a symplectic nil-3 algebra over a field F, then either L is simple or $\dim L \ge 8$.

Lemma

Let F be a field such that |F| > 2 and let L be a symplectic nil-3 algebra over F.

Then L is not simple.

Proposition

If L is a symplectic nil-3 algebra over a field F, then either L is simple or $\dim L \ge 8$.

As a straight consequence of those two results we get $\dim L \ge 8$ whenever |F| > 2.

Symplectic Alternating Algebras (SAA)
Symplectic nil-2 algebras
Symplectic nil-3 algebras

Let L be a symplectic nil-3 algebra of dimension 8 over a field F of order > 2.

$$L(r) = \begin{pmatrix} a & bx^2 \\ ax & bx \\ ax^2 & b \end{pmatrix} \oplus \begin{pmatrix} x & t \end{pmatrix}.$$

The only non-trivial products not involving x are:

$$axa = rb$$

 $ax^2a = -rbx$
 $ax^2(ax) = rbx^2$

$$bxa = -t$$

$$axb = t$$

L(r) is nil-3 for all $r \in F$ and L(r) is nilpotent of class 5 when $r \neq 0$ and nilpotent of class 3 when r = 0.

Symplectic Alternating Algebras (SAA)
Symplectic nil-2 algebras
Symplectic nil-3 algebras

The number (up to isomorphisms) of symplectic nil-3 algebras of dimension 8 over a field F of order > 2

The number (up to isomorphisms) of symplectic nil-3 algebras of dimension 8 over a field F of order > 2

$$|F^*/(F^*)^3| + 1$$