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Symplectic Alternating Algebras (SAA)

Definition

Let F be a field. A over F is a triple
(V,(, ),-) where V is a symplectic vector space over F with
respect to a non degenerate alternating form (, ) and - is a
bilinear and alternating binary operation on V such that

(u-v,w)=(v-w,u)

for all u,v,w € V.
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Symplectic Alternating Algebras (SAA)

Let F be a field. A over F is a triple
(V,(, ),-) where V is a symplectic vector space over F with
respect to a non degenerate alternating form (, ) and - is a
bilinear and alternating binary operation on V such that

(u-v,w)=(v-w,u)

for all u,v,w € V.

Self-adjoint property

(u-x,v)=(x-v,u)=—(v-x,u)=(u,v-x)
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Symplectic Alternating Algebras (SAA)

Question (Caranti)

Does there exist a finite 2-Engel 3-group, G, of class 3 such that
Aut G = Aut: G - Inn G?
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Moravec and Traustason
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Symplectic Alternating Algebras (SAA)

Question (Caranti)

Does there exist a finite 2-Engel 3-group, G, of class 3 such that
Aut G = Aut: G - Inn G?

4

Moravec and Traustason

Let L be a SAA over the field with 3 elements, dim L =2m. Then
3 a 2-Engel group F(L) of class 3, exp F(L) = 27 and rank 2m + 1
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Symplectic Alternating Algebras (SAA)

Question (Caranti)

Does there exist a finite 2-Engel 3-group, G, of class 3 such that
Aut G = Aut: G - Inn G?

| A

Moravec and Traustason

Let L be a SAA over the field with 3 elements, dimL = 2m. Then
3 a 2-Engel group F(L) of class 3, exp F(L) = 27 and rank 2m + 1
and one can see that for F(L) to be an example for Caranti's
question, the automorphism group of L would have to be trivial.
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Does there exist a finite 2-Engel 3-group, G, of class 3 such that
Aut G = Aut: G - Inn G?

Moravec and Traustason

Let L be a SAA over the field with 3 elements, dimL = 2m. Then
3 a 2-Engel group F(L) of class 3, exp F(L) = 27 and rank 2m + 1
and one can see that for F(L) to be an example for Caranti's
question, the automorphism group of L would have to be trivial.

Does there exsist a (non trivial) SAA over the field with 3 elements
with trivial automorphism group?
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Question (Caranti)

Does there exist a finite 2-Engel 3-group, G, of class 3 such that
Aut G = Aut: G - Inn G?

Moravec and Traustason

Let L be a SAA over the field with 3 elements, dimL = 2m. Then
3 a 2-Engel group F(L) of class 3, exp F(L) = 27 and rank 2m + 1
and one can see that for F(L) to be an example for Caranti's
question, the automorphism group of L would have to be trivial.

Does there exsist a (non trivial) SAA over the field with 3 elements
with trivial automorphism group?

v

Answer to Caranti's question
YES! (Abdollahi, Faghihi, Linton, O'Brien)
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Symplectic Alternating Algebras (SAA)

Notation

If we have a SAA of dimension 2m then we will refer to a basis
X1,Y1," " ,Xm, Ym With the property that (x;, x;) = (yi,y;) = 0 and
(xi, ¥j) = 6jj as a standard basis.
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Symplectic Alternating Algebras (SAA)

Notation

If we have a SAA of dimension 2m then we will refer to a basis
X1,Y1," " ,Xm, Ym With the property that (x;, x;) = (yi,y;) = 0 and
(xi, ¥j) = 6jj as a standard basis.

We will also adopt the left-normed convention for multiple
products:
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Symplectic Alternating Algebras (SAA)

@ We say that a SAA is if x1xo -+ - x, = 0 for every
X1,X2,...,%Xn € L and for some integer n > 1.
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Symplectic Alternating Algebras (SAA)

@ We say that a SAA is if x1xo -+ - x, = 0 for every
X1,X2,...,%Xn € L and for some integer n > 1.
@ We define the of L as the smallest ¢ > 0 such

that x1x2 - - - xc41 = 0 for every x1,x2, ..., Xc+1 € L.
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Symplectic Alternating Algebras (SAA)

@ We say that a SAA is if x1xo -+ - x, = 0 for every
X1,X2,...,%Xn € L and for some integer n > 1.

o We define the of L as the smallest ¢ > 0 such
that x1x2 - - - xc41 = 0 for every x1,x2, ..., Xc+1 € L.

e If k is a positive integer, we say that an alternating algebra
(not necessarily symplectic) is if xy*k = 0 for every
x,y € L and k is the smallest positive integer enjoying this
property.
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(not necessarily symplectic) is if xy*k = 0 for every
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@ More generally, we define alternating nil-algebras to be
alternating nil-k algebras for some positive integer k.
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Symplectic Alternating Algebras (SAA)

@ We say that a SAA is if x1xo -+ - x, = 0 for every
X1,X2,...,%Xn € L and for some integer n > 1.

@ We define the of L as the smallest ¢ > 0 such
that x1x2 - - - xc41 = 0 for every x1,x2, ..., Xc+1 € L.

e If k is a positive integer, we say that an alternating algebra
(not necessarily symplectic) is if xy*k = 0 for every
x,y € L and k is the smallest positive integer enjoying this
property.

@ More generally, we define alternating nil-algebras to be
alternating nil-k algebras for some positive integer k.

Symplectic alternating abelian algebras are nilpotent
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Symplectic Alternating Algebras (SAA)

@ We say that a SAA is if x1xo -+ - x, = 0 for every
X1,X2,...,%Xn € L and for some integer n > 1.

@ We define the of L as the smallest ¢ > 0 such
that x1x2 - - - xc41 = 0 for every x1,x2, ..., Xc+1 € L.

e If k is a positive integer, we say that an alternating algebra
(not necessarily symplectic) is if xy*k = 0 for every
x,y € L and k is the smallest positive integer enjoying this
property.

@ More generally, we define alternating nil-algebras to be
alternating nil-k algebras for some positive integer k.

Symplectic alternating abelian algebras are nilpotent and SAA
which are nilpotent are clearly nil.
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Symplectic Alternating Algebras (SAA)

77 What can one say about the structure of symplectic
nil-algebras??
77Does a symplectic nil-algebra have to be nilpotent 77
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© Symplectic nil-2 algebras
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Symplectic nil-2 algebras

Obviously, every SAA which is associative is also nil-2.
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Symplectic nil-2 algebras

Obviously, every SAA which is associative is also nil-2.
The following characterization shows that if char F = 2, then every
symplectic nil-2 algebra over F is associative.

Proposition

Let L be a SAA. Then the following are equivalent:
(i) Lis nil-2;

(il) xyz = —xzy, Vx,y,z € L;

(iii) x(yz) = xzy, Vx,y,z € L.
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Symplectic nil-2 algebras

L SAA, dimL =2 = L abelian
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Symplectic nil-2 algebras

L SAA, dimL =2 = L abelian

L non abelian SAA, dimL =4
4

X1 X = 0
yiya = —y1.
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Symplectic nil-2 algebras

L SAA, dimL =2 = L abelian

L non abelian SAA, dimL =4
4

X1 X = 0
yiya = —y1.

and L is not nil: y1yx = (=1)ky1, V k > 1.
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Symplectic nil-2 algebras

L SAA, dimL =2 = L abelian

L non abelian SAA, dimL =4
4

X1 X = 0
yiy2 = —yi.

and L is not nil: y1yx = (=1)ky1, V k > 1.

L SAA, dimL =6, |F|=3

Symplectic nil-algebras
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Symplectic nil-2 algebras

L SAA, dimL =2 = L abelian

L non abelian SAA, dimL =4
4

L- X1 X = 0
yiy2 = —yi.

and L is not nil: y1yx = (=1)ky1, V k > 1.
L SAA, dimL =6, |F|=3

L non abelian nil-algebra & L=0& ¢

x1xp =0 yiya=y3
O X2X3:0 Cli y2y3:0
x3x1 =0 ysy1 = 0.

Symplectic nil-algebras
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Symplectic nil-2 algebras

Proposition

If L is a symplectic nil-2 algebra dim L = 6, then either L is abelian
or isomorphic to O @ (.
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Symplectic nil-2 algebras

Proposition

If L is a symplectic nil-2 algebra dim L = 6, then either L is abelian
or isomorphic to O @ (.
In particular, L is nilpotent of class at most 2.
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Symplectic nil-2 algebras

Let L be a SAA over a field F of characteristic # 2.
If Lis nil-2, then L is nilpotent of class at most 3.
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Symplectic nil-2 algebras

Let L be a SAA over a field F of characteristic # 2.
If Lis nil-2, then L is nilpotent of class at most 3.

v
Theorem

Let F be a field of characteristic 2 and let L be a SAA of
dimension n = 2m over F.
If Lis nil-2, then L is nilpotent of class at most [log,(m + 1)].

\
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Symplectic nil-2 algebras

Let L be a SAA over a field F of characteristic # 2.
If Lis nil-2, then L is nilpotent of class at most 3.

Let F be a field of characteristic 2 and let L be a SAA of
dimension n = 2m over F.

If Lis nil-2, then L is nilpotent of class at most [log,(m + 1)].

The bounds we have just got are the best possible!
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Symplectic nil-2 algebras

@ Let F be any field. There exists a symplectic nil-2 algebra L
which is nilpotent of class 3 and dim L = 14.
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Symplectic nil-2 algebras

@ Let F be any field. There exists a symplectic nil-2 algebra L
which is nilpotent of class 3 and dim L = 14.

@ Let F be the field with 2 elements and let r > 3. There exists
a symplectic nil-2 algebra L over F of dimension 2(2"~1 — 1)
which is nilpotent of class r — 1.
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Symplectic nil-2 algebras

Examples
@ Let F be any field. There exists a symplectic nil-2 algebra L
which is nilpotent of class 3 and dim L = 14.
@ Let F be the field with 2 elements and let r > 3. There exists
a symplectic nil-2 algebra L over F of dimension 2(2"~1 — 1)
which is nilpotent of class r — 1.

Proposition
Let F be a field and L a symplectic nil-2 algebra over F which is
nilpotent of class 3.

@ If char F = 2 then dim L > 14;

@ if char F # 2 then dim L > 8.
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Symplectic nil-3 algebras

© Symplectic nil-3 algebras
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Symplectic nil-3 algebras

Let F be a field such that |F| > 2 and let L be a symplectic nil-3
algebra over F.
Then L is not simple.
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Symplectic nil-3 algebras

Let F be a field such that |F| > 2 and let L be a symplectic nil-3
algebra over F.
Then L is not simple.

Proposition

If L is a symplectic nil-3 algebra over a field F, then either L is
simple or dim L > 8.

M. Tota (joint work with A. Tortora and G. Traustason) Symplectic nil-algebras



Symplectic nil-3 algebras

Let F be a field such that |F| > 2 and let L be a symplectic nil-3
algebra over F.
Then L is not simple.

Proposition

If L is a symplectic nil-3 algebra over a field F, then either L is
simple or dim L > 8.

As a straight consequence of those two results we get dimL > 8
whenever |F| > 2.
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Symplectic nil-3 algebras

Let L be a symplectic nil-3 algebra of dimension 8
over a field F of order > 2. J
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Symplectic nil-3 algebras

a bx?
Liry=1| ax bx |®&(x t).
ax®> b

axa = rb

ax’a = —rbx
ax?(ax) = rbx?
bxa = —t

axb =t

L(r) is nil-3 for all r € F and L(r) is nilpotent of class 5 when
r # 0 and nilpotent of class 3 when r = 0.
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Symplectic nil-3 algebras

The number (up to isomorphisms) of symplectic nil-3 algebras of

dimension 8 over a field F of order > 2
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Symplectic nil-3 algebras

The number (up to isomorphisms) of symplectic nil-3 algebras of

dimension 8 over a field F of order > 2

|F*/(F*)°| +1
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