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1. Introduction

Definition. We say that an element a ∈ G is right n-Engel if [a,n g] = 1
for all g ∈ G. A subgroup H of G is right n-Engel if all its elements are
right n-Engel. If G itself is right n-Engel then we say that G is an
n-Engel group

H is right 1-Engel iff H ≤ Z(G)

Example. Zn(G) is a right n-Engel subgroup of G.

Question 1. Let H be a normal right n-Engel subgroup of G. When is
H upper central?

Question 2. Supposing furthermore that H is upper central. When is
the upper central degree bounded in terms of n?
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A normal right 2-Engel subgroup that is not upper central

Consider

G = C2 wr C∞2
=

∏
g∈C∞2

〈ag〉 n C∞2

Let H =
∏

g∈C∞2
〈ag〉. Let g1, g2, . . . be the standard basis for c∞2 . Then

[a, g1, g2, . . . , gm] = a(−1+g1)···(−1+gm) = a(−1)m+···+g1···gm 6= 1.

In fact G is also a non-nilpotent 3-Engel group.
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A normal right 2-Engel subgroup can be upper central of an
arbitrary large degree

Consider

G = C2 wr Cm
2

=
∏

g∈Cm
2

〈ag〉 n Cm
2 .

Let H =
∏

g∈Cm
2
〈ag〉. Let g1, g2, . . . , gm be the standard basis for

cm
2 .Then

[a, g1, g2, . . . , gm] = a(−1+g1)···(−1+gm) = a(−1)m+···+g1···gm 6= 1.

Here H is upper central right 2-Engel subgroup of degree m + 1 and G
is a nilpotent 3-Engel group of class m + 2.
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2. The main structure results

Let G be a nilpotent n-Engel group.

Theorem 1(Wilson). If G is d-generated then G is nilpotent of
(d, n)-bounded class

Theorem 2(Zel’manov). If G is torsion-free then G is nilpotent of
n-bounded class.

Theorem 3(Crosby, T). There exist positive integers e(n), c(n) such that

[Ge(n),c(n) G] = {1}.

This strengthens a result of Burns and Medvedev that proved that one can choose
e(n), c(n) such that Ge(n) is nilpotent of class at most c(n)

Theorem 4(Burns and Medvedev). There exist positive integers
e(n), c(n) such that

γcn(G)e(n) = {1}.
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The Main Structure Results For Right n-Engel Subgroups

Let H be a normal right n-Engel subgroup of a group G that is upper central

Theorem 1(Crosby, T). If G is d-generated then H is upper central of
(d, n)-bounded degree
For n = 2 and d ≥ 2 we get that the degree is at most d + 1

Theorem 2 (Crosby, T). If H is torsion-free then H is upper central of
n-bounded degree
For n = 2 we get that the degree is at most 3

Theorem 3(Crosby, T). There exist positive integers e(n), c(n) such that

[He(n),c(n) G] = {1}.
We have e(2) = 2 and c(2) = 3

Theorem 4(Crosby, T). There exist positive integers e(n), c(n) such that

[H,c(n) G]e(n) = {1}.

We have e(2) = 2 and c(2) = 3
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3. The proofs of the main structure results

The main tool for the proof of Theorem 1 is

Theorem(Zel’manov) Let L = 〈x1, . . . , xd〉 be a d-generator Lie ring and r, s

be positive integers such that

(1)
P

σ∈Sn
uvσ(1) · · · vσ(r) = 0 for all u, v1, . . . , vr ∈ L

(2) uvs = 0 for all u ∈ L and all Lie products v in the generators.

Then L is nilpotent of (d, r, s)-bounded class.
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Theorem 1. If G is d-generated then H is upper central of
(d, n)-bounded degree.

Sketch proof. Suppose that G = 〈g1, . . . , gd〉. Consider the chains (Hi)
∞
i=0

and (Gi)
∞
i=1 where Hi = [H,i G] and Gi = γi(G). Let Ai = Hi/Hi+1 and

Li = Gi/Gi+1. Let

L = L1 ⊕ L2 ⊕ · · · , A = A0 ⊕ A1 ⊕ · · ·

Where L becomes the associated Lie ring of G and A is treated as an abelian
Lie ring. We get naturally a semidirect product of Lie rings A n L, where the
action from L on A is induced from hHi+1 · gGj+1 = [h, g]Hi+j+1 ∈ Ai+j for
hHi+1 ∈ Ai and gGj+1 ∈ Lj. For a fixed h ∈ H consider the elements
a = hH1 ∈ A0 and l1 = g1G1, . . . , ld = gdG1 ∈ L1. One shows that the subring
M = 〈aCL(A), l1CL(A), . . . , ldCL(A)〉 of A n L/CL(A) satisfies conditions (1) and
(2) of Zel’manov’s Theorem for r = 3n − 1 and s = 2n − 1. It follows that M is
nilpotent of (d, n) bounded class c. In particular aLc = {0} and thus
ALc = {0}. Hence

[H,c G] ≤ [H,c+1 G] ⇒ [H,c G] = {1}.
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The main tool for proving

Theorem 2. If H is torsion-free then H is upper central of n-bounded
degree

is similarly

Theorem(Zel’manov) Let L be a torsion-free n-Engel Lie ring. Then L is
nilpotent of n-bounded class.

Need to work with Hi = H
p

[H,i G] and Gi = G
p

γi(G) instead.
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4. Powerfully embedded right Engel subgroups

Let G be a finite p-group. We say that a subgroup H of G is powerfully
embedded if [H, G] ≤ Hp ([H, G] ≤ H4 if p = 2).

Theorem 5(Crosby, T). Let H be a powerfully embedded subgroup of a
finite p-group G. There exists a positive integer d(n) such that

[H,d(n) G] = {1}.

Sketch Proof. By structure theorem 3, there exist positive integers
e(n) = pr1(n)

1 · · · prm(n)
m and c(n) such that [He(n),c(n) G] = {1}. Let

r = r(n) = max {r1(n), . . . , rm(n)}. Using [H, G] ≤ Hp and standard properties
of powerfully embedded subgroups, we see that [H,r(n) G] ≤ Hpr(n)

It follows
that

[H,r(n)+c(n) G] ≤ [Hpr(n)
,c(n) G] = {1}.
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