The Brauer-Clifford group of G-rings

Alexandre Turull

University of Florida

April 16, 2010

Ischia Group Theory 2010

Ischia, Italy
Notation

G a finite group,
$Irr(G)$ its complex irreducible characters.
p a prime.

F a field.

If $\chi \in Irr(G)$ then $F(\chi)$ is the field of values of χ over F.
Notation

G a finite group,
$Irr(G)$ its complex irreducible characters.
p a prime.
F a field.

If $\chi \in Irr(G)$ then $F(\chi)$ is the field of values of χ over F.
If $\chi \in Irr(G)$ then $m_F(\chi)$ is the Schur index of χ with respect to F.

Notation

G a finite group,
$Irr(G)$ its complex irreducible characters.
p a prime.
F a field.

If $\chi \in Irr(G)$ then $F(\chi)$ is the field of values of χ over F.

If $\chi \in Irr(G)$ then $m_F(\chi)$ is the Schur index of χ with respect to F.

Q_p is the field of p-adic numbers.
Notation

G a finite group,
$Irr(G)$ its complex irreducible characters.

p a prime.

F a field.

If $\chi \in Irr(G)$ then $F(\chi)$ is the field of values of χ over F.

If $\chi \in Irr(G)$ then $m_F(\chi)$ is the Schur index of χ with respect to F.

\mathbb{Q}_p is the field of p-adic numbers.
Notation

G a finite group,
$Irr(G)$ its complex irreducible characters.

p a prime.

F a field.

If $\chi \in Irr(G)$ then $F(\chi)$ is the field of values of χ over F.

If $\chi \in Irr(G)$ then $m_F(\chi)$ is the Schur index of χ with respect to F.

\mathbb{Q}_p is the field of p-adic numbers.
Applications of the Brauer-Clifford group
Theorem

Let P be a p-subgroup of G, and let N be a normal p'-subgroup of G, and suppose that PN is a normal subgroup of G. Let $\theta \in \text{Irr}(N)$ be P-invariant, and let $\phi \in \text{Irr}(C_N(P))$ be its Glauberman correspondent. Then the Clifford theory of θ in G over \mathbb{Q}_p is the same as the Clifford theory of ϕ in $N_G(P)$ over \mathbb{Q}_p.
Theorem

Let P be a p-subgroup of G, and let N be a normal p'-subgroup of G, and suppose that PN is a normal subgroup of G. Let $\theta \in \text{Irr}(N)$ be P-invariant, and let $\phi \in \text{Irr}(C_N(P))$ be its Glauberman correspondent. Then $[[\theta]]_{G,Q_p} = [[\phi]]_{N_G(P),Q_p} \in \text{BrClif}(G/N, Z(\theta, \pi, Q_p))$.
Strengthened McKay Conjecture (Alperin, Isaacs, Navarro, Turull)

There is a bijection $f : \text{Irr}_{p'}(G) \rightarrow \text{Irr}_{p'}(N_G(P))$ such that

$$f(\chi)(1) \equiv \pm \chi(1) \pmod{p} \quad \text{for all } \chi \in \text{Irr}_{p'}(G)$$

$$Q_p(f(\chi)) = Q_p(\chi) \quad \text{for all } \chi \in \text{Irr}_{p'}(G)$$

$$m_{Q_p}(f(\chi)) = m_{Q_p}(\chi) \quad \text{for all } \chi \in \text{Irr}_{p'}(G),$$

and similar conditions on f for the block version.
Theorem

If G is any p-solvable group, then the strengthened McKay Conjecture holds for G.
Modules over G-rings
Definition

A *G*-ring is a ring R together with a group homomorphism $\phi : G \to \text{Aut}(R)$.

Definition

R is a simple *G*-ring if R is not zero and it has no non-trivial proper two-sided G-invariant ideals.
Definition

A G-ring is a ring R together with a group homomorphism $\phi : G \to \text{Aut}(R)$.

Definition

R is a simple G-ring if R is not zero and it has no non-trivial proper two-sided G-invariant ideals.
Lemma

Let Z be a commutative simple G-ring. Let e_1, \ldots, e_α be the primitive idempotents of Z, and set $K_i = e_i Z$. Then,

1. K_i is a field.
2. G acts transitively on \{e_1, \ldots, e_\alpha\}.
3. $Z = K_1 \oplus \cdots \oplus K_\alpha$.
Definition

Let R be a G-ring. Then the group ring RG is the set of all formal linear combinations of G with coefficients in R.

Even when $R = \mathbb{Z}$ is commutative, a group ring is not necessarily an algebra over \mathbb{Z}.
Definition
Let R be a G-ring. Then the group ring RG is the set of all formal linear combinations of G with coefficients in R.

Even when $R = Z$ is commutative, a group ring is not necessarily an algebra over Z.
Definition

Let G be a finite group and R be a G-ring. A G-module over R is simply an RG-module.
Theorem

Let Z be a commutative simple G-ring, and let M be a G-module over Z. Then M is free as a Z-module.
Definition

Let Z be a commutative G-ring. A G-algebra over Z is a G-ring A together with an additional structure on A of G-module over Z, which uses the algebra addition on A, and satisfies the conditions that, for all $a, b \in A$, $w, z \in Z$, and $g \in G$, we have $(wa)(zb) = (wz)(ab)$, and $g(wa) = gwg a$.
Definition

Let Z be a commutative G-ring, let A be a G-algebra over Z, and let $u : Z \rightarrow Z(A)$ be the structural G-ring homomorphism. We will say that A is a \textit{central} G-algebra over Z if u is an isomorphism from Z onto $Z(A)$.
Theorem

Let G be a finite group, and Z be a commutative simple G-ring. Let A be a central simple G-algebra of finite rank over Z. Then, for each primitive idempotent e of Z, we have that eA is a central simple algebra of finite dimension over the field eZ. Furthermore, if e_1, \ldots, e_α are the primitive idempotents of Z, then

$$A = e_1 A \oplus \cdots \oplus e_\alpha A,$$

as rings.
Theorem

Let Z be a commutative simple G-ring. Let A and B be central simple G-algebras of finite rank over Z. Then $A \otimes_Z B$ is a central simple G-algebra of finite rank over Z.

Definition

Let Z a commutative simple G-ring. We say that a central simple G-algebra A over Z is trivial if there exists a finitely generated non-zero G-module M over Z such that $\text{End}_Z(M)$ is isomorphic to A as central simple G-algebras over Z.
Lemma

Let Z a commutative simple G-ring, and let T and S be trivial central simple G-algebras over Z. Then, $T \otimes_Z S$ is a trivial central simple G-algebra over Z.
Lemma

Let Z a commutative simple G-ring. Let A be a central simple G-algebra of finite rank over Z. Then, A^{op} is a central simple G-algebra of finite rank over Z, and $A \otimes_Z A^{\text{op}} \cong \text{End}_Z(A)$, as G-algebras over Z, where we view A as a finitely generated G-module over Z. In particular, $A \otimes_Z A^{\text{op}}$ is a trivial G-algebra over Z.
Let Z be a commutative simple G-ring.

Definition

Suppose A, and B are central simple G-algebras of finite rank over Z. Then, we say that A is equivalent to B if and only if there exist trivial G-algebras T_1 and T_2 over Z such that

$$A \otimes_Z T_1 \sim B \otimes_Z T_2$$

as central G-algebras over Z.
We define the Brauer-Clifford group of G over \mathbb{Z} to be the set

$$\text{BrClif}(G, \mathbb{Z})$$

of equivalence classes of central simple G-algebras of finite rank over \mathbb{Z}, together with the binary operation induced by the tensor product over \mathbb{Z} of central simple G-algebras over \mathbb{Z}.
Let Z be a commutative simple G-algebra. Then, the Brauer-Clifford group $\text{BrClif}(G, Z)$ of G over Z is an abelian group.
Further notation

Let Z be a commutative simple G-ring.
Let e_1 be a primitive idempotent of Z, and set

$$K_1 = e_1 Z, \quad I_1 = C_G(e_1), \quad \text{and} \quad F_1 = K_1^{I_1}.$$

Then, K_1 is an extension field of the field F_1, and K_1/F_1 is a finite Galois extension.
Further notation

Let Z be a commutative simple G-ring.
Let e_1 be a primitive idempotent of Z, and set

$$K_1 = e_1 Z, \quad I_1 = C_G(e_1), \quad \text{and} \quad F_1 = K_1^{I_1}.$$

Then, K_1 is an extension field of the field F_1, and K_1/F_1 is a finite Galois extension.
Lemma

Let A be a central simple G-algebra of finite rank over \mathbb{Z}. Then, $e_1 A$ is a central simple algebra over the field K_1, and its class $[e_1 A]$ in the Brauer group $\text{Br}(K_1)$ is invariant under the action of I_1, we write $[e_1 A] \in \text{Br}(K_1)^I$. Furthermore, the map

$$\phi : \text{BrClif}(G, \mathbb{Z}) \rightarrow \text{Br}(K_1)^I$$

defined by $\phi([[A]]) = [e_1 A]$, for all central simple G-algebra A over \mathbb{Z} (where $[[A]]$ is the class in $\text{BrClif}(G, \mathbb{Z})$ of A), is a group homomorphism. Finally, the kernel of ϕ does not depend on the choice of the idempotent e_1.

Alexandre Turull (University of Florida)

Brauer-Clifford

April 16, 2010 24 / 42
Definition
Let G be a finite group, and Z be a commutative simple G-ring. We call the kernel of any one of the homomorphisms ϕ the full matrix subgroup of the Brauer-Clifford group of G over Z, and we denote it by $\text{FMBrClif}(G, Z)$.
Theorem

Let G be a finite group, and Z be a commutative simple G-ring. Then $\text{FMBrClif}(G, Z)$ is isomorphic to $H^2(G, Z^\times)$.
Clifford theory
Set up

\[\pi : G \rightarrow \overline{G} \text{ a surjective homomorphism of finite groups} \]

\[H = \ker(\pi) \text{ and } F \text{ a field.} \]

\[S \text{ an irreducible } FG\text{-module.} \]
Definition

Set $Z_0 = Z(FH)/J(Z(FH))$, and \bar{G} acts on Z_0. Furthermore, $Z(FH)/J(Z(FH))$ acts on S. Let e be the unique primitive idempotent of $Z_0^{\bar{G}}$ which acts non-trivially on S. Then, we set $Z = eZ_0$. We define the center ring of S with respect to S and F to be the \bar{G}-ring Z, and we denote it by $Z(S, \pi, F)$.
Lemma

$Z(S, \pi, F)$ is a commutative simple \overline{G}-ring.
Definition

An FG-module M is S-quasihomogeneous (with respect to H) if it is not 0, its restriction to H is completely reducible, and e acts as the identity on M.
Theorem

Suppose that M is any S-quasihomogeneous G-module over F. Then, $\text{End}_{FH}(M)$ is a central simple \overline{G}-algebra over \mathbb{Z}. Furthermore, the class in $\text{BrClif}(\overline{G}, \mathbb{Z})$ of $\text{End}_{FH}(M)$ does not depend on the choice of M.

This assigns an element $[[S]] \in \text{BrClif}(\overline{G}, \mathbb{Z})$ to S.
Theorem

The element $[[S]]$ determines the Clifford theory of S.
Clifford theory in the classical cases
Theorem (Clifford theory in the induced case)

Let \(H \) be a normal subgroup of \(G \), and let \(\theta \in \text{Irr}(H) \). Let \(I \) be the inertia group of \(\theta \). Then induction provides the Clifford theory of \(\theta \) over \(G \) from that of \(\theta \) over \(I \).
The center ring

Let $\theta_1 = \theta, \ldots, \theta_n$ be the G-conjugates of θ.

Let $e_{\theta_1}, \ldots, e_{\theta_n}$ be the corresponding idempotents of $Z(CH)$.

Let $e = e_{\theta_1} + \cdots + e_{\theta_n}$.
The center ring

Let $\theta_1 = \theta, \ldots, \theta_n$ be the G-conjugates of θ.
Let $e_{\theta_1}, \ldots, e_{\theta_n}$ be the corresponding idempotents of $Z(CH)$.
Let $e = e_{\theta_1} + \cdots + e_{\theta_n}$.
Then $Z(\theta, \pi, C) = e Z(CH)$ as a G/H-ring.
The center ring

Let $\theta_1 = \theta, \ldots, \theta_n$ be the G-conjugates of θ.

Let $e_{\theta_1}, \ldots, e_{\theta_n}$ be the corresponding idempotents of $Z(CH)$.

Let $e = e_{\theta_1} + \cdots + e_{\theta_n}$.

Then $Z(\theta, \pi, C) = eZ(CH)$ as a G/H-ring.

$Z(\theta, \pi, C) \simeq C \oplus \cdots \oplus C$ where there are n copies of C, and G/H acts transitively on these copies.
The center ring

Let $\theta_1 = \theta, \ldots, \theta_n$ be the G-conjugates of θ.
Let $e_{\theta_1}, \ldots, e_{\theta_n}$ be the corresponding idempotents of $Z(CH)$.
Let $e = e_{\theta_1} + \cdots + e_{\theta_n}$.

Then $Z(\theta, \pi, C) = e Z(CH)$ as a G/H-ring.

$Z(\theta, \pi, C) \simeq C \oplus \cdots \oplus C$ where there are n copies of C,
and G/H acts transitively on these copies.
This transitive action determines the inertia group I up to G-conjugacy.
The center ring

Let $\theta_1 = \theta, \ldots, \theta_n$ be the G-conjugates of θ.
Let $e_{\theta_1}, \ldots, e_{\theta_n}$ be the corresponding idempotents of $Z(CH)$.
Let $e = e_{\theta_1} + \cdots + e_{\theta_n}$.

Then $Z(\theta, \pi, C) = eZ(CH)$ as a G/H-ring.

$Z(\theta, \pi, C) \cong C \oplus \cdots \oplus C$ where there are n copies of C,
and G/H acts transitively on these copies.

This transitive action determines the inertia group I up to G-conjugacy.
The center ring

Let $\theta_1 = \theta, \ldots, \theta_n$ be the G-conjugates of θ.

Let $e_{\theta_1}, \ldots, e_{\theta_n}$ be the corresponding idempotents of $Z(CH)$.

Let $e = e_{\theta_1} + \cdots + e_{\theta_n}$.

Then $Z(\theta, \pi, C) = e Z(CH)$ as a G/H-ring.

$Z(\theta, \pi, C) \cong C \oplus \cdots \oplus C$ where there are n copies of C, and G/H acts transitively on these copies.

This transitive action determines the inertia group I up to G-conjugacy.
The classical cases

Theorem (Clifford theory in the induced case)

Let H be a normal subgroup of G, and let $\theta \in \text{Irr}(H)$ Let I be the inertia group of θ. Then induction provides the Clifford theory of θ over G from that of θ over I.
The classical cases

Theorem (Clifford theory in the induced case)

Let H be a normal subgroup of G, and let $\theta \in \text{Irr}(H)$ let I be the inertia group of θ. Then induction provides the Clifford theory of θ over G from that of θ over I.

Theorem (Brauer-Clifford in the induced case)

Let H be a normal subgroup of G, let $\theta \in \text{Irr}(H)$, and let I be the inertia group of θ. Then

$$\text{Ind}_{I/H}^{G/H} : \text{BrClif}(I/H, Z(\theta, \pi_I, C)) \to \text{BrClif}(G/H, Z(\theta, \pi, C))$$

is a group isomorphism, and $\text{Ind}_{I/H}^{G/H} ([[\theta]]_{I,C}) = [[\theta]]_{G,C}$.
Theorem (Clifford theory in the homogeneous case)

Let H be a normal subgroup of G, let $\theta \in \text{Irr}(H)$, and suppose that θ is G-invariant. Then the Clifford theory of θ over G is determined by some element of $H^2(G/H, \mathbb{C}^\times)$.
The classical cases

Theorem (Clifford theory in the homogeneous case)

Let H be a normal subgroup of G, let $\theta \in \text{Irr}(H)$, and suppose that θ is G-invariant. Then the Clifford theory of θ over G is determined by some element of $H^2(G/H, \mathbb{C}^\times)$.

Theorem (Brauer-Clifford in the homogeneous case)

Let H be a normal subgroup of G, let $\theta \in \text{Irr}(H)$, and suppose that θ is G-invariant. Then $Z(\theta, \pi, \mathbb{C}) \cong \mathbb{C}$ and

$$\text{BrClif}(G/H, \mathbb{C}) \cong H^2(G/H, \mathbb{C}^\times).$$
The classical cases

Theorem (Clifford theory in the $G = H$ case)

Suppose that $H = G$, and let $\theta \in \text{Irr}(H)$. Then the Schur index of θ over any extension field of $\mathbb{Q}(\theta)$ is determined by some element of $\text{Br}(\mathbb{Q}(\theta))$.
The classical cases

Theorem (Clifford theory in the $G = H$ case)

Suppose that $H = G$, and let $\theta \in \text{Irr}(H)$. Then the Schur index of θ over any extension field of $\mathbb{Q}(\theta)$ is determined by some element of $\text{Br}(\mathbb{Q}(\theta))$.

Theorem (Brauer-Clifford in the $G = H$ case)

Suppose that $H = G$, and let $\theta \in \text{Irr}(H)$. Then $Z(\theta, \pi, \mathbb{Q}) \simeq \mathbb{Q}(\theta)$, and

$$\text{BrClif}(G/G, \mathbb{Q}(\theta)) \simeq \text{Br}(\mathbb{Q}(\theta)).$$