The Brauer-Clifford group of G-rings

Alexandre Turull

University of Florida

April 16, 2010

Ischia Group Theory 2010

Ischia, Italy

Notation

G a finite group, $\operatorname{Irr}(G)$ its complex irreducible characters. p a prime.

Notation

G a finite group,
$\operatorname{Irr}(G)$ its complex irreducible characters.
p a prime.
F a field.

Notation
G a finite group,
$\operatorname{Irr}(G)$ its complex irreducible characters.
p a prime.
F a field.
If $\chi \in \operatorname{Irr}(G)$ then $F(\chi)$ is the field of values of χ over F.

Notation
G a finite group,
$\operatorname{Irr}(G)$ its complex irreducible characters.
p a prime.
F a field.
If $\chi \in \operatorname{lrr}(G)$ then $F(\chi)$ is the field of values of χ over F.
If $\chi \in \operatorname{Irr}(G)$ then $\mathrm{m}_{F}(\chi)$ is the Schur index of χ with respect to F.

Notation

G a finite group,
$\operatorname{Irr}(G)$ its complex irreducible characters.
p a prime.
F a field.
If $\chi \in \operatorname{lrr}(G)$ then $F(\chi)$ is the field of values of χ over F.
If $\chi \in \operatorname{Irr}(G)$ then $\mathrm{m}_{F}(\chi)$ is the Schur index of χ with respect to F.
\mathbf{Q}_{p} is the field of p-adic numbers.

Applications of the Brauer-Clifford group

Theorem

Let P be a p-subgroup of G, and let N be a normal p^{\prime}-subgroup of G, and suppose that $P N$ is a normal subgroup of G. Let $\theta \in \operatorname{Irr}(N)$ be P-invariant, and let $\phi \in \operatorname{lrr}\left(\mathrm{C}_{N}(P)\right)$ be its Glauberman correspondent. Then the Clifford theory of θ in G over \mathbf{Q}_{p} is the same as the Clifford theory of ϕ in $\mathrm{N}_{G}(P)$ over \mathbf{Q}_{p}.

Theorem

Let P be a p-subgroup of G, and let N be a normal p^{\prime}-subgroup of G, and suppose that $P N$ is a normal subgroup of G. Let $\theta \in \operatorname{lrr}(N)$ be P-invariant, and let $\phi \in \operatorname{lrr}\left(\mathrm{C}_{N}(P)\right)$ be its Glauberman correspondent. Then $[[\theta]]_{G, \mathbf{Q}_{P}}=[[\phi]]_{N_{G}(P), \mathbf{Q}_{p}} \in \operatorname{BrClif}\left(G / N, Z\left(\theta, \pi, \mathbf{Q}_{p}\right)\right)$.

Strengthened McKay Conjecture (Alperin, Isaacs,

Navarro, Turull)

There is a bijection $f: \operatorname{Irr}_{p^{\prime}}(G) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)$ such that

$$
f(\chi)(1) \equiv \pm \chi(1) \quad(\bmod p) \quad \text { for all } \chi \in \operatorname{Irr}_{p^{\prime}}(G)
$$

$$
\mathbf{Q}_{p}(f(\chi))=\mathbf{Q}_{p}(\chi) \quad \text { for all } \chi \in \operatorname{Irr}_{p^{\prime}}(G)
$$

$$
\mathrm{m}_{\mathbf{Q}_{p}}(f(\chi))=\mathrm{m}_{\mathbf{Q}_{p}}(\chi) \quad \text { for all } \chi \in \operatorname{Irr}_{p^{\prime}}(G)
$$

and similar conditions on f for the block version.

Theorem If G is any p-solvable group, then the strengthened McKay Conjecture holds for G.

Modules over G-rings

Definition

A G-ring is a ring R together with a group homomorphism $\phi: G \rightarrow \operatorname{Aut}(R)$.

Definition

A G-ring is a ring R together with a group homomorphism $\phi: G \rightarrow \operatorname{Aut}(R)$.

Definition

R is a simple G-ring if R is not zero and it has no non-trivial proper two-sided G-invariant ideals.

Lemma

Let Z be a commutative simple G-ring. Let $e_{1}, \ldots, e_{\alpha}$ be the primitive idempotents of Z, and set $K_{i}=e_{i} Z$ Then,
(1) K_{i} is a field.
(2) G acts transitively on $\left\{e_{1}, \ldots, e_{\alpha}\right\}$.
(3) $Z=K_{1} \oplus \cdots \oplus K_{\alpha}$.

Definition
 Let R be a G-ring. Then the group ring $R G$ is the set of all formal linear combinations of G with coefficients in R.

Definition
 Let R be a G-ring. Then the group ring $R G$ is the set of all formal linear combinations of G with coefficients in R.

Even when $R=Z$ is commutative, a group ring is not necessarily an algebra over Z.

Definition
 Let G be a finite group and R be a G-ring. A G-module over R is simply an $R G$-module.

Theorem
 Let Z be a commutative simple G-ring, and let M be a G-module over Z. Then M is free as a Z-module.

Definition

Let Z be a commutative G-ring. A \underline{G}-algebra over Z is a G-ring A together with an additional structure on A of G-module over Z, which uses the algebra addition on A, and satisfies the conditions that, for all $a, b \in A, w, z \in Z$, and $g \in G$, we have $(w a)(z b)=(w z)(a b)$, and ${ }^{g}(w a)=g^{g}{ }^{g} a$.

Definition

Let Z be a commutative G-ring, let A be a G-algebra over Z, and let $u: Z \rightarrow Z(A)$ be the structural G-ring homomorphism. We will say that A is a central G-algebra over Z if u is an isomorphism from Z onto $Z(A)$.

Theorem

Let G be a finite group, and Z be a commutative simple G-ring. Let A be a central simple G-algebra of finite rank over Z. Then, for each primitive idempotent e of Z, we have that eA is a central simple algebra of finite dimension over the field eZ. Furthermore, if $e_{1}, \ldots, e_{\alpha}$ are the primitive idempotents of Z, then

$$
A=e_{1} A \oplus \cdots \oplus e_{\alpha} A,
$$

as rings.

Theorem
 Let Z be a commutative simple G-ring. Let A and B be central simple G-algebras of finite rank over Z. Then $A \otimes_{Z} B$ is a central simple G-algebra of finite rank over Z.

Definition

Let Z a commutative simple G-ring. We say that a central simple G-algebra A over Z is trivial if there exists a finitely generated non-zero G-module M over Z such that $\operatorname{End}_{Z}(M)$ is isomorphic to A as central simple G-algebras over Z.

Lemma

Let Z a commutative simple G-ring, and let T and S be trivial central simple G-algebras over Z. Then, $T \otimes_{Z} S$ is a trivial central simple G-algebra over Z.

Lemma

Let Z a commutative simple G-ring. Let A be a central simple G-algebra of finite rank over Z. Then, $A^{o p}$ is a central simple G-algebra of finite rank over Z, and $A \otimes_{Z} A^{\circ p} \simeq \operatorname{End}_{Z}(A)$, as G-algebras over Z, where we view A as a finitely generated G-module over Z. In particular, $A \otimes_{Z} A^{o p}$ is a trivial G-algebra over Z.

Let Z be a commutative simple G-ring.

Definition

Suppose A, and B are central simple G-algebras of finite rank over Z. Then, we say that A is equivalent to B if and only if there exist trivial G-algebras T_{1} and T_{2} over Z such that

$$
A \otimes_{Z} T_{1} \simeq B \otimes_{Z} T_{2}
$$

as central G-algebras over Z.

Definition

We define the Brauer-Clifford group of G over Z to be the set

$$
\operatorname{BrClif}(G, Z)
$$

of equivalence classes of central simple G-algebras of finite rank over Z, together with the binary operation induced by the tensor product over Z of central simple G-algebras over Z.

Theorem

Let Z be a commutative simple G-algebra. Then, the Brauer-Clifford group $\operatorname{BrClif}(G, Z)$ of G over Z is an abelian group.

Further notation

Let Z be a commutative simple G-ring.
Let e_{1} be a primitive idempotent of Z, and set

$$
K_{1}=e_{1} Z, I_{1}=C_{G}\left(e_{1}\right) \text {, and } F_{1}=K_{1}^{\Lambda_{1}} .
$$

Further notation

Let Z be a commutative simple G-ring.
Let e_{1} be a primitive idempotent of Z, and set

$$
K_{1}=e_{1} Z, I_{1}=C_{G}\left(e_{1}\right), \text { and } F_{1}=K_{1}^{I_{1}}
$$

Then, K_{1} is an extension field of the field F_{1}, and K_{1} / F_{1} is a finite Galois extension.

Lemma

Let A be a central simple G-algebra of finite rank over Z. Then, $e_{1} A$ is a central simple algebra over the field K_{1}, and its class $\left[e_{1} A\right]$ in the Brauer group $\operatorname{Br}\left(K_{1}\right)$ is invariant under the action of I_{1}, we write $\left[e_{1} A\right] \in \operatorname{Br}\left(K_{1}\right)^{h_{1}}$. Furthermore, the map

$$
\phi: \operatorname{BrClif}(G, Z) \rightarrow \operatorname{Br}\left(K_{1}\right)^{1_{1}}
$$

defined by $\phi([[A]])=\left[e_{1} A\right]$, for all central simple G-algebra A over Z (where $[[A]]$ is the class in $\operatorname{BrClif}(G, Z)$ of A), is a group homomorphism. Finally, the kernel of ϕ does not depend on the choice of the idempotent e_{1}.

Definition

Let G be a finite group, and Z be a commutative simple G-ring. We call the kernel of any one of the homomorphisms ϕ the full matrix subgroup of the Brauer-Clifford group of G over Z, and we denote it by $\operatorname{FMBrClif}(G, Z)$.

Theorem

Let G be a finite group, and Z be a commutative simple G-ring. Then $\operatorname{FMBrClif}(G, Z)$ is isomorphic to $H^{2}\left(G, Z^{\times}\right)$.

Clifford theory

Set up

$\pi: G \rightarrow \bar{G}$ a surjective homomorphism of finite groups

$$
H=\operatorname{ker}(\pi) \text { and } F \text { a field. }
$$

S an irreducible $F G$-module.

Definition

Set $Z_{0}=Z(F H) / J(Z(F H))$, and \bar{G} acts on Z_{0}. Furthermore, $Z(F H) / J(Z(F H))$ acts on S. Let e be the unique primitive idempotent of $Z_{0}^{\bar{G}}$ which acts non-trivially on S. Then, we set $Z=e Z_{0}$. We define the center ring of S with respect to S and F to be the \bar{G}-ring Z, and we denote it by $Z(S, \pi, F)$.

Lemma

$Z(S, \pi, F)$ is a commutative simple \bar{G}-ring.

Definition
 An $F G$-module M is S-quasihomogeneous (with respect to H) if it is not 0 , its restriction to H is completely reducible, and e acts as the identity on M.

Theorem

Suppose that M is any S-quasihomogeneous G-module over F. Then, $\operatorname{End}_{F H}(M)$ is a central simple \bar{G}-algebra over Z. Furthermore, the class in $\operatorname{BrClif}(G, Z)$ of $\operatorname{End}_{F H}(M)$ does not depend on the choice of M.

This assigns an element $[[S]] \in \operatorname{BrClif}(\bar{G}, Z)$ to S.

Theorem
 The element [[S]] determines the Clifford theory of S.

Clifford theory in the classical cases

Theorem (Clifford theory in the induced case)

Let H be a normal subgroup of G, and let $\theta \in \operatorname{lrr}(H)$ Let I be the inertia group of θ. Then induction provides the Clifford theory of θ over G from that of θ over I.

The center ring
Let $\theta_{1}=\theta, \ldots, \theta_{n}$ be the G-conjugates of θ.

The center ring
Let $\theta_{1}=\theta, \ldots, \theta_{n}$ be the G-conjugates of θ.
Let $e_{\theta_{1}}, \ldots, e_{\theta_{n}}$ be the corresponding idempotents of $Z(C H)$.

The center ring
Let $\theta_{1}=\theta, \ldots, \theta_{n}$ be the G-conjugates of θ.
Let $e_{\theta_{1}}, \ldots, e_{\theta_{n}}$ be the corresponding idempotents of $Z(\mathbf{C H})$.
Let $e=e_{\theta_{1}}+\cdots+e_{\theta_{n}}$.

The center ring
Let $\theta_{1}=\theta, \ldots, \theta_{n}$ be the G-conjugates of θ.
Let $e_{\theta_{1}}, \ldots, e_{\theta_{n}}$ be the corresponding idempotents of $Z(C H)$.
Let $e=e_{\theta_{1}}+\cdots+e_{\theta_{n}}$.
Then $Z(\theta, \pi, \mathbf{C})=e Z(\mathbf{C H})$ as a G / H-ring.

The center ring
Let $\theta_{1}=\theta, \ldots, \theta_{n}$ be the G-conjugates of θ.
Let $e_{\theta_{1}}, \ldots, e_{\theta_{n}}$ be the corresponding idempotents of $Z(\mathbf{C H})$.
Let $e=e_{\theta_{1}}+\cdots+e_{\theta_{n}}$.
Then $Z(\theta, \pi, \mathbf{C})=e \mathbf{Z}(\mathbf{C H})$ as a G / H-ring.
$Z(\theta, \pi, \mathbf{C}) \simeq \mathbf{C} \oplus \cdots \oplus \mathbf{C}$ where there are n copies of \mathbf{C}, and G / H acts transitively on these copies.

The center ring
Let $\theta_{1}=\theta, \ldots, \theta_{n}$ be the G-conjugates of θ.
Let $e_{\theta_{1}}, \ldots, e_{\theta_{n}}$ be the corresponding idempotents of $Z(\mathbf{C H})$.
Let $e=e_{\theta_{1}}+\cdots+e_{\theta_{n}}$.
Then $Z(\theta, \pi, \mathbf{C})=e \mathbf{Z}(\mathbf{C H})$ as a G / H-ring.
$Z(\theta, \pi, \mathbf{C}) \simeq \mathbf{C} \oplus \cdots \oplus \mathbf{C}$ where there are n copies of \mathbf{C}, and G / H acts transitively on these copies.

This transitive action determines the inertia group I up to G-conjugacy.

Theorem (Clifford theory in the induced case)

Let H be a normal subgroup of G, and let $\theta \in \operatorname{lrr}(H)$ Let I be the inertia group of θ. Then induction provides the Clifford theory of θ over G from that of θ over I.

Theorem (Clifford theory in the induced case)

Let H be a normal subgroup of G, and let $\theta \in \operatorname{lrr}(H)$ Let I be the inertia group of θ. Then induction provides the Clifford theory of θ over G from that of θ over I.

Theorem (Brauer-Clifford in the induced case)

Let H be a normal subgroup of G, let $\theta \in \operatorname{lrr}(H)$, and let I be the inertia group of θ. Then

$$
\operatorname{Ind}_{I / H}^{G / H}: \operatorname{BrClif}\left(I / H, Z\left(\theta, \pi_{l}, \mathrm{C}\right)\right) \rightarrow \operatorname{BrClif}(G / H, Z(\theta, \pi, \mathrm{C}))
$$

is a group isomorphism, and $\operatorname{Ind}_{/ / H}^{G / H}\left([[\theta]]_{/, \mathrm{C}}\right)=[[\theta]]_{G, \mathrm{c}}$.

Theorem (Clifford theory in the homogeneous case)

Let H be a normal subgroup of G, let $\theta \in \operatorname{lrr}(H)$, and suppose that θ is G-invariant. Then the Clifford theory of θ over G is determined by some element of $H^{2}\left(G / H, \mathbf{C}^{\times}\right)$.

Theorem (Clifford theory in the homogeneous case)

Let H be a normal subgroup of G, let $\theta \in \operatorname{lrr}(H)$, and suppose that θ is G-invariant. Then the Clifford theory of θ over G is determined by some element of $H^{2}\left(G / H, \mathbf{C}^{\times}\right)$.

Theorem (Brauer-Clifford in the homogeneous case)

Let H be a normal subgroup of G, let $\theta \in \operatorname{lrr}(H)$, and suppose that θ is G -invariant. Then $\mathrm{Z}(\theta, \pi, \mathbf{C}) \simeq \mathbf{C}$ and

$$
\operatorname{BrClif}(G / H, \mathbf{C}) \simeq H^{2}\left(G / H, \mathbf{C}^{\times}\right) .
$$

Theorem (Clifford theory in the $G=H$ case)

Suppose that $H=G$, and let $\theta \in \operatorname{lrr}(H)$. Then the Schur index of θ over any extension field of $\mathbf{Q}(\theta)$ is determined by some element of $\operatorname{Br}(\mathbf{Q}(\theta))$.

Theorem (Clifford theory in the $G=H$ case)

Suppose that $H=G$, and let $\theta \in \operatorname{lrr}(H)$. Then the Schur index of θ over any extension field of $\mathbf{Q}(\theta)$ is determined by some element of $\operatorname{Br}(\mathbf{Q}(\theta))$.

Theorem (Brauer-Clifford in the $G=H$ case)

Suppose that $H=G$, and let $\theta \in \operatorname{lrr}(H)$. Then $Z(\theta, \pi, \mathbf{Q}) \simeq \mathbf{Q}(\theta)$, and

$$
\operatorname{BrClif}(G / G, \mathbf{Q}(\theta)) \simeq \operatorname{Br}(\mathbf{Q}(\theta)) .
$$

