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G = 〈S〉 a group of order 6 N , p prime.

How hard is it to decide whether p | |G| and, if

so, to find some g ∈ G of order divisible by p?

More precisely, consider products

g = s±1
1 s±1

2 . . . s±1
d (si ∈ S).

What is the smallest d for which some such g

has order divisible by p (if p does divide |G|)?

Example. G = SLn(2),

S = {1 + e12,1 + e23, . . . ,1 + en−1,n,1 + en1}.

Any n − 1 elements of S lie in a Sylow 2-

subgroup, so need g of length d > n to ‘find’

elements of odd order.

|SLn(2)| ∼ 2n
2
, so d ∼ (log2 |G|)1/2.



A hard problem, so restrict to soluble groups.

Corollary 1. ∃ κ with the following property.

If G = 〈S〉 is soluble, |G| 6 N and p | |G| then

some g = s±1
1 s±1

2 . . . s±1
d (with si ∈ S) has order

divisible by p, where

d 6 min{κblogpNc,200(blogpNc)2}.

More precisely, if n is the smallest rank of a

p-chief factor of G, then d 6 min{κn,200n2}.

(This bound—for soluble groups—may be asymp-

totically too big.)



Let G be finitely generated, generating set S.

The Cayley graph of G w.r.t. S has

• vertex set G, and

• an edge connecting g1, g2 if g2 = g1s
±1 for

some s ∈ S.

The ball BS(n) of radius n (with centre 1) is

{t1t2 . . . tn | ti ∈ S ∪ S−1 ∪ {1} }.

G finite: the diameter DS(G) is the smallest d

with BS(d) = G.

Diameters for different gen. sets can differ.

Write D(G) = max{DS(G) | S a gen. set}.



Examples. (1) G = 〈s〉 cyclic of order m:

then G = {1, s±1, s±2, . . . , s±bm/2c}, and

DS(G) = D(G) = bm/2c.

(2) (JSW, 2003). Suppose G abelian, write

G as direct product of cyclic groups of orders

s1, s2 . . . , sr with si | si−1 for i > 1. Then

D(G) =
∑
bsi/2c.

(3) G = 〈a, t | a26 = t3 = 1, at = a3〉 = Ho 〈t〉.

Then D(H) = 13, D(G) 6 7.

D isn’t monotonic.



Theorem 1. Let G 6 GLn(p), G soluble,

completely reducible, V the natural module.

Then

(1) D(G) 6 κ|V | where κ ≈ 50.

(2) If also G 6 Spn(p) then D(G) 6 κ′|V |1/2

where κ′ is a constant.

Notes. (1) The bounds are asymptotically right:

GLn(p), Spn(p) have cyclic (irreducible, Singer)

subgroups of order pn−1, pn/2 +1 respectively.

(2) Restriction to CR subgroups?



Difficulty: failure of D to be monotonic.

Remedy: introduce bigger functions E(G), w(G)

with good inheritance properties.

E(G) = max{1 + 2D(H) | H 6 G}

E is monotonic, and E(G) 6 E(K)E(G/K).

If K 6 G = 〈S〉 and T a transversal with 1 ∈ T
then

K = 〈{t−1
1 st2 | s ∈ S, ti ∈ T} ∩K〉;

so if K / G then K has generating set of ele-

ments of BS(d) where d = 1 + 2D(G/K).



For G soluble, let C be a chain

1 = G0 �G1 �G2 � · · ·�Gr = G

with each Gi/Gi−1 abelian. Define

wC(G) =
∏
i(1+2D(Gi/Gi−1)) =

∏
iE(Gi/Gi−1),

Define w(G) = min{wC(G)}.

• if H 6 G then w(H) 6 w(G)

• if K �G then w(G) 6 w(K)w(G/K)

• E(G) 6 w(G)

• if derived length dl(G) = l then

w(G(r)) 6 rlw(G) for all r.

(G(r) = dir. product of r copies of G.)



Example. (1) G = GL3(2).

(a) ∃ K / G with K ∼= Q8, G/K ∼= S3.

Easy to check that D(Q8) = 2, D(S3) = 3,
and D monotonic on subgroups of Q8, S3.

So E(Q8) = 5, E(S3) = 7. Hence E(G) 6 35.

(b) G has a unique shortest series with abelian
factors; factors C2, C2 × C2, C3, C2.

D(C2) = D(C3) = 1, D(C2 × C2) = 2, so
w(C2) = w(C3) = 3, w(C2 × C2) = 5.

Hence w(G) = 33 · 5 = 135.

(c) The natural module has order 9, less than
the above estimates for D(G).

(2) However if p > 17 and G is a soluble sub-
group of GLn(p) then w(G) 6 pn.



• if dl(G) = l then w(G(r)) 6 rlw(G).

This is very effective in cutting down possibil-

ities needing examination.

E.g. G irred. soluble, G 6 GLn(p). If G im-

primitive, then G 6 H wr T with H soluble,

H 6 GLm(p), T a transitive subgroup of Sr,

where mr = n, so

w(G) 6 rlw(H)w(T ) where l = dl(H).

(Newman, 1972): bounds for dl(H) for H sol-

uble, H 6 GLm(F ).

Now try to use induction on n.

Lemma. If T transitive soluble in Sn then

w(T ) 6 n(5/2) log9 9n.



Suprunenko’s Theorem. Let G be maximal

primitive soluble subgroup of GLn(p). Then G

has a unique maximal abelian normal subgroup

A; it is cyclic of order pl − 1 where l | n, its

centralizer C embeds in GLr(pl) where r = n/l,

and G/C is cyclic of order l1 where l1 | l. If

A = C then l1 = l.

Assume that A 6= C. Then ∃ u > 1 with u | r
such that

(i) C/A has a unique maximal abelian normal

subgroup B/A; it has elementary abelian Sylow

subgroups and order u2;

(ii) C/B 6
∏s
i=1 Sp2ki(qi), where u =

∏s
i=1 q

ki
i

is the prime factorization of u. The image of

C in each Sp2ki(qi) is completely reducible.



Need to prove something more general than

Theorem 1 (b).

Definition. A finite ZG-module is a sym-

plectic G-module if it has a non-singular skew-

symmetric form preserved by G.

Theorem 2 (b). There is a bound on all

E(G/CG(M))/|M |1/2 with G soluble and M a

completely reducible symplectic G-module.

Major step: bound orders of M for such pairs

(M,G) having no symplectic submodules N with

larger E(G/CG(N))/|N |1/2.



Let G = 〈S〉, with S finite.

BS(n) = {t1t2 . . . tn | ti ∈ S ∪ S−1 ∪ {1} }.

lS(g) = min{n | g ∈ BS(n)}.

βS(n) = |BS(n)| = |{g | lS(g) 6 n}|.

If G = 〈S1〉 = 〈S2〉 let µ = max{lS1
(t) | t ∈ S2}

Then lS1
(g) 6 µ lS2

(g), so βS2
(n) 6 βS1

(µn)

G has polynomial growth (PG) if

∃ a, b > 0 with βS(n) 6 anb for all n.

(M Gromov, 1982): The groups of PG are just

the virtually nilpotent (vN) groups.



Problem. Fix a, b. Prove that there are only

finitely many finite simple groups G with gen.

sets S such that βS(n) 6 anb for all n.

Doesn’t seem to follow easily from CFSG.

But it is an immediate corollary of Gromov’s

theorem!



(M Gromov, 1982): The groups of PG are just

the virtually nilpotent (vN) groups.

(Grigorchuk, 1989): If G = 〈S〉 is residually

nilpotent and βS(n)/en
1/2 → 0 as n → ∞ then

G is vN.

(JSW, 2003): Let α : N→ R satisfy

α(n)/e(1/2)(logn)1/2
→ 0 as n→∞,

and let G = 〈S〉 be residually soluble and satisfy

βS(n) 6 eα(n) for all n. Then G is vN.

Corollary 2 (April 2, 2010): If G = 〈S〉 is

residually soluble and βS(n)/e(n1/7)/10 → 0 as

n→∞ then G is vN.

So if βS(n)/e(n1/7)/10 → 0 then βS is bounded

by a polynomial.


