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G = (S) a group of order < N, p prime.

How hard is it to decide whether p | |G| and, if
so, to find some g € G of order divisible by p?

More precisely, consider products
+1 +1 +1
g=57] 85 ...5 (s; €5).

What is the smallest d for which some such g
has order divisible by p (if p does divide |G|)?

Example. G =SL,(2),

S={l+4+e1n,14+e23,...,1+ep_1n, 1+ en1}.

Any n — 1 elements of S lie in a Sylow 2-
subgroup, so need g of length d > n to ‘find’
elements of odd order.

ISLa(2)] ~ 27°, so d ~ (logs |G])Y/2.



A hard problem, so restrict to soluble groups.

Corollary 1. 3 x with the following property.

If G = (S) is soluble, |G| < N and p | |G| then
some g = sflsfl . sfl[l (with s; € S) has order

divisible by p, where
d < min{k|log, N|,200(|log, N |)?}.

More precisely, if n is the smallest rank of a
p-chief factor of G, then d < min{xn,200n?}.

(This bound—for soluble groups—may be asymp-
totically too big.)



Let G be finitely generated, generating set S.
The Cayley graph of G w.r.t. S has
e vertex set G, and

e an edge connecting g1, go if go = g1st! for
some s € S.

The ball Bg(n) of radius n (with centre 1) is

{t1to.. . tn | t; e SUSTTU{1}}.

G finite: the diameter Dg((G) is the smallest d
with Bs(d) = G.

Diameters for different gen. sets can differ.

Write D(G) = max{Dg(G) | S a gen. set}.



Examples. (1) G = (s) cyclic of order m:
then G = {1,8i1,3i2,...,3iLm/2J}, and

Ds(G) = D(G) = |m/2).

(2) (JSW, 2003). Suppose G abelian, write
(G as direct product of cyclic groups of orders
$1,82...,8r with s; | s;_1 for ¢ > 1. Then

D(G) = X |si/2].

(3) G=(a,t|a?®=t3=1,al =a3) = Hx ().
Then D(H) = 13, D(G) < 7.

D isn’'t monotonic.



Theorem 1. Let G < GLn(p), G soluble,
completely reducible, V the natural module.
Then

(1) D(G) < k|V]| where k = 50.

(2) If also G < Spy(p) then D(G) < K'|V[1/2
where Kk’ is a constant.

Notes. (1) The bounds are asymptotically right:
GLn(p), Sp,(p) have cyclic (irreducible, Singer)
subgroups of order p —1, p/ 241 respectively.

(2) Restriction to CR subgroups?



Difficulty: failure of D to be monotonic.

Remedy: introduce bigger functions E(G), w(G)
with good inheritance properties.

E(G) = max{1 4+ 2D(H) | H < G}

E is monotonic, and F(G) < E(K)E(G/K).

If K <G=(S) and T a transversal with 1 €T
then

K= ({ty!sto|s€ S, t; € T} N K);

so if K <« G then K has generating set of ele-
ments of Bg(d) where d =1+ 2D(G/K).



For G soluble, let C be a chain
1=Gy<G1 <G <1Gr =G

with each G;/G;_1 abelian. Define

we(G) = 1L(1+2D(G;/Gi—1)) =11 E(Gi/Gi—1),
Define w(G) = min{we(G)}.

o if H<G then w(H) < w(Q)

o if K <G then w(G) < w(K)w(G/K)
e F(G) <w(@G)

e if derived length dI(G) =1 then

w(G()Y) < rlw (@) for all r.

(G(") = dir. product of r copies of G.)



Example. (1) G = GL3(2).
(a) 3K <« G with K £ Qg, G/K £ Ss.

Easy to check that D(Qg) = 2, D(S3) = 3,
and D monotonic on subgroups of Qg, S3.

So E(QRg) =5, E(S3) =7. Hence E(G) < 35.

(b) G has a unique shortest series with abelian
factors; factors Cop, Cs x Cop, C3, Ch.

D(CQ) = D(C3) = 1, D(CQ X CQ) = 2, SO
’LU(CQ) — w(C3) = 3, w(C’Q X CQ) = b.

Hence w(G) =33 .5 = 135.

(c) The natural module has order 9, less than
the above estimates for D(G).

(2) However if p > 17 and G is a soluble sub-
group of GLy,(p) then w(G) < p™.



o if dI(G) =1 then w(G(M) < rlw(Q).

This is very effective in cutting down possibil-
ities needing examination.

E.g. GG irred. soluble, G < GLx(p). If G im-
primitive, then G < HwrT with H soluble,
H < GLn(p), T a transitive subgroup of Sy,
where mr = n, SO

w(G) < rfw(H)w(T) where | = dI(H).

(Newman, 1972): bounds for dI(H) for H sol-
uble, H < GLn(F).

Now try to use induction on n.

Lemma. If 7T transitive soluble in S, then
’UJ(T) < n(5/2) l0gg 97?,_



Suprunenko’s Theorem. Let G be maximal
primitive soluble subgroup of GL,(p). Then G
has a unique maximal abelian normal subgroup
A; it is cyclic of order p! — 1 where [ | n, its
centralizer C embeds in GL(p') where r = n/I,
and G/C is cyclic of order l1 where [ | [. If
A= C then l{ =1.

Assume that A = C. Then 3 u > 1 with u | r
such that

(i) C/A has a uniqgue maximal abelian normal
subgroup B/A; it has elementary abelian Sylow
subgroups and order u2;

(i) C/B < II;_1 Spoy,(g;), where u = J[7_4 g,
is the prime factorization of uw. The image of
C in each Spyy.(¢;) is completely reducible.



Need to prove something more general than
Theorem 1 (b).

Definition. A finite ZG-module is a sym-
plectic G-module if it has a non-singular skew-
symmetric form preserved by G.

Theorem 2(b). There is a bound on all
E(G/Cq(M))/|M|Y2 with G soluble and M a
completely reducible symplectic G-module.

Major step: bound orders of M for such pairs
(M, G) having no symplectic submodules N with
larger E(G/Cq(N))/|N|2/2.



Let G = (S), with S finite.
Bg(n) = {t1to...tp | t; € SU Ss—1y {1} }.
15(9) = min{n | g € Bg(n)}.

Bs(n) = |Bg(n)| = [{g | ls(g) < n}|.
If G = (S1) = (S2) let u=max{lg, (t) |t € Sr}

Then lg,(g9) < nlg,(g), SO Bs,(n) < Bg, (un)

G has polynomial growth (PG) if

3 a,b > 0 with Bg(n) < anb for all n.

(M Gromov, 1982): The groups of PG are just
the virtually nilpotent (vN) groups.



Problem. Fix a, b. Prove that there are only
finitely many finite simple groups G with gen.
sets S such that Bg(n) < anb for all n.

Doesn’t seem to follow easily from CFSG.

But it is an immediate corollary of Gromov's
theorem!



(M Gromov, 1982): The groups of PG are just
the virtually nilpotent (vN) groups.

(Grigorchuk, 1989): If G = (S) is residually
nilpotent and ﬁs(n)/enl/2 — 0 as n — oo then
G is VN.

(JSW, 2003): Let a: N — R satisfy

a(n)/e(l/z)(log 2, 0O asn — oo,

and let G = (S) be residually soluble and satisfy
Bg(n) < e for all n. Then G is VN.

Corollary 2 (April 2, 2010): If G = (S) is
residually soluble and ﬁg(n)/e(”lﬁ)/lo — 0 as
n — oo then G is vN.

So if Bg(n)/e®")/10 _, o then 8¢ is bounded
by a polynomial.



