Diameters of Cayley graphs of soluble groups

John Wilson, Oxford

(wilsonjs@maths.ox.ac.uk)

Ischia, April 2010

 $G = \langle S \rangle$ a group of order $\leqslant N$, p prime.

How hard is it to decide whether $p \mid |G|$ and, if so, to find some $g \in G$ of order divisible by p?

More precisely, consider products

$$g = s_1^{\pm 1} s_2^{\pm 1} \dots s_d^{\pm 1} \quad (s_i \in S).$$

What is the smallest d for which some such g has order divisible by p (if p does divide |G|)?

Example. $G = SL_n(2)$,

 $S = \{1 + e_{12}, 1 + e_{23}, \dots, 1 + e_{n-1,n}, 1 + e_{n1}\}.$

Any n - 1 elements of *S* lie in a Sylow 2subgroup, so need *g* of length $d \ge n$ to 'find' elements of odd order.

 $|\mathsf{SL}_n(2)| \sim 2^{n^2}$, so $d \sim (\log_2 |G|)^{1/2}$.

A hard problem, so restrict to soluble groups.

Corollary 1. $\exists \kappa$ with the following property.

If $G = \langle S \rangle$ is soluble, $|G| \leq N$ and $p \mid |G|$ then some $g = s_1^{\pm 1} s_2^{\pm 1} \dots s_d^{\pm 1}$ (with $s_i \in S$) has order divisible by p, where

 $d \leq \min\{\kappa \lfloor \log_p N \rfloor, 200(\lfloor \log_p N \rfloor)^2\}.$

More precisely, if *n* is the smallest rank of a *p*-chief factor of *G*, then $d \leq \min{\{\kappa n, 200n^2\}}$.

(This bound—for soluble groups—may be asymptotically too big.) Let G be finitely generated, generating set S.

The Cayley graph of G w.r.t. S has

• vertex set G, and

• an edge connecting g_1 , g_2 if $g_2 = g_1 s^{\pm 1}$ for some $s \in S$.

The ball $B_S(n)$ of radius n (with centre 1) is

$$\{t_1t_2\ldots t_n \mid t_i \in S \cup S^{-1} \cup \{1\}\}.$$

G finite: the diameter $D_S(G)$ is the smallest d with $B_S(d) = G$.

Diameters for different gen. sets can differ.

Write $D(G) = \max\{D_S(G) \mid S \text{ a gen. set}\}.$

Examples. (1) $G = \langle s \rangle$ cyclic of order m: then $G = \{1, s^{\pm 1}, s^{\pm 2}, \dots, s^{\pm \lfloor m/2 \rfloor}\}$, and $D_S(G) = D(G) = \lfloor m/2 \rfloor$.

(2) (JSW, 2003). Suppose *G* abelian, write *G* as direct product of cyclic groups of orders s_1, s_2, \ldots, s_r with $s_i \mid s_{i-1}$ for i > 1. Then $D(G) = \sum \lfloor s_i/2 \rfloor$.

(3) $G = \langle a, t \mid a^{26} = t^3 = 1, a^t = a^3 \rangle = H \rtimes \langle t \rangle.$ Then $D(H) = 13, D(G) \leq 7.$

D isn't monotonic.

Theorem 1. Let $G \leq GL_n(p)$, G soluble, completely reducible, V the natural module. Then

(1) $D(G) \leq \kappa |V|$ where $\kappa \approx 50$.

(2) If also $G \leq \text{Sp}_n(p)$ then $D(G) \leq \kappa' |V|^{1/2}$ where κ' is a constant.

Notes. (1) The bounds are asymptotically right: $GL_n(p)$, $Sp_n(p)$ have cyclic (irreducible, Singer) subgroups of order $p^n - 1$, $p^{n/2} + 1$ respectively.

(2) Restriction to CR subgroups?

Difficulty: failure of D to be monotonic.

Remedy: introduce bigger functions E(G), w(G) with good inheritance properties.

 $E(G) = \max\{1 + 2D(H) \mid H \leq G\}$

E is monotonic, and $E(G) \leq E(K)E(G/K)$.

If $K \leq G = \langle S \rangle$ and T a transversal with $1 \in T$ then

$$K = \langle \{t_1^{-1} s t_2 \mid s \in S, t_i \in T\} \cap K \rangle;$$

so if $K \triangleleft G$ then K has generating set of elements of $B_S(d)$ where d = 1 + 2D(G/K).

For G soluble, let \mathcal{C} be a chain

$$1 = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_r = G$$

with each G_i/G_{i-1} abelian. Define

 $w_{\mathcal{C}}(G) = \prod_i (1 + 2D(G_i/G_{i-1})) = \prod_i E(G_i/G_{i-1}),$

Define $w(G) = \min\{w_{\mathcal{C}}(G)\}.$

- if $H \leq G$ then $w(H) \leq w(G)$
- if $K \triangleleft G$ then $w(G) \leq w(K)w(G/K)$
- $E(G) \leq w(G)$
- if derived length dl(G) = l then $w(G^{(r)}) \leq r^l w(G)$ for all r.

 $(G^{(r)} = \text{dir. product of } r \text{ copies of } G.)$

Example. (1) $G = GL_3(2)$.

(a) $\exists K \triangleleft G$ with $K \cong Q_8$, $G/K \cong S_3$.

Easy to check that $D(Q_8) = 2$, $D(S_3) = 3$, and D monotonic on subgroups of Q_8 , S_3 .

So $E(Q_8) = 5$, $E(S_3) = 7$. Hence $E(G) \leq 35$.

(b) G has a unique shortest series with abelian factors; factors C_2 , $C_2 \times C_2$, C_3 , C_2 .

 $D(C_2) = D(C_3) = 1$, $D(C_2 \times C_2) = 2$, so $w(C_2) = w(C_3) = 3$, $w(C_2 \times C_2) = 5$.

Hence $w(G) = 3^3 \cdot 5 = 135$.

(c) The natural module has order 9, less than the above estimates for D(G).

(2) However if $p \ge 17$ and G is a soluble subgroup of $GL_n(p)$ then $w(G) \le p^n$. • if dl(G) = l then $w(G^{(r)}) \leq r^l w(G)$.

This is very effective in cutting down possibilities needing examination.

E.g. *G* irred. soluble, $G \leq GL_n(p)$. If *G* imprimitive, then $G \leq H \operatorname{wr} T$ with *H* soluble, $H \leq GL_m(p)$, *T* a transitive subgroup of S_r , where mr = n, so

 $w(G) \leq r^l w(H) w(T)$ where l = dl(H).

(Newman, 1972): bounds for dl(H) for H soluble, $H \leq GL_m(F)$.

Now try to use induction on n.

Lemma. If T transitive soluble in S_n then $w(T) \leq n^{(5/2) \log_9 9n}$.

Suprunenko's Theorem. Let *G* be maximal primitive soluble subgroup of $GL_n(p)$. Then *G* has a unique maximal abelian normal subgroup *A*; it is cyclic of order $p^l - 1$ where $l \mid n$, its centralizer *C* embeds in $GL_r(p^l)$ where r = n/l, and G/C is cyclic of order l_1 where $l_1 \mid l$. If A = C then $l_1 = l$.

Assume that $A \neq C$. Then $\exists u > 1$ with $u \mid r$ such that

(i) C/A has a unique maximal abelian normal subgroup B/A; it has elementary abelian Sylow subgroups and order u^2 ;

(ii) $C/B \leq \prod_{i=1}^{s} \operatorname{Sp}_{2k_i}(q_i)$, where $u = \prod_{i=1}^{s} q_i^{k_i}$ is the prime factorization of u. The image of C in each $\operatorname{Sp}_{2k_i}(q_i)$ is completely reducible. Need to prove something more general than Theorem 1(b).

Definition. A finite $\mathbb{Z}G$ -module is a symplectic *G*-module if it has a non-singular skew-symmetric form preserved by *G*.

Theorem 2(b). There is a bound on all $E(G/C_G(M))/|M|^{1/2}$ with G soluble and M a completely reducible symplectic G-module.

Major step: bound orders of M for such pairs (M,G) having no symplectic submodules N with larger $E(G/C_G(N))/|N|^{1/2}$.

Let
$$G = \langle S \rangle$$
, with S finite.
 $B_S(n) = \{t_1 t_2 \dots t_n \mid t_i \in S \cup S^{-1} \cup \{1\}\}.$
 $l_S(g) = \min\{n \mid g \in B_S(n)\}.$
 $\beta_S(n) = |B_S(n)| = |\{g \mid l_S(g) \leq n\}|.$
If $G = \langle S_1 \rangle = \langle S_2 \rangle$ let $\mu = \max\{l_{S_1}(t) \mid t \in S_2\}$
Then $l_{S_1}(g) \leq \mu l_{S_2}(g)$, so $\beta_{S_2}(n) \leq \beta_{S_1}(\mu n)$

G has polynomial growth (PG) if

 $\exists a, b > 0$ with $\beta_S(n) \leq an^b$ for all n.

(M Gromov, 1982): The groups of PG are just the virtually nilpotent (vN) groups.

Problem. Fix a, b. Prove that there are only finitely many finite simple groups G with gen. sets S such that $\beta_S(n) \leq an^b$ for all n.

Doesn't seem to follow easily from CFSG.

But it is an immediate corollary of Gromov's theorem!

(M Gromov, 1982): The groups of PG are just the virtually nilpotent (vN) groups.

(Grigorchuk, 1989): If $G = \langle S \rangle$ is residually nilpotent and $\beta_S(n)/e^{n^{1/2}} \to 0$ as $n \to \infty$ then G is vN.

(JSW, 2003): Let
$$\alpha : \mathbb{N} \to \mathbb{R}$$
 satisfy
$$\alpha(n)/e^{(1/2)(\log n)^{1/2}} \to 0 \quad \text{as } n \to \infty,$$

and let $G = \langle S \rangle$ be residually soluble and satisfy $\beta_S(n) \leq e^{\alpha(n)}$ for all n. Then G is vN.

Corollary 2 (April 2, 2010): If $G = \langle S \rangle$ is residually soluble and $\beta_S(n)/e^{(n^{1/7})/10} \to 0$ as $n \to \infty$ then G is vN.

So if $\beta_S(n)/e^{(n^{1/7})/10} \to 0$ then β_S is bounded by a polynomial.