Fixed points of coprime automorphisms of finite groups

Cristina Acciarri

University of Brasilia, Brazil

Ischia Group Theory 2012

• Let G be a finite group admitting an action of a group A.

Let G be a finite group admitting an action of a group A. We denote by C_G(A) the centralizer of A in G, i.e. the fixed point group C_G(A) = {x ∈ G | x^a = x ∀a ∈ A}.

- Let G be a finite group admitting an action of a group A. We denote by C_G(A) the centralizer of A in G, i.e. the fixed point group C_G(A) = {x ∈ G | x^a = x ∀a ∈ A}.
- It is well known that the structure of $C_G(A)$ may have strong influence over the structure of G.

- Let G be a finite group admitting an action of a group A. We denote by C_G(A) the centralizer of A in G, i.e. the fixed point group C_G(A) = {x ∈ G | x^a = x ∀a ∈ A}.
- It is well known that the structure of $C_G(A)$ may have strong influence over the structure of G.

Theorem (Thompson, 1959)

If A is of prime order and $C_G(A) = 1$, then G is nilpotent.

- Let G be a finite group admitting an action of a group A. We denote by C_G(A) the centralizer of A in G, i.e. the fixed point group C_G(A) = {x ∈ G | x^a = x ∀a ∈ A}.
- It is well known that the structure of $C_G(A)$ may have strong influence over the structure of G.

Theorem (Thompson, 1959)

If A is of prime order and $C_G(A) = 1$, then G is nilpotent.

• We will talk about coprime actions, i.e. (|A|, |G|) = 1.

- Let G be a finite group admitting an action of a group A. We denote by C_G(A) the centralizer of A in G, i.e. the fixed point group C_G(A) = {x ∈ G | x^a = x ∀a ∈ A}.
- It is well known that the structure of $C_G(A)$ may have strong influence over the structure of G.

Theorem (Thompson, 1959)

If A is of prime order and $C_G(A) = 1$, then G is nilpotent.

- We will talk about coprime actions, i.e. (|A|, |G|) = 1.
- For us A will be an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G, where q is a prime.

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 .

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts as a coprime group of automorphisms on a finite group G and assume that $C_G(a)$ has exponent dividing m for each $a \in A^{\#}$.

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts as a coprime group of automorphisms on a finite group G and assume that $C_G(a)$ has exponent dividing m for each $a \in A^{\#}$. Then the exponent of G is $\{m,q\}$ -bounded.

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts as a coprime group of automorphisms on a finite group G and assume that $C_G(a)$ has exponent dividing m for each $a \in A^{\#}$. Then the exponent of G is $\{m,q\}$ -bounded.

The proof involves a number of deep ideas.

• Zelmanov's techniques that led to the solution of the restricted Burnside problem;

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts as a coprime group of automorphisms on a finite group G and assume that $C_G(a)$ has exponent dividing m for each $a \in A^{\#}$. Then the exponent of G is $\{m,q\}$ -bounded.

The proof involves a number of deep ideas.

- Zelmanov's techniques that led to the solution of the restricted Burnside problem;
- Lubotzky-Mann theory of powerful *p*-groups;

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts as a coprime group of automorphisms on a finite group G and assume that $C_G(a)$ has exponent dividing m for each $a \in A^{\#}$. Then the exponent of G is $\{m,q\}$ -bounded.

The proof involves a number of deep ideas.

- Zelmanov's techniques that led to the solution of the restricted Burnside problem;
- Lubotzky-Mann theory of powerful *p*-groups;
- Quantitative version for finite *p*-groups of a Lazard's criterion for a pro-*p* group to be *p*-adic analytic;

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts as a coprime group of automorphisms on a finite group G and assume that $C_G(a)$ has exponent dividing m for each $a \in A^{\#}$. Then the exponent of G is $\{m,q\}$ -bounded.

The proof involves a number of deep ideas.

- Zelmanov's techniques that led to the solution of the restricted Burnside problem;
- Lubotzky-Mann theory of powerful p-groups;
- Quantitative version for finite *p*-groups of a Lazard's criterion for a pro-*p* group to be *p*-adic analytic;
- Theorem of Bahturin and Zaicev on Lie algebras admitting a group of automorphisms whose fixed-point subalgebra satisfies a polynomial identity.

• Suppose first that G is a p-group $(p \neq q)$.

• Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$.

• Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$. We also assume that G is q^2 -generated.

- Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$. We also assume that G is q^2 -generated.
- The Lazard Lie algebra $L_p(G)$ is nilpotent of $\{q, m\}$ -bounded class:

- Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$. We also assume that G is q^2 -generated.
- The Lazard Lie algebra $L_p(G)$ is nilpotent of $\{q, m\}$ -bounded class: this is proved using Zelmanov result, by showing that the Lie algebra $L_p(G)$ satisfies a polynomial identity that depends only on q and m

- Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$. We also assume that G is q^2 -generated.
- The Lazard Lie algebra $L_p(G)$ is nilpotent of $\{q, m\}$ -bounded class: this is proved using Zelmanov result, by showing that the Lie algebra $L_p(G)$ satisfies a polynomial identity that depends only on q and m (by Bahturin-Zaicev result on Lie algebras) and other nontrivial facts.

- Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$. We also assume that G is q^2 -generated.
- The Lazard Lie algebra $L_p(G)$ is nilpotent of $\{q, m\}$ -bounded class: this is proved using Zelmanov result, by showing that the Lie algebra $L_p(G)$ satisfies a polynomial identity that depends only on q and m (by Bahturin-Zaicev result on Lie algebras) and other nontrivial facts.
- Since $L_p(G)$ is nilpotent, it follows that G has a powerful subgroup of $\{q, m\}$ -bounded index.

- Suppose first that G is a p-group $(p \neq q)$. Note that every $g \in G$ is contained in the A-invariant subgroup $\langle g^a \mid a \in A \rangle$. We also assume that G is q^2 -generated.
- The Lazard Lie algebra $L_p(G)$ is nilpotent of $\{q, m\}$ -bounded class: this is proved using Zelmanov result, by showing that the Lie algebra $L_p(G)$ satisfies a polynomial identity that depends only on q and m (by Bahturin-Zaicev result on Lie algebras) and other nontrivial facts.
- Since $L_p(G)$ is nilpotent, it follows that G has a powerful subgroup of $\{q,m\}\text{-bounded index}.$
- The proof in the case where G is a powerful p-group is straightforward.

If G is not a p-group, then the problem can be reduced to p-groups in the following way:

If G is not a p-group, then the problem can be reduced to p-groups in the following way:

• for every prime $p \mid |G|$, there is an A-invariant Sylow p-subgroup P of G. Since $P = \langle C_P(a) \mid a \in A^{\#} \rangle$, p must be a divisor of m.

If G is not a p-group, then the problem can be reduced to p-groups in the following way:

- for every prime $p \mid |G|$, there is an A-invariant Sylow p-subgroup P of G. Since $P = \langle C_P(a) \mid a \in A^{\#} \rangle$, p must be a divisor of m.
- The result is true for finite p-groups, so the exponents of Sylow subgroups of G will be $\{q, m\}$ -bounded and also the exponent of G.

Another quantitative result of similar nature.

Another quantitative result of similar nature.

Theorem (Guralnick-Shumyatsky, 2001)

Let q be a prime, m a positive integer. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 .

Another quantitative result of similar nature.

Theorem (Guralnick-Shumyatsky, 2001)

Let q be a prime, m a positive integer. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Assume that $C_G(a)$ has derived group of exponent dividing m for each $a \in A^{\#}$.

Another quantitative result of similar nature.

Theorem (Guralnick-Shumyatsky, 2001)

Let q be a prime, m a positive integer. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Assume that $C_G(a)$ has derived group of exponent dividing m for each $a \in A^{\#}$. Then the exponent of G' is $\{m, q\}$ -bounded.

Another quantitative result of similar nature.

Theorem (Guralnick-Shumyatsky, 2001)

Let q be a prime, m a positive integer. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Assume that $C_G(a)$ has derived group of exponent dividing m for each $a \in A^{\#}$. Then the exponent of G' is $\{m, q\}$ -bounded.

• The assumption that $|A| = q^3$ is essential here and the theorem fails if $|A| = q^2$.

In the case where G is a p-group the proof is more or less similar to the proof of the KS Theorem.

In the case where G is a p-group the proof is more or less similar to the proof of the KS Theorem. There are some differences but main tools are the same: Zelmanov's techniques, Bahturin-Zaicev theorem, etc.

In the case where G is a p-group the proof is more or less similar to the proof of the KS Theorem. There are some differences but main tools are the same: Zelmanov's techniques, Bahturin-Zaicev theorem, etc.

But the reduction to *p*-groups is much more complicated.

In the case where G is a p-group the proof is more or less similar to the proof of the KS Theorem. There are some differences but main tools are the same: Zelmanov's techniques, Bahturin-Zaicev theorem, etc.

But the reduction to p-groups is much more complicated. We need the following result.

Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G.
Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' | a \in A^{\#} \rangle$.

Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' \mid a \in A^{\#} \rangle$.

The proof involves the classification of finite simple groups.

Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' \mid a \in A^{\#} \rangle$.

The proof involves the classification of finite simple groups.

Now the GS Theorem can be proved as follows.

• There is a bound (depending only on q and m) on the exponent of $P \cap G'$ for an A-invariant Sylow p-subgroup P of G for each prime p.

Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' \mid a \in A^{\#} \rangle$.

The proof involves the classification of finite simple groups.

Now the GS Theorem can be proved as follows.

- There is a bound (depending only on q and m) on the exponent of $P \cap G'$ for an A-invariant Sylow p-subgroup P of G for each prime p.
- Say $m_1 = m_1(q,m)$ the bound for *p*-groups.

Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' \mid a \in A^{\#} \rangle$.

The proof involves the classification of finite simple groups.

Now the GS Theorem can be proved as follows.

- There is a bound (depending only on q and m) on the exponent of $P \cap G'$ for an A-invariant Sylow p-subgroup P of G for each prime p.
- Say $m_1 = m_1(q, m)$ the bound for *p*-groups.
- By the theorem above the exponent of $(P \cap G')/P'$ is bounded by m.

Theorem (generation result)

Let q be a prime. Let G be a finite q'-group acted on by an elementary abelian group A of order q^3 . Let P be an A-invariant Sylow subgroup of G. Then $P \cap G' = \langle P \cap C_G(a)' \mid a \in A^{\#} \rangle$.

The proof involves the classification of finite simple groups.

Now the GS Theorem can be proved as follows.

- There is a bound (depending only on q and m) on the exponent of $P \cap G'$ for an A-invariant Sylow p-subgroup P of G for each prime p.
- Say $m_1 = m_1(q,m)$ the bound for *p*-groups.
- By the theorem above the exponent of $(P \cap G')/P'$ is bounded by m. Thus, the exponent of $P \cap G'$ is bounded by mm_1 .

It is natural to think that previous results admit a common generalisation for each term $G^{(i)}$ of the derived series of G.

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G.

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$,

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

How to bound the exponent of $G^{(d)}$?

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

How to bound the exponent of $G^{(d)}$? Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$.

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

How to bound the exponent of $G^{(d)}$? Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$. Suppose we can prove that $P^{(d)}$ is of bounded exponent and that P is generated by elements of bounded order.

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

How to bound the exponent of $G^{(d)}$? Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$. Suppose we can prove that $P^{(d)}$ is of bounded exponent and that P is generated by elements of bounded order. It is still unclear how to bound the exponent of P.

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

How to bound the exponent of $G^{(d)}$?

Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$. Suppose we can prove that $P^{(d)}$ is of bounded exponent and that P is generated by elements of bounded order.

It is still unclear how to bound the exponent of P.

So the idea of Guralnick and Shumyatsky is not quite adequate: for G' the situation was easier since $(G' \cap Q)/Q'$ is abelian, for a Sylow *p*-subgroup Q of G.

Let q be a prime and A an elementary abelian q-group acting on a finite q'-group G.

Let q be a prime and A an elementary abelian q-group acting on a finite q'-group G. Let A_1, \ldots, A_s be the subgroups of index q in A and H a subgroup of G.

H is an *A*-special subgroup of *G* of degree 0 if and only if *H* = C_G(A_i) for suitable *i* ≤ *s*.

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if *H* = C_G(A_i) for suitable *i* ≤ *s*.
- Suppose that k ≥ 1 and the A-special subgroups of G of degree k − 1 are defined.

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if $H = C_G(A_i)$ for suitable $i \leq s$.
- Suppose that $k\geq 1$ and the A-special subgroups of G of degree k-1 are defined. Then H is an A-special subgroup of G of degree k

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if $H = C_G(A_i)$ for suitable $i \leq s$.
- Suppose that $k \ge 1$ and the A-special subgroups of G of degree k-1 are defined. Then H is an A-special subgroup of G of degree k if and only if there exist A-special subgroups J_1, J_2 of G of degree k-1 such that $H = [J_1, J_2] \cap C_G(A_j)$ for suitable $j \le s$.

Let q be a prime and A an elementary abelian q-group acting on a finite q'-group G. Let A_1, \ldots, A_s be the subgroups of index q in A and H a subgroup of G.

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if $H = C_G(A_i)$ for suitable $i \leq s$.
- Suppose that $k \ge 1$ and the A-special subgroups of G of degree k-1 are defined. Then H is an A-special subgroup of G of degree k if and only if there exist A-special subgroups J_1, J_2 of G of degree k-1 such that $H = [J_1, J_2] \cap C_G(A_j)$ for suitable $j \le s$.

Examples

• - degree 0:

Let q be a prime and A an elementary abelian q-group acting on a finite q'-group G. Let A_1, \ldots, A_s be the subgroups of index q in A and H a subgroup of G.

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if $H = C_G(A_i)$ for suitable $i \leq s$.
- Suppose that $k \ge 1$ and the A-special subgroups of G of degree k-1 are defined. Then H is an A-special subgroup of G of degree k if and only if there exist A-special subgroups J_1, J_2 of G of degree k-1 such that $H = [J_1, J_2] \cap C_G(A_j)$ for suitable $j \le s$.

Examples

• - degree 0: $C_G(A_i)$, $i \leq s$.

Let q be a prime and A an elementary abelian q-group acting on a finite q'-group G. Let A_1, \ldots, A_s be the subgroups of index q in A and H a subgroup of G.

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if $H = C_G(A_i)$ for suitable $i \leq s$.
- Suppose that $k \ge 1$ and the A-special subgroups of G of degree k-1 are defined. Then H is an A-special subgroup of G of degree k if and only if there exist A-special subgroups J_1, J_2 of G of degree k-1 such that $H = [J_1, J_2] \cap C_G(A_j)$ for suitable $j \le s$.

Examples

- - degree 0: $C_G(A_i)$, $i \leq s$.
- - degree 1:

Let q be a prime and A an elementary abelian q-group acting on a finite q'-group G. Let A_1, \ldots, A_s be the subgroups of index q in A and H a subgroup of G.

- *H* is an *A*-special subgroup of *G* of degree 0 if and only if $H = C_G(A_i)$ for suitable $i \leq s$.
- Suppose that $k \ge 1$ and the A-special subgroups of G of degree k-1 are defined. Then H is an A-special subgroup of G of degree k if and only if there exist A-special subgroups J_1, J_2 of G of degree k-1 such that $H = [J_1, J_2] \cap C_G(A_j)$ for suitable $j \le s$.

Examples

- - degree 0: $C_G(A_i)$, $i \leq s$.
- - degree 1: $[C_G(A_i), C_G(A_j)] \cap C_G(A_l), \quad i, j, l \leq s$

Assume that A has order q^r , with $r \ge 2$. Let A_1, \ldots, A_s be the maximal subgroups of A, and let $k \ge 0$ be an integer.

• All A-special subgroups of G of any degree are A-invariant.

Assume that A has order q^r , with $r \ge 2$. Let A_1, \ldots, A_s be the maximal subgroups of A, and let $k \ge 0$ be an integer.

• All A-special subgroups of G of any degree are A-invariant. For a given k the number of A-special subgroups of G of degree k is $\{q, r, k\}$ -bounded.

- All A-special subgroups of G of any degree are A-invariant. For a given k the number of A-special subgroups of G of degree k is $\{q, r, k\}$ -bounded.
- If k ≥ 1, then every A-special subgroup of G of degree k is contained in some A-special subgroup of G of degree k − 1.

- All A-special subgroups of G of any degree are A-invariant.
 For a given k the number of A-special subgroups of G of degree k is {q, r, k}-bounded.
- If k ≥ 1, then every A-special subgroup of G of degree k is contained in some A-special subgroup of G of degree k − 1.
- Let R_k be the subgroup generated by all A-special subgroups of G of degree k. Then $R_k = G^{(k)}$.

- All A-special subgroups of G of any degree are A-invariant. For a given k the number of A-special subgroups of G of degree k is $\{q, r, k\}$ -bounded.
- If k ≥ 1, then every A-special subgroup of G of degree k is contained in some A-special subgroup of G of degree k − 1.
- Let R_k be the subgroup generated by all A-special subgroups of G of degree k. Then $R_k = G^{(k)}$.
- If $2^k \leq r-1$ and H is an A-special subgroup of G of degree k, then H is contained in the kth derived group of $C_G(B)$ for some subgroup $B \leq A$ such that $|A/B| \leq q^{2^k}$.

Generation result for A-invariant Sylow subgroups of $G^{(d)}$ If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be

generated by its intersections with A-special subgroups of G of degree d.

Generation result for A-invariant Sylow subgroups of $G^{(d)}$

If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be generated by its intersections with A-special subgroups of G of degree d. More precisely we have the following result.

Theorem

Assume $r \ge 2$. Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$ for some fixed integer $d \ge 0$.

Generation result for A-invariant Sylow subgroups of $G^{(d)}$

If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be generated by its intersections with A-special subgroups of G of degree d. More precisely we have the following result.

Theorem

Assume $r \ge 2$. Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$ for some fixed integer $d \ge 0$. Let P_1, \ldots, P_t be the subgroups of the form $P \cap H$, where H is some A-special subgroup of G of degree d.
If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be generated by its intersections with A-special subgroups of G of degree d. More precisely we have the following result.

Theorem

Assume $r \ge 2$. Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$ for some fixed integer $d \ge 0$. Let P_1, \ldots, P_t be the subgroups of the form $P \cap H$, where H is some A-special subgroup of G of degree d. Then $P = \langle P_1, \ldots, P_t \rangle$.

If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be generated by its intersections with A-special subgroups of G of degree d. More precisely we have the following result.

Theorem

Assume $r \ge 2$. Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$ for some fixed integer $d \ge 0$. Let P_1, \ldots, P_t be the subgroups of the form $P \cap H$, where H is some A-special subgroup of G of degree d. Then $P = \langle P_1, \ldots, P_t \rangle$.

Consequences (under the same hypothesis of the theorem)

•
$$P = P_1 P_2 \cdots P_t$$
.

If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be generated by its intersections with A-special subgroups of G of degree d. More precisely we have the following result.

Theorem

Assume $r \ge 2$. Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$ for some fixed integer $d \ge 0$. Let P_1, \ldots, P_t be the subgroups of the form $P \cap H$, where H is some A-special subgroup of G of degree d. Then $P = \langle P_1, \ldots, P_t \rangle$.

Consequences (under the same hypothesis of the theorem)

- $P = P_1 P_2 \cdots P_t$.
- Let $P^{(l)}$ be the *l*th derived group of *P*. Then $P^{(l)} = \langle P^{(l)} \cap P_j \mid 1 \le j \le t \rangle.$

If P is an A-invariant Sylow p-subgroup of $G^{(d)}$, then it can be generated by its intersections with A-special subgroups of G of degree d. More precisely we have the following result.

Theorem

Assume $r \ge 2$. Let P be an A-invariant Sylow p-subgroup of $G^{(d)}$ for some fixed integer $d \ge 0$. Let P_1, \ldots, P_t be the subgroups of the form $P \cap H$, where H is some A-special subgroup of G of degree d. Then $P = \langle P_1, \ldots, P_t \rangle$.

Consequences (under the same hypothesis of the theorem)

- $P = P_1 P_2 \cdots P_t$.
- Let $P^{(l)}$ be the *l*th derived group of *P*. Then $P^{(l)} = \langle P^{(l)} \cap P_j \mid 1 \le j \le t \rangle.$
- For all $l \ge 1$ the *l*th derived group $P^{(l)}$ is the product of the subgroups of the form $P^{(l)} \cap P_j$, where $j = 1, \ldots, t$.

Theorem

Let q be a prime, m a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G. If, for some integer d such that $2^d \le r - 1$, the dth derived group of $C_G(a)$ has exponent dividing m for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

If G is a *p*-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow p-subgroup, say P.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow p-subgroup, say P. Then $P = P_1P_2 \cdots P_t$, where each P_j is of the form $P \cap H$ for some A-special subgroup H of G of degree d.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow p-subgroup, say P. Then $P = P_1P_2 \cdots P_t$, where each P_j is of the form $P \cap H$ for some A-special subgroup H of G of degree d. Now each $P_j \leq C_G(B)^{(d)}$ for a subgroup B of A and thus $P_j \leq C_G(a)^{(d)}$, for some $a \in A^{\#}$.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow p-subgroup, say P. Then $P = P_1P_2\cdots P_t$, where each P_j is of the form $P \cap H$ for some A-special subgroup H of G of degree d. Now each $P_j \leq C_G(B)^{(d)}$ for a subgroup B of A and thus $P_j \leq C_G(a)^{(d)}$, for some $a \in A^{\#}$. Since the exponent of $C_G(a)^{(d)}$ divides m, so does p.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow p-subgroup, say P. Then $P = P_1P_2\cdots P_t$, where each P_j is of the form $P \cap H$ for some A-special subgroup H of G of degree d. Now each $P_j \leq C_G(B)^{(d)}$ for a subgroup B of A and thus $P_j \leq C_G(a)^{(d)}$, for some $a \in A^{\#}$. Since the exponent of $C_G(a)^{(d)}$ divides m, so does p. $P^{(d)}$ has $\{m, q, r\}$ -bounded exponent.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow p-subgroup, say P. Then $P = P_1 P_2 \cdots P_t$, where each P_j is of the form $P \cap H$ for some A-special subgroup H of G of degree d. Now each $P_j \leq C_G(B)^{(d)}$ for a subgroup B of A and thus $P_j \leq C_G(a)^{(d)}$, for some $a \in A^{\#}$. Since the exponent of $C_G(a)^{(d)}$ divides m, so does p. $P^{(d)}$ has $\{m, q, r\}$ -bounded exponent. Moreover $P^{(d-1)} \cap P_j$, for $j = 1, \ldots, t$, so $P^{(d-1)}$ is generated by elements of order dividing m.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow *p*-subgroup, say *P*. Then $P = P_1 P_2 \cdots P_t$, where each P_i is of the form $P \cap H$ for some A-special subgroup H of G of degree d. Now each $P_i \leq C_G(B)^{(d)}$ for a subgroup B of A and thus $P_i \leq C_G(a)^{(d)}$, for some $a \in A^{\#}$. Since the exponent of $C_G(a)^{(d)}$ divides m, so does p. $P^{(d)}$ has $\{m, q, r\}$ -bounded exponent. Moreover $P^{(d-1)}$ is generated by subgroups of the form $P^{(d-1)} \cap P_i$, for $i = 1, \dots, t$, so $P^{(d-1)}$ is generated by elements of order dividing m. It follows that the exponent of $P^{(d-1)}$ is $\{m, q, r\}$ -bounded.

If G is a p-group, then $G^{(d)} = G_1 G_2 \cdots G_t$, where G_i are A-special subgroups of G of degree d. The proof involves Lie methods, properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider $\pi(G^{(d)})$ and choose $p \in \pi(G^{(d)})$. We know that $G^{(d)}$ possesses an A-invariant Sylow *p*-subgroup, say *P*. Then $P = P_1 P_2 \cdots P_t$, where each P_i is of the form $P \cap H$ for some A-special subgroup H of G of degree d. Now each $P_i \leq C_G(B)^{(d)}$ for a subgroup B of A and thus $P_i \leq C_G(a)^{(d)}$, for some $a \in A^{\#}$. Since the exponent of $C_G(a)^{(d)}$ divides m, so does p. $P^{(d)}$ has $\{m, q, r\}$ -bounded exponent. Moreover $P^{(d-1)}$ is generated by subgroups of the form $P^{(d-1)} \cap P_i$, for $i = 1, \ldots, t$, so $P^{(d-1)}$ is generated by elements of order dividing m. It follows that the exponent of $P^{(d-1)}$ is $\{m, q, r\}$ -bounded. Repeating the same argument we see that $P^{(d-2)}, \ldots, P'$ and P are generated by elements whose orders divide m and so P has $\{m, q, r\}$ -bounded exponent.

Using more or less the same tools (A-special subgroups properties and Lie tecniques) we also proved the following result

Using more or less the same tools (A-special subgroups properties and Lie tecniques) we also proved the following result

Theorem

Let A be an elementary abelian group of order q^r with $r \ge 3$ acting on a finite q'-group G.

Using more or less the same tools (*A*-special subgroups properties and Lie tecniques) we also proved the following result

Theorem

Let A be an elementary abelian group of order q^r with $r \ge 3$ acting on a finite q'-group G. If, for some integer d such that $2^d + 2 \le r$, the dth derived group of $C_G(a)$ is nilpotent of class at most c for any $a \in A^{\#}$,

Using more or less the same tools (*A*-special subgroups properties and Lie tecniques) we also proved the following result

Theorem

Let A be an elementary abelian group of order q^r with $r \ge 3$ acting on a finite q'-group G. If, for some integer d such that $2^d + 2 \le r$, the dth derived group of $C_G(a)$ is nilpotent of class at most c for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ is nilpotent and has $\{c, q, r\}$ -bounded nilpotency class.

Using more or less the same tools (*A*-special subgroups properties and Lie tecniques) we also proved the following result

Theorem

Let A be an elementary abelian group of order q^r with $r \ge 3$ acting on a finite q'-group G. If, for some integer d such that $2^d + 2 \le r$, the dth derived group of $C_G(a)$ is nilpotent of class at most c for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ is nilpotent and has $\{c, q, r\}$ -bounded nilpotency class.

The result was already known for $r \le 4$ (Ward, 1971 for nilpotency and Shumyatsky, 2001 for the bound of the nilpotency class).

Using more or less the same tools (*A*-special subgroups properties and Lie tecniques) we also proved the following result

Theorem

Let A be an elementary abelian group of order q^r with $r \ge 3$ acting on a finite q'-group G. If, for some integer d such that $2^d + 2 \le r$, the dth derived group of $C_G(a)$ is nilpotent of class at most c for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ is nilpotent and has $\{c, q, r\}$ -bounded nilpotency class.

The result was already known for $r \leq 4$ (Ward, 1971 for nilpotency and Shumyatsky, 2001 for the bound of the nilpotency class). The corresponding result for Lie algebras was also known.

Using more or less the same tools (*A*-special subgroups properties and Lie tecniques) we also proved the following result

Theorem

Let A be an elementary abelian group of order q^r with $r \ge 3$ acting on a finite q'-group G. If, for some integer d such that $2^d + 2 \le r$, the dth derived group of $C_G(a)$ is nilpotent of class at most c for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ is nilpotent and has $\{c, q, r\}$ -bounded nilpotency class.

The result was already known for $r \leq 4$ (Ward, 1971 for nilpotency and Shumyatsky, 2001 for the bound of the nilpotency class). The corresponding result for Lie algebras was also known. Our result shows that the previous ones for $r \leq 4$ are part of a more general phenomenon.

Some Bibliography

More details in

- C. Acciarri and P. Shumyatsky, 'Fixed points of coprime operator groups', *J. Algebra* **342** (2011), 161–174.
- C. Acciarri and P. Shumyatsky, 'Centralizers of coprime automorphisms of finite groups', submitted. arXiv:1112.5880.

Some Bibliography

More details in

- C. Acciarri and P. Shumyatsky, 'Fixed points of coprime operator groups', *J. Algebra* **342** (2011), 161–174.
- C. Acciarri and P. Shumyatsky, 'Centralizers of coprime automorphisms of finite groups', submitted. arXiv:1112.5880.

Thank you!