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Preliminaries

• Let G be a finite group admitting an action of a group A.

We
denote by CG(A) the centralizer of A in G, i.e. the fixed
point group CG(A) = {x ∈ G | xa = x∀a ∈ A}.

• It is well known that the structure of CG(A) may have strong
influence over the structure of G.

Theorem (Thompson, 1959)

If A is of prime order and CG(A) = 1, then G is nilpotent.

• We will talk about coprime actions, i.e. (|A|, |G|) = 1.

• For us A will be an elementary abelian group of order qr with
r ≥ 2 acting on a finite q′-group G, where q is a prime.
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Bounding the exponent of G

Theorem (Khukhro-Shumyatsky, 1999)

Let q be a prime, m a positive integer and A an elementary abelian
group of order q2. Suppose that A acts as a coprime group of
automorphisms on a finite group G and assume that CG(a) has
exponent dividing m for each a ∈ A#. Then the exponent of G is
{m, q}-bounded.

The proof involves a number of deep ideas.

• Zelmanov’s techniques that led to the solution of the
restricted Burnside problem;

• Lubotzky-Mann theory of powerful p-groups;

• Quantitative version for finite p-groups of a Lazard’s criterion
for a pro-p group to be p-adic analytic;

• Theorem of Bahturin and Zaicev on Lie algebras admitting a
group of automorphisms whose fixed-point subalgebra satisfies
a polynomial identity.
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Idea of the proof

• Suppose first that G is a p-group (p 6= q).

Note that every
g ∈ G is contained in the A-invariant subgroup
〈ga | a ∈ A〉.We also assume that G is q2-generated.

• The Lazard Lie algebra Lp(G) is nilpotent of {q,m}-bounded
class: this is proved using Zelmanov result, by showing that
the Lie algebra Lp(G) satisfies a polynomial identity that
depends only on q and m (by Bahturin-Zaicev result on Lie
algebras) and other nontrivial facts.

• Since Lp(G) is nilpotent, it follows that G has a powerful
subgroup of {q,m}-bounded index.

• The proof in the case where G is a powerful p-group is
straightforward.
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Idea of the proof (cont.)

If G is not a p-group, then the problem can be reduced to p-groups
in the following way:

• for every prime p | |G|, there is an A-invariant Sylow
p-subgroup P of G. Since P = 〈CP (a) | a ∈ A#〉, p must be
a divisor of m.

• The result is true for finite p-groups, so the exponents of
Sylow subgroups of G will be {q,m}-bounded and also the
exponent of G.
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Bounding the exponent of G′

Another quantitative result of similar nature.

Theorem (Guralnick-Shumyatsky, 2001)

Let q be a prime, m a positive integer. Let G be a finite q′-group
acted on by an elementary abelian group A of order q3. Assume
that CG(a) has derived group of exponent dividing m for each
a ∈ A#. Then the exponent of G′ is {m, q}-bounded.

• The assumption that |A| = q3 is essential here and the
theorem fails if |A| = q2.
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Idea of the proof

In the case where G is a p-group the proof is more or less similar
to the proof of the KS Theorem.

There are some differences but
main tools are the same: Zelmanov’s techniques, Bahturin-Zaicev
theorem, etc.

But the reduction to p-groups is much more complicated. We need
the following result.
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Idea of the proof (cont.)

Theorem (generation result)

Let q be a prime. Let G be a finite q′-group acted on by an
elementary abelian group A of order q3. Let P be an A-invariant
Sylow subgroup of G.

Then P ∩G′ = 〈P ∩ CG(a)
′ | a ∈ A#〉.

The proof involves the classification of finite simple groups.

Now the GS Theorem can be proved as follows.

• There is a bound (depending only on q and m) on the
exponent of P ∩G′ for an A-invariant Sylow p-subgroup P of
G for each prime p.

• Say m1 = m1(q,m) the bound for p-groups.

• By the theorem above the exponent of (P ∩G′)/P ′ is
bounded by m. Thus, the exponent of P ∩G′ is bounded by
mm1.
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It is natural to think that previous results admit a common
generalisation for each term G(i) of the derived series of G.

In 2001 Shumyatsky conjectured the following:

Let q be a prime, m a positive integer and A an elementary abelian
group of order qr with r ≥ 2 acting on a finite q′-group G. If, for
some integer d such that 2d ≤ r − 1, the dth derived group of
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For every integer k ≥ 0 we define A-special subgroups of G of
degree k as follows.

Let q be a prime and A an elementary abelian q-group acting on a
finite q′-group G. Let A1, . . . , As be the subgroups of index q in A
and H a subgroup of G.

• H is an A-special subgroup of G of degree 0 if and only if
H = CG(Ai) for suitable i ≤ s.

• Suppose that k ≥ 1 and the A-special subgroups of G of
degree k − 1 are defined. Then H is an A-special subgroup of
G of degree k if and only if there exist A-special subgroups
J1, J2 of G of degree k − 1 such that H = [J1, J2] ∩ CG(Aj)
for suitable j ≤ s.

Examples

• - degree 0: CG(Ai), i ≤ s.

• - degree 1: [CG(Ai), CG(Aj)] ∩ CG(Al), i, j, l ≤ s
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Some properties of A-special subgroups

Assume that A has order qr, with r ≥ 2. Let A1, . . . , As be the
maximal subgroups of A, and let k ≥ 0 be an integer.

• All A-special subgroups of G of any degree are A-invariant.
For a given k the number of A-special subgroups of G of
degree k is {q, r, k}-bounded.

• If k ≥ 1, then every A-special subgroup of G of degree k is
contained in some A-special subgroup of G of degree k − 1.

• Let Rk be the subgroup generated by all A-special subgroups
of G of degree k. Then Rk = G(k).

• If 2k ≤ r − 1 and H is an A-special subgroup of G of degree
k, then H is contained in the kth derived group of CG(B) for

some subgroup B ≤ A such that |A/B| ≤ q2k .
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Preliminaries Motivation Main result

Generation result for A-invariant Sylow subgroups of G(d)

If P is an A-invariant Sylow p-subgroup of G(d), then it can be
generated by its intersections with A-special subgroups of G of
degree d.

More precisely we have the following result.

Theorem
Assume r ≥ 2. Let P be an A-invariant Sylow p-subgroup of G(d)

for some fixed integer d ≥ 0. Let P1, . . . , Pt be the subgroups of
the form P ∩H, where H is some A-special subgroup of G of
degree d. Then P = 〈P1, . . . , Pt〉.

Consequences (under the same hypothesis of the theorem)

• P = P1P2 · · ·Pt.

• Let P (l) be the lth derived group of P . Then
P (l) = 〈P (l) ∩ Pj | 1 ≤ j ≤ t〉.

• For all l ≥ 1 the lth derived group P (l) is the product of the
subgroups of the form P (l) ∩ Pj , where j = 1, . . . , t.
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Main result

Theorem
Let q be a prime, m a positive integer and A an elementary abelian
group of order qr with r ≥ 2 acting on a finite q′-group G. If, for
some integer d such that 2d ≤ r − 1, the dth derived group of
CG(a) has exponent dividing m for any a ∈ A#, then the dth
derived group G(d) has {m, q, r}-bounded exponent.

If G is a p-group, then G(d) = G1G2 · · ·Gt, where Gi are A-special
subgroups of G of degree d. The proof involves Lie methods,
properties of A-special subgroups and powerful p-groups tool.

If G is not a p-group, then consider π(G(d)) and choose
p ∈ π(G(d)). We know that G(d) possesses an A-invariant Sylow
p-subgroup, say P . Then P = P1P2 · · ·Pt, where each Pj is of the
form P ∩H for some A-special subgroup H of G of degree d.
Now each Pj ≤ CG(B)(d) for a subgroup B of A and thus
Pj ≤ CG(a)

(d), for some a ∈ A#. Since the exponent of CG(a)
(d)

divides m, so does p. P (d) has {m, q, r}-bounded exponent.
Moreover P (d−1) is generated by subgroups of the form
P (d−1) ∩Pj , for j = 1, . . . , t, so P (d−1) is generated by elements of
order dividing m. It follows that the exponent of P (d−1) is
{m, q, r}-bounded. Repeating the same argument we see that
P (d−2), . . . , P ′ and P are generated by elements whose orders
divide m and so P has {m, q, r}-bounded exponent.
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Bounding the nilpotency class

Using more or less the same tools (A-special subgroups properties
and Lie tecniques) we also proved the following result

Theorem
Let A be an elementary abelian group of order qr with r ≥ 3
acting on a finite q′-group G. If, for some integer d such that
2d + 2 ≤ r, the dth derived group of CG(a) is nilpotent of class at
most c for any a ∈ A#,then the dth derived group G(d) is nilpotent
and has {c, q, r}-bounded nilpotency class.

The result was already known for r ≤ 4 (Ward, 1971 for nilpotency
and Shumyatsky, 2001 for the bound of the nilpotency class). The
corresponding result for Lie algebras was also known. Our result
shows that the previous ones for r ≤ 4 are part of a more general
phenomenon.
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