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Definition
A group G is the product of two subgroups A and B if

G = AB = {ab | a ∈ A, b ∈ B}.

In this case, we also say that G is factorized by A and B.

Theorem (N. Itô, 1955)

Let the group G = AB be the product of two abelian subgroups A and

B. Then G is metabelian.
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Let G = AB be a group factorized by two subgroups A and B. If N is a

normal subgroup of G , then the subgroup

AN ∩ BN

has an interesting triple factorization:

AN ∩ BN = (A ∩ BN)N = (B ∩ AN)N = (A ∩ BN)(B ∩ AN).

The structure of normal subgroups of factorized groups leads to the

consideration of triply factorized groups

G = AB = AK = BK

where K is a normal subgroup of G .

Actually, even without the normality assumption, many properties of a

group G = AB = AC = BC can be detected from the structure of the

subgroups A,B and C .
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Theorem (O.H. Kegel, 1965)

Let the finite group

G = AB = AC = BC

be the product of two nilpotent subgroups A and B and a supersoluble

subgroup C . Then G is supersoluble.
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Recall that a formation is a class F of finite groups such that every

homomorphic image of an F-group is an F-group and if G/N and G/M

are F-groups, then G/N ∩M also belongs to F. Moreover, the formation

F is saturated if the finite group G belongs to F whenever the Frattini

factor group G/Φ(G ) is in F.

Theorem (F.G. Peterson, 1973)

Let F be a saturated formation containing all finite nilpotent groups, and

let the finite group

G = AB = AC = BC

be the product of two nilpotent subgroups A and B and an F-subgroup C .

Then G is an F-group.

Peterson also produced an example to show that a finite group

G = AB = AC = BC , factorized by a nilpotent subgroup A and two

supersoluble subgroups B and C , need not be supersoluble.
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Theorem (R. Baer)

If G is a finite group with nilpotent commutator subgroup, then every

collection of supersoluble normal subgroups of G generates a supersoluble

subgroup.

As a consequence, any finite group with nilpotent commutator subgroup

contains a largest supersoluble normal subgroup.

It is possible to prove that if G is a finite group G with nilpotent

commutator subgroup admitting a triple factorization

G = AB = AC = BC ,

where A,B and C are supersoluble subgroups, then G itself is

supersoluble.
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The situation is much more complicated for infinite groups, as Y.P. Sysak

constructed groups which are not locally supersoluble but have a triple

factorization by abelian subgroups.

Recall that a group G has finite abelian section rank if it has no infinite

elementary abelian p-sections for any prime p.

Theorem (S. Franciosi and F. de Giovanni, 1997)

Let the group

G = AB = AC = BC

be the product of three locally supersoluble subgroups A, B and C . If C

has finite abelian section rank and the commutator subgroup G ′ of G is

locally nilpotent, then G is locally supersoluble.
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Definition
A group G is said to be FC-hypercentral if every non-trivial homomorphic

image of G contains some non-trivial element having only finitely many

conjugates.

In the example of Sysak, every non-trivial element has infinitely many

conjugates.
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Theorem (D.J.S. Robinson and S.E. Stonehewer, 1992)

Let the group G = AB be the product of two abelian subgroups A and

B. Then every chief factor of G is centralized either by A or by B.

Corollary

Let the group

G = AB = AC = BC

be the product of three abelian subgroups A,B,C . Then all chief factors

of G are central.
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Main Result

Theorem (A.A. and F. de Giovanni, 2011)

Let the FC -hypercentral group

G = AB = AC = BC

be the product of three locally supersoluble subgroups A,B,C . If the

commutator subgroup G ′ of G is nilpotent, then G is locally supersoluble.
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Definition
A group G is said to be hypercentral if it coincides with its hypercentre,

or equivalently if any non-trivial homomorphic image of G has non-trivial

centre.

Lemma
Let G be an FC -hypercentral group whose chief factors are central. Then

G is hypercentral.
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Theorem (R. Baer)

If G is a finite group with nilpotent commutator subgroup, then every

collection of supersoluble normal subgroups of G generates a supersoluble

subgroup.

Lemma (R. Baer)

Let G be a group with locally nilpotent commutator subgroup, and let H

and K be locally supersoluble normal subgroups of G . Then the

subgroup HK is locally supersoluble.
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Theorem (P. Hall)

Let N be a normal subgroup of a group G and suppose that N and G/N ′

are nilpotent. Then G is nilpotent.

Similarly, let N be a nilpotent normal subgroup of a group G and suppose

that G/N ′ is locally supersoluble. Then G is locally supersoluble.
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Definition
A normal subgroup N of a group G is said to be hypercyclically

embedded in G if it has an ascending series with cyclic factors consisting

of normal subgroups of G .

Any group G has a largest hypercyclically embedded normal subgroup H,

which is of course characteristic, and G is locally supersoluble if and only

if G/H has the same property.
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Lemma (A.A. and F. de Giovanni, 2011)

Let the FC -hypercentral group

G = AB = AK = BK

be the product of two abelian subgroups A and B and a locally

supersoluble normal subgroup K . Then G is locally supersoluble.

Definition
A group G is said to be hypercyclic if any non-trivial homomorphic image

of G contains a cyclic non-trivial normal subgroup.

Recall a result of D.H. McLain: every finitely generated FC -hypercentral

group G contains a nilpotent subgroup of finite index.
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Sketch of the proof

It is enough to prove that G/G ′′ is locally supersoluble.

It can be supposed that G is metabelian.

Let K be the largest hypercyclically embedded normal subgroup of

AG ′.

Consider the factor group Ḡ = G/K .

A ∩ G ′ is hypercyclically embedded in AG ′.

Therefore A ∩ G ′ is contained in K and hence Ā ∩ Ḡ ′ = {1}.

The subgroup Ā is abelian.

Antonio Auletta Products of Locally Supersoluble Groups



Sketch of the proof

It is enough to prove that G/G ′′ is locally supersoluble.

It can be supposed that G is metabelian.

Let K be the largest hypercyclically embedded normal subgroup of

AG ′.

Consider the factor group Ḡ = G/K .
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A ∩ G ′ is hypercyclically embedded in AG ′.

Therefore A ∩ G ′ is contained in K and hence Ā ∩ Ḡ ′ = {1}.
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Sketch of the proof

Let L̄ be the largest hypercyclically embedded normal subgroup of

B̄Ḡ ′.

Set Ĝ = Ḡ/L̄.

We obtain that B̂ is abelian.

Let N̂ be the largest hypercyclically embedded normal subgroup of

Ĉ Ĝ ′

Set G̃ = Ĝ/N̂.

We obtain that C̃ is abelian.
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Sketch of the proof

Therefore

G̃ = ÃB̃ = ÃC̃ = B̃C̃

is the product of its abelian subgroups Ã,B̃ and C̃ .

All chief factors of G̃ are central.

G̃ = Ĝ/N̂ is hypercentral.

Ĉ Ĝ ′ is locally supersoluble.

Ĝ = ÂB̂ = Â(Ĉ Ĝ ′) = B̂(Ĉ Ĝ ′) has a triple factorization by the

abelian subgroups Â and B̂ and by the locally supersoluble normal

subgroup Ĉ Ĝ ′.

Ĝ = Ḡ/L̄ is locally supersoluble.

B̄Ḡ ′ is locally supersoluble.
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G̃ = ÃB̃ = ÃC̃ = B̃C̃

is the product of its abelian subgroups Ã,B̃ and C̃ .
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Sketch of the proof

Let V̄ the largest hypercyclically embedded normal subgroup of C̄ Ḡ ′

Consider the factor group G∗ = Ḡ/V̄ .

Let W ∗ the largest hypercyclically embedded normal subgroup of

B∗(G∗)′.

The normal subgroup C̄ Ḡ ′ of Ḡ is locally supersoluble.

Consider the metabelian group Ḡ = (B̄Ḡ ′)(C̄ Ḡ ′).

Ḡ = G/K is locally supersoluble.
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Ḡ = G/K is locally supersoluble.

Antonio Auletta Products of Locally Supersoluble Groups



Sketch of the proof

Let V̄ the largest hypercyclically embedded normal subgroup of C̄ Ḡ ′
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Sketch of the proof

Remember that K is hypercyclically embedded in AG ′.

AG ′ is locally supersoluble.

Repeating once again the argument, we obtain that also BG ′ is locally

supersoluble.

G = (AG ′)(BG ′) is the product of two locally supersoluble normal

subgroups.

G is locally supersoluble.
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