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Preliminaries

Joint work with Zekeriya Yalcin Karatas

Question
What can we say about a group all of whose proper subgroups
have some property P?

Properties P of interest in this talk include: permutability, finite
rank, and related properties. But it is a question with a rich
history.
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Some History

Dedekind groups: Groups with all subgroups normal:
Precisely those groups which are either abelian or
Q × E ×O.

Groups with all proper subgroups abelian: non-abelian
groups with all proper subgroups abelian can be quite
complicated-Tarski monsters.
Groups G with all proper subgroups nilpotent. When G is
finite then G is soluble (Schmidt).

When G is infinite and
locally graded then G is also soluble (Asar). G is locally
graded when every nontrivial finitely generated subgroup
has a nontrivial finite image.
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Permutable subgroups

A subgroup H of a group G is permutable if HK = KH for all
subgroups K of G.

(Stonehewer, 1972) Permutable subgroups are ascendant;
in fact in finitely generated groups permutable subgroups
are subnormal. Thus groups with all subgroups permutable
are Gruenberg groups.
(Iwasawa, 1943) Classified groups with all subgroups
permutable.
If G is a nonabelian group with elements of infinite order
and all subgroups permutable then T (G) is abelian and
G/T (G) is torsionfree abelian of rank 1.

Rather more
precise information can be obtained.
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Permutable subgroups continued

Periodic groups with all subgroups permutable are
therefore locally finite; they have known structure.

(Stonehewer, 1972) A simple group never contains a
proper, nontrivial, permutable subgroup.
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Finite Rank

G has finite rank, r , if every finitely generated subgroup of
G is at most r -generator and r is the least natural number
with this property.

What can be said about locally graded groups of finite
rank?
(N. S. Černikov, 1990) Every X-group of finite rank is
almost locally soluble. Here X is a very large class of
locally graded groups This generalizes well-known
theorems of Shunkov (1971) and Lubotzky-Mann (1989).
It is unknown if X is the class of all locally graded groups.
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Motivation

(Evans-Kim, 2004) Suppose that G is an X-group with all
infinite rank subgroups subnormal of defect at most d . If G
has infinite rank then G is nilpotent of class dependent
upon a function of d .

This generalizes a well-known theorem of Roseblade
(1965).
(Kurdachenko-Smith, 2004) If G is a locally
(soluble-by-finite) group of infinite rank, all of whose infinite
rank subgroups are subnormal, then G is a soluble Baer
group.
What can be said concerning groups all of whose infinite
rank subgroups are pemutable?
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Results

Theorem
Let G be an X-group of infinite rank in which every subgroup of
infinite rank is permutable. Then every subgroup of G is
permutable.

Thus the structure of X-groups of infinite rank in which every
subgroups of infinite rank is permutable is known.
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Useful Background

(De Falco, De Giovanni, Musella, Schmidt 2003) If G is a
group, H ≤ G such that all subgroups containing H are
permutable. If there exists g ∈ G such that gn /∈ H for all n
then H / G.

Use this to deduce the following. Let G be a group of
infinite rank, all subgroups of infinite rank permutable. If G
has a subgroup of type A1 × A2 × . . . ∼= Z× Z× . . . then G
is abelian.

Let Ai = 〈ai〉. Let C = A1×A3× . . . , D = A2×A4× . . . . Clearly
ak

j /∈ C for all even j , and every subgroup containing C is
permutable, so C / G. Likewise D / G. G/C has all subgroups
permutable so must be abelian; likewise G/D abelian so G is
abelian.
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More Useful Background

(special case of Baer-Heineken Theorem) A radical group
of infinite rank contains an abelian subgroup of infinite
rank.

Let G be a locally nilpotent group of infinite rank in which
every subgroup of infinite rank is permutable. Then any
two subgroups of T (G) permute.

G nonabelian implies G contains a subgroup
B = B1 × B2 × B3 × . . . where, for all i , Bi

∼= Zp
ni
i

for some
prime pi and for some positive integer ni . Let
Ai = Bi × Bi+1 × Bi+2 × . . . . Let g,h ∈ T (G). Then
〈g〉 〈h〉 = ∩i≥1Ai 〈g〉 〈h〉, since ∩i≥1Ai = 1.
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More Useful Background

Lemma
Let G be a periodic locally nilpotent group of infinite rank in
which every subgroup of infinite rank is permutable. Then any
two subgroups of G permute. Furthermore, G has a proper
normal subgroup of infinite rank.
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Proofs

Simple X-groups with all proper subgroups finite rank are
finite.

Lemma
Let G be an X-group of infinite rank in which every subgroup of
infinite rank is permutable. Then G has a proper normal
subgroup of infinite rank.

Suppose all proper normals have finite rank. Let J be the
product of the proper normals. If J 6= G it has finite rank and
G/J is simple. By Stonehewer’s result all proper subgroups of
G/J have finite rank so G/J is finite so G has finite rank.
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Proofs

Thus G is the product of its proper normal subgroups and it is
easy to see that G is a radical group and previous remarks
imply we may assume that G is not locally nilpotent.

Thus HP(G) has finite rank and so G has a normal subgroup M
such that M ′ is hypercentral and |G : M| is finite.
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Proofs

Theorem

Let G be an X-group of infinite rank in which every subgroup of
infinite rank is permutable. Then G is soluble.

G contains a proper normal of infinite rank, N. G/N is
metabelian so G′′ ≤ N. If G′′ has infinite rank then it has a
proper normal M of infinite rank so G(4) ≤ M so in any
case K = G(4) is finite rank.
K is locally soluble of finite rank. Structure of locally
soluble groups of finite rank implies that K is soluble.
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Proofs

Theorem

Let G be an X-group of infinite rank in which every subgroup of
infinite rank is permutable. Then G is a Gruenberg group and
hence is locally nilpotent.

Let A = A1 × A2 × A3 × . . ., Ai
∼= Zp

ni
i

, pi prime. Write
A = B × C; B,C infinite rank.
If g ∈ G has infinite order then gn /∈ A for all n 6= 0. 〈g〉B and
〈g〉C are permutable, hence ascendant in G.
Let x = bg i = cg j ∈ 〈g〉B ∩ 〈g〉C. Then c−1b = g j−i ∈ A so
j = i , b = c = 1. So x ∈ 〈g〉 and 〈g〉 = 〈g〉B ∩ 〈g〉C.
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Proofs

|g| = k <∞: construct a sequence of infinite rank abelian
subgroups X1,X2, . . . and positive integers si such that
X1 	 X2 	 X3 	 . . ., 0 < si < k and gsi ∈ Xi \ Xi+1 for all i .

There exist positive integers l and m such that gsl = gsm ; l > m.
gsm ∈ Xm \ Xl since l > m, but gsl ∈ Xl , a contradiction.
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Proofs

Lemma

Let G be an X-group of infinite rank in which every subgroup of
infinite rank is permutable. Let g be an element of infinite order
and h be an element of finite order. Then 〈g〉 〈h〉 is a subgroup
of G and hence 〈g〉 and 〈h〉 permute.

Lemma

Let G be an X-group of infinite rank in which every subgroup is
permutable or of finite rank. If G has elements of infinite order,
then every subgroup of T (G) is normal in G.

Martyn R. Dixon Groups whose subgroups of infinite rank are permutable



Introduction
Some History

summary

Proofs

Lemma

Let G be an X-group of infinite rank in which every subgroup of
infinite rank is permutable. Let g be an element of infinite order
and h be an element of finite order. Then 〈g〉 〈h〉 is a subgroup
of G and hence 〈g〉 and 〈h〉 permute.

Lemma

Let G be an X-group of infinite rank in which every subgroup is
permutable or of finite rank. If G has elements of infinite order,
then every subgroup of T (G) is normal in G.

Martyn R. Dixon Groups whose subgroups of infinite rank are permutable



Introduction
Some History

summary

Proofs

x ∈ T (G), y of infinite order. Then 〈x〉 〈y〉 ≤ G and
〈x〉 〈y〉 ∩ T (G) E 〈x〉 〈y〉. Then y ∈ NG(〈x〉) so 〈x〉 / G.
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G is locally nilpotent and we may assume not abelian.

It is enough to prove that 〈x〉 〈y〉 = 〈y〉 〈x〉 for all x , y ∈ G.
We may assume that x and y have infinite order.
G has a permutable subgroup A of infinite rank such that
A = A1 ×A2 ×A3 × . . . where Ai = 〈ai〉 ∼= Zp

ni
i

, pi is a prime and
ni is a positive integer for all i .

T (G) is abelian and G/T (G) is a torsion-free abelian
group of rank one.

Write A = B × C; B,C have infinite rank. Every subgroup of
T (G) is normal so B,C are normal subgroups of G. All
subgroups of G/B and G/C are permutable so
T (G/B) = T (G)/B and T (G/C) = T (G)/C are abelian. Then
T (G) ↪→ T (G)/B × T (G)/C implies that T (G) is abelian.
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Proof of main theorem

If G/B and G/C are both abelian then G ↪→ G/B ×G/C .
implies G is abelian. Thus one of G/B or G/C is nonabelian,
say G/B is nonabelian. Then G/T (G) ∼= (G/B)/T (G/B) is
torsion-free abelian of rank one.

T (G) has infinite rank. We need to show that 〈x〉〈y〉T (G) is a
group with all subgroups permutable. Since 〈x , y〉T (G)/T (G) is
finitely generated it is cyclic. Thus for the remainder of the proof
we may assume that G/T (G) is infinite cyclic.
In fact G is the semidirect product of T (G) by an infinite cyclic
group 〈z〉, and for every prime p there exists a p-adic unit r(p)
with r(p) ≡ 1 (mod p) and r(2) ≡ 1 (mod 4) such that az = ar(p)

for all a ∈ T (G)p, the p-component of T (G). Then the main
theorem follows by the structure theorem for groups with all
subgroups permutable.
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