Finite groups with a splitting automorphism

Kıvanç ERSOY

Ischia Group Theory 2012

Grand Hotel Delle Terme Re Ferdinando, Ischia (Naples, Italy)

March 26-29 2012

Finite groups with a splitting automorphism -p.1/34

Let G be a group. An automorphism α of G is called a **splitting automorphism** if for every $x \in G$

$$xx^{\alpha}x^{\alpha^2}\dots x^{\alpha^{n-1}} = 1$$

where $|\alpha| = n$.

A fixed-point-free automorphism of a finite group is a splitting automorphism.

In particular, if G is finite and $\alpha \in AutG$ fixed-point-free then the map

$$\psi: G \longrightarrow G$$
$$x \longrightarrow x^{-1} x^{\alpha}$$

is surjective. Therefore, for every $g \in G$, there exists $x \in G$ with $g = x^{-1}x^{\alpha}$, so,

$$gg^{\alpha}g^{\alpha^2}\dots g^{\alpha^{n-1}} =$$
$$(x^{-1}x^{\alpha})(x^{-\alpha}x^{\alpha^2})\dots (x^{-\alpha^{n-1}}x^{\alpha^n}) = 1$$

Let G be a non-perfect group. An element $a \in G$ is called an **anticentral element** if $aG' = a^G$.

Anticentral elements of finite order of a group G induce splitting automorphisms on G'.

Indeed, if a is anticentral in G with |a| = n, then for every $x \in G'$ the element xa^{-1} is conjugate to a^{-1} , which has order n. Then

$$xx^{a}x^{a^{2}}\dots x^{a^{n-1}} = (xa^{-1})^{n} = 1.$$

Example Let G = UT(n,q) be the group of $n \times n$ upper triangular matrices with diagonal entries are equal to 1, where $n \geq 4$ and $q = p^k$ for some prime p. regular unipotent in GL(n,q) which is contained in UT(n,q)that has all 1's in the first upper diagonal. Finite groups with a splitting automorphism -p.5/34

Now, G' is the subgroup of G consisting of elements $x \in G$ such that $x_{12} = x_{23} = x_{34} = \dots x_{(n-1)(n)} = 0$. Then, observe that $|G'| = |aG'| = q^{\frac{(n-2)(n-1)}{2}}$. But $|C_G(a)| = q^{n-1}$ where $|G| = q^{\frac{(n-1)(n)}{2}}$. So, $|a^G| = |aG'|$. Since $a^G \leq aG'$, they are equal, a is an anticentral element of G, so a is a splitting automorphism of G'.

Remark Let G be a finite group.

- If α is a fixed-point-free automorphism of G then α is anticentral in $H = G\langle \alpha \rangle$.
- If a is an anticentral element of G, then a is a splitting automorphism of G'.

Thompson proved that a finite group with a fixed-point-free automorphism of prime order is nilpotent. Kegel proved that the same is true for a finite group with a splitting automorphism of prime order.

Rowley proved that a finite group with a fixed-point-free automorphism is solvable.

Ladisch proved that a finite group with an anticentral element is solvable

It is natural to ask the following question: **Question 1** *Is a finite group with a splitting automorphism necessarily solvable?*

By Kegel's result the answer is positive for splitting automorphisms of prime order. Moreover, Jabara proved that a finite group with a splitting automorphism of order 4 is solvable.

However, one can see that the answer is negative in the full generality:

Example (Rowley) Observe that

$$\alpha: \ \mathbb{Z}_{31} \longrightarrow \mathbb{Z}_{31}$$
$$x \longrightarrow 11x$$

is a fixed-point-free automorphism of the cyclic group \mathbb{Z}_{31} of order 30.

Define $G = \mathbb{Z}_{31} \times A_5$ and consider

$$\phi: \ \mathbb{Z}_{31} \times A_5 \longrightarrow \mathbb{Z}_{31} \times A_5$$
$$(x, y) \longrightarrow (x^{\alpha}, y).$$

Finite groups with a splitting automorphism -p.12/34

One can observe that ϕ is a splitting automorphism of G of order 30, but G is not solvable.

These kind of examples motivate the following question: **Question 2** Let n be natural number which is not divisible by the exponent of any non-abelian finite simple group.

Is a finite group with a splitting automorphism of order n necessarily solvable?

In this talk, we will answer Question 2 partially, by proving the following result:

Theorem 1 (E.) A finite group with a splitting automorphism of odd order is solvable.

In the proof, two basic properties of splitting automorphisms are used.

Proposition Let G be a group with an automorphism α of order dividing n, satisfying

$$xx^{\alpha}x^{\alpha^2}\dots x^{n-1} = 1$$

for every $x \in G$. Then

- 1. $C_G(\alpha)$ has exponent dividing n.
- 2. For every $g \in G$, the element $g\alpha^{-1} \in G\langle \alpha \rangle$ has order dividing n.

Proof of Theorem 1 Let G be a finite group with a splitting automorphism α of odd order n. Let R be the solvable radical of G. Clearly R is α -invariant. Moreover, the map given by $\overline{\alpha}(xR) = x^{\alpha}R$ for every $xR \in G/R$ is an automorphism of G/R of odd order, dividing n.

For every $xR \in G/R$, one has

$$(xR)(xR)^{\overline{\alpha}}(xR)^{\overline{\alpha}^2}\dots(xR)^{\overline{\alpha}^{n-1}}=R.$$

Therefore, we may assume R = 1, and G has an automorphism α of order dividing n, where n is odd, and

$$xx^{\alpha}x^{\alpha^2}\dots x^{\alpha^{n-1}} = 1.$$

Take a minimal normal subgroup M of G.

$$M \cong S \times S \times \dots S$$

for some non-abelian simple group S. Take an orbit $S, S^{\alpha}, S^{\alpha^2} \dots S^{\alpha^{t-1}}$. Clearly the length of the orbit divides the order of α .

Here, if

$$(x_1, x_2^{\alpha}, x_3^{\alpha^2}, \dots, x_t^{\alpha^{t-1}}) \in S \times S^{\alpha} \times S^{\alpha^2} \times \dots \times S^{\alpha^{t-1}}$$

then

$$(x_1, x_2^{\alpha}, x_3^{\alpha^2}, \dots, x_t^{\alpha^{t-1}})^{\alpha} = (x_t^{\alpha^t}, x_1^{\alpha}, x_2^{\alpha^2}, \dots, x_{t-1}^{\alpha^{t-1}}).$$

Therefore, $C_{S \times S^{\alpha} \times S^{\alpha^2} \times \ldots \times S^{\alpha^{t-1}}}(\alpha) \cong C_S(\alpha^t)$. In this case, $\beta = \alpha^t$ is an automorphism of the non-abelian simple group S, which satisfies $ss^{\beta}s^{\beta^2} \dots s^{\beta^{k-1}} = 1$ for all $s \in S$ where $|\beta|$ divides k, and k divides $\frac{n}{t}$.

Now we need to show that a finite non-abelian simple group S can not have an automorphism of dividing k where $ss^{\beta}s^{\beta^2}\dots s^{\beta^{k-1}} = 1$ for each $s \in S$ and k is odd.

Let S be a finite non-abelian simple group with an automorphism β with $ss^{\beta}s^{\beta^2} \dots s^{\beta^{k-1}} = 1$ for each $s \in S$. Then, for each $s \in S$, the element $s\beta^{-1} \in AutS$ has odd order. If β is an inner automorphism, multiplying each element of S with β^{-1} is a bijection of S. By Feit-Thompson Theorem, S has even exponent, so β can not be an inner automorphism.

Then, S has an outer automorphism of odd order, which is only possible when S is a simple group of Lie type.

Then, there exists a simple linear algebraic group \overline{S} over an algebraically closed field of characteristic p and a Frobenius map σ over \overline{S} such that

$$S = O^{p'}(\overline{S}_{\sigma})$$

where \overline{S}_{σ} denotes the group of fixed-points of σ in \overline{S} .

By a result of Steinberg, any automorphism of a finite simple group of Lie type is a product of an inner-diagonal automorphism, a field automorphism and a graph automorphism.

Namely, $\beta = g\phi\delta$ where $g \in \overline{S}_{\sigma}$. Also, ϕ is a Frobenius map on \overline{S} with $\phi^m = \sigma$ for some m, and δ is induced by a symmetry of the Dynkin diagram.

We need to analyse the cases seperately: If β is an inner-diagonal automorphism, say $\beta = g \in \overline{S}_{\sigma} \setminus O^{p'}(\overline{S}_{\sigma}),$

then there exists an element $x \in S$ such that xg^{-1} is diagonal. Now, take an involution $i \in C_S(xg^{-1})$, so, $ix \in S$ and hence ixg^{-1} must have order dividing $|\beta|$ which is odd. But, since iand xg^{-1} commute, it has even order.

Now, assume $\beta = g\phi$ where ϕ is a field automorphism. Here, $C_S(\beta) = O^{p'}(C_{\overline{S}}(\sigma, g\phi)) \ge C_{O^{p'}(\overline{S}_{\phi})}(g)$, which contains an involution (or an element of order not dividing |g|) unless g is a regular unipotent or regular semisimple element of \overline{S}_{ϕ} .

In both cases, one can find an element $x \in S$ such that $x\beta^{-1}$ has even order.

Finally one has to analyse the case $\beta = g\phi\delta$, where δ is a non-trivial graph automorphism. This happens for the simple groups of type D_4 , since β has odd order.

Then, one can pick an involution from the root subgroup fixed by δ , to construct an element $x \in S$, such that $x\beta^{-1}$ has even order.

Therefore, a finite simple group can not have an automorphism of odd order n satisfying

$$xx^{\alpha}\dots x^{\alpha^{n-1}} = 1$$

and hence, a finite group with a splitting automorphism of odd order is solvable.

This result has a consequence, related to some earlier work of the speaker.

Anticentral elements

Recall that an element $a \in G$ is called anticentral if $aG' = a^G$. Ladisch proved that a finite group with an anticentral element is solvable.

Question 2 Is every locally finite group with an anticentral element locally solvable?

Anticentral elements

Theorem 2 (E.) Let G be a group with an anticentral element a of order m such that G' is a periodic \mathbb{F} -linear group where \mathbb{F} has characteristic p. Then one of the following cases occurs:

- 1. $C_{G'}(a)$ is finite and G is solvable.
- 2. $C_{G'}(a)$ has an infinite abelian subgroup of exponent p^k where p^k divides m.

Anticentral elements

By using Theorem 1, the following result about locally finite groups with an anticentral element, follows easily: **Corollary** A locally finite group with an anticentral element of odd order is locally solvable.