COVERING MONOLITHIC GROUPS WITH PROPER SUBGROUPS

Martino Garonzi PhD student Supervisor: Andrea Lucchini University of Padova

Ischia Group Theory 2012 March 29th 2012 DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS THE LUCCHINI-DETOMI CONJECTURE

COVERING OF A GROUP EXAMPLES

Remark

No group is union of two proper subgroups.

MARTINO GARONZI COVERING MONOLITHIC GROUPS WITH PROPER SUBGROUPS

A B K A B K

æ

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there exists $N \leq G$ such that $G/N \cong C_2 \times C_2$.

- E > - E >

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there exists $N \trianglelefteq G$ such that $G/N \cong C_2 \times C_2$.

These considerations led Cohn in 1994 to define for every group G:

 $\sigma(G)$ Covering number of *G*: the smallest cardinality of a family of proper subgroups of *G* whose union equals *G*. If *G* is cyclic we pose $\sigma(G) = \infty$.

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there exists $N \trianglelefteq G$ such that $G/N \cong C_2 \times C_2$.

These considerations led Cohn in 1994 to define for every group G:

 $\sigma(G)$ Covering number of G: the smallest cardinality of a family of proper subgroups of G whose union equals G.

If G is cyclic we pose $\sigma(G) = \infty$.

THEOREM (NEUMANN 1954)

If G is a group with finite covering number then there exists $N \trianglelefteq G$ such that G/N is finite and $\sigma(G) = \sigma(G/N)$.

From now on every considered group is assumed to be finite.

If *p* is a prime number then $\sigma(C_p \times C_p) = p + 1$. Indeed, $C_p \times C_p$ has exactly p + 1 maximal subgroups, all of them isomorphic to C_p and pairwise intersecting in the identity subgroup, so they cover $1 + (p - 1)(p + 1) = p^2$ elements.

Example

If *p* is a prime number then $\sigma(C_p \times C_p) = p + 1$. Indeed, $C_p \times C_p$ has exactly p + 1 maximal subgroups, all of them isomorphic to C_p and pairwise intersecting in the identity subgroup, so they cover $1 + (p - 1)(p + 1) = p^2$ elements.

Actually the solvable case has been completely worked out:

THEOREM (TOMKINSON, [3])

Let G be a finite solvable group. Then

$$\sigma(G) = |H/K| + 1$$

where H/K is the smallest chief factor of G with more than one complement in G/K.

If N is a normal subgroup of G then $\sigma(G) \leq \sigma(G/N)$, because every cover of G/N corresponds to a cover of G.

- E > - E >

If N is a normal subgroup of G then $\sigma(G) \leq \sigma(G/N)$, because every cover of G/N corresponds to a cover of G.

This suggests to consider the quotients G/N such that $\sigma(G) = \sigma(G/N)$, and leads to the following:

DEFINITION (σ -ELEMENTARY GROUPS)

A group G is said to be " σ -elementary" if

 $\sigma(G) < \sigma(G/N)$

for every $1 \neq N \trianglelefteq G$. We say that G is "n-elementary" if G is σ -elementary and $\sigma(G) = n$.

Clearly if *G* is any finite group then there exists $N \trianglelefteq G$ such that G/N is σ -elementary and $\sigma(G) = \sigma(G/N)$.

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

MARTINO GARONZI COVERING MONOLITHIC GROUPS WITH PROPER SUBGROUPS

A B F A B F

æ

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

EXAMPLE

If the σ -elementary group *G* is abelian then $G \cong C_p \times C_p$ for some prime *p* ([1], Theorem 3).

ヨト・イヨト

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

EXAMPLE

If the σ -elementary group *G* is abelian then $G \cong C_p \times C_p$ for some prime p ([1], Theorem 3).

Recall that the "**socle**" of a group is the subgroup generated by its minimal normal subgroups, and a group is called "**monolithic**" if it has only one minimal normal subgroup.

EXAMPLE

Tomkinson's result implies that if *G* is a non-abelian solvable σ -elementary group then *G* is monolithic, $G/\operatorname{soc}(G)$ is cyclic and

 $\sigma(G) = |\operatorname{soc}(G)| + 1.$

The structure of σ -elementary groups has been investigated by A. Lucchini and E. Detomi in 2008 [2]. In particular, they proved the following.

The structure of σ -elementary groups has been investigated by A. Lucchini and E. Detomi in 2008 [2]. In particular, they proved the following.

THEOREM (LUCCHINI, DETOMI [2] COROLLARY 14)

Let G be a non-abelian σ -elementary group and let N_1, \ldots, N_k be the minimal normal subgroups of G.

Then there exist epimorphic images X_1, \ldots, X_k of G with the property that X_i is a primitive monolithic group with socle isomorphic to N_i for $i = 1, \ldots, k$ and G is a subdirect product of X_1, \ldots, X_k : the natural homomorphism

$$G \to X_1 \times \ldots \times X_k$$

is injective.

This and other results led Lucchini and Detomi to formulate the following conjecture:

DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS THE LUCCHINI-DETOMI CONJECTURE **The conjecture** The direct product case Groups with σ "small" Some monolithic groups

CONJECTURE (LUCCHINI, DETOMI [2])

Every non-abelian σ -elementary group is monolithic.

크

.

If the non-abelian group *G* is a direct product of two non-trivial subgroups then it is not σ -elementary. This is a consequence of the following result:

THEOREM (LUCCHINI A., G 2010 [4])

Let M be a minimal cover of a direct product $G = H_1 \times H_2$ of two finite groups. Then one of the following holds:

- $\mathcal{M} = \{X \times H_2 \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_1 . In this case $\sigma(G) = \sigma(H_1)$.
- $\mathcal{M} = \{H_1 \times X \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_2 . In this case $\sigma(G) = \sigma(H_2)$.
- There exist N₁ ≤ H₁, N₂ ≤ H₂ with H₁/N₁ ≅ H₂/N₂ ≅ C_p and M consists of the maximal subgroups of H₁ × H₂ containing N₁ × N₂. In this case σ(G) = p + 1.

Let us examine the validity of the conjecture for small values of $\sigma(G)$.

- B - - B

Let us examine the validity of the conjecture for small values of $\sigma(G)$. In my master thesis (2009) I determined all the σ -elementary groups G with $\sigma(G) \leq 25$.

(4) The height (1)

DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS THE LUCCHINI-DETOMI CONJECTURE THE LUCCHINI-DETOMI CONJECTURE

Let us examine the validity of the conjecture for small values of $\sigma(G)$. In my master thesis (2009) I determined all the σ -elementary groups G with $\sigma(G) \leq 25$.

σ	groups		O(1)
3	$C_2 \times C_2$	15	SL(3,2)
4	$\frac{c_2 \times c_2}{c_1 \times c_2}$	16	Sym(5), Alt(6)
4	$C_3 \times C_3$, Syll(3)	17	2^4 : 5. AGL(1, 16)
5	Alt(4)	18	$C = \times C = D \times 17 \cdot 4$
6	$C_5 \times C_5, D_{10}, AGL(1,5)$	10	$C_{17} \times C_{17}, D_{34}, 17.4,$
7			17:8,AGL(1,17)
	∇	19	Ø
8	$C_7 \times C_7, D_{14}, 7:3, AGL(1,7)$	20	$C_{10} \times C_{10} AGI(1, 19)$
9	AGL(1,8)		$D_{10} = 10 \cdot 2 \cdot 10 \cdot 6 \cdot 10 \cdot 0$
10	3 ² : 4, AGL(1, 9), Alt(5)		$D_{38}, 19.5, 19.0, 19.9$
11	() () () () () () () () () () () () () (21	Ø
11		22	Ø
12	$C_{11} \times C_{11}, 11:5,$	23	M11
	D ₂₂ , AGL(1, 11)	24	
13	Svm(6)	24	$C_{23} \times C_{23}, D_{46},$
1/	$\frac{1}{2} \int \frac{1}{2} $		23 : 11, <i>AGL</i> (1, 23)
14	$0_{13} \land 0_{13}, 0_{26}, 15.5, 10.4$	25	Ø
	13:4,13:6, <i>AGL</i> (1,13)	L	

By using similar techniques it is possible to prove that:

THEOREM

Let G be a non-abelian σ -elementary group, and assume that $\sigma(G) \leq 56$. Then G is either affine or almost simple.

Moreover we have $\sigma(A_5 \wr C_2) = 4 \cdot 5 + 6 \cdot 6 + 1 = 57$.

By using similar techniques it is possible to prove that:

Theorem

Let G be a non-abelian σ -elementary group, and assume that $\sigma(G) \leq 56$. Then G is either affine or almost simple.

Moreover we have $\sigma(A_5 \wr C_2) = 4 \cdot 5 + 6 \cdot 6 + 1 = 57$.

Note that $G := A_5 \wr C_2$ is the smallest monolithic group which is neither affine nor almost simple. A minimal covering of this group consists of the socle plus subgroups of the form

 $N_G(M \times M^a)$

where *M* varies in the covering of A_5 consisting of the six normalizers of the Sylow 5-subgroups and four point stabilizers, and *a* varies in A_5 . This argument has been generalized and the following results were obtained.

Let G be a monolithic group with non-abelian socle

$$S_1 \times \ldots \times S_m = S^m$$
,

where S = Alt(n), $n \ge 5$ and G/soc(G) is cyclic. Let

$$X := N_G(S_1) / C_G(S_1).$$

X is an almost-simple group with socle isomorphic to S, and G embeds in the wreath product $X \wr \text{Sym}(m)$.

Let G be a monolithic group with non-abelian socle

$$S_1 \times \ldots \times S_m = S^m$$
,

where S = Alt(n), $n \ge 5$ and G/soc(G) is cyclic. Let

$$X := N_G(S_1)/C_G(S_1).$$

X is an almost-simple group with socle isomorphic to S, and G embeds in the wreath product $X \wr \text{Sym}(m)$.

The coverings we prove to be minimal in the following theorems consist of the subgroups containing the socle together with the subgroups of the form

$$N_G(M \times M^{a_2} \times \ldots \times M^{a_m})$$

where a_1, \ldots, a_m vary in X and M varies in a suitable family of subgroups of X which covers xS, where $\langle xS \rangle = X/S$. By $\omega(x)$ we denote the number of prime divisors of the integer x.

DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS THE LUCCHINI-DETOMI CONJECTURE The conjecture The direct product case Groups with σ "small" Some monolithic groups

THEOREM (MARÓTI, G 2010 [6])

Suppose X = S = Alt(n). Then the following holds.

• If $12 < n \equiv 2 \mod (4)$ then

$$\sigma(G) = \omega(m) + \sum_{i=1, i \text{ odd}}^{(n/2)-2} {\binom{n}{i}}^m + \frac{1}{2^m} {\binom{n}{n/2}}^m$$

2 If $12 < n \neq 2 \mod (4)$ then

$$\omega(m) + \frac{1}{2} \sum_{i=1, i \text{ odd}}^{n} {\binom{n}{i}}^{m} \leq \sigma(G).$$

Suppose n has a prime divisor at most $\sqrt[3]{n}$. Then

$$\sigma(G) \sim \omega(m) + \min_{\mathcal{M}} \sum_{M \in \mathcal{M}} |S:M|^{m-1} \text{ as } n \to \infty.$$

Тнеогем (G 2011 [7])

Suppose X = Sym(n). Then the following holds.

• Suppose that $n \ge 7$ is odd and $(n, m) \ne (9, 1)$. Then

$$\sigma(G) = \omega(2m) + \sum_{i=1}^{(n-1)/2} {\binom{n}{i}}^m$$

2 Suppose that $n \ge 8$ is even. Then

$$\left(\frac{1}{2}\binom{n}{n/2}\right)^m \le \sigma(G) \le \omega(2m) + \left(\frac{1}{2}\binom{n}{n/2}\right)^m + \sum_{i=1}^{\lfloor n/3 \rfloor} \binom{n}{i}^m.$$

In particular
$$\sigma(\mathbf{G}) \sim \left(\frac{1}{2} \binom{n}{n/2}\right)^m$$
 as $n \to \infty$.

.

 Definitions and easy results
 The conjecture

 Sigma-elementary groups
 Groups with σ "small"

 The Lucchini-Detomi conjecture
 Some monolithic groups

How are these results linked with the conjecture?

イロト イポト イヨト イヨト

르

How are these results linked with the conjecture?

PROPOSITION (LUCCHINI, DETOMI [2], PROPOSITION 16)

Let X be a monolithic primitive group with socle N. If Ω is an arbitrary union of cosets of N in X define $\sigma_{\Omega}(X)$ to be the smallest number of supplements of N in X needed to cover Ω . Define

$$\sigma^*(\boldsymbol{X}) := \min\{\sigma_{\Omega}(\boldsymbol{X}) \mid \Omega = \bigcup_{i} \omega_i \boldsymbol{N}, \ \langle \Omega \rangle = \boldsymbol{X}\}.$$

Let now G be a non-abelian σ -elementary group,

$$G \leq_{subd} X_1 \times \ldots \times X_k.$$

Then

$$\sigma^*(X_1) + \ldots + \sigma^*(X_k) \leq \sigma(G).$$

In particular, since X_1, \ldots, X_k are epimorphic images of *G*, for every $i \in \{1, \ldots, k\}$ we have

$$\sigma^*(X_1) + \ldots + \sigma^*(X_k) \leq \sigma(G) \leq \sigma(X_i).$$

This means that the study of the quantity

 $\sigma(X) - \sigma^*(X)$

for X a primitive monolithic group gives informations about the validity of the conjecture.

The ideas employed in Theorems 7 and 8 can be adapted to prove that if $X / \operatorname{soc}(X)$ is cyclic and $\operatorname{soc}(X) = \operatorname{Alt}(n)^m$ then in most cases the quantity $\sigma(X) - \sigma^*(X)$ is "small". But this is still a work in progress.

- J. H. E. Cohn, On *n*-sum groups, Math. Scand. 75 (1) (1994) 44–58.
- E. Detomi and A. Lucchini, On the structure of primitive *n*-sum groups; Cubo 10 (2008), no. 3, 195–210.
- M. J. Tomkinson, Groups as the union of proper subgroups; Math. Scand. 81 (2) (1997) 191–198.
- M. Garonzi, A. Lucchini, Direct products of groups as unions of proper subgroups; Archiv der Mathematik, ISSN: 0003-889X
- M. Garonzi, Finite Groups that are Union of at most 25 Proper Subgroups; Journal of Algebra and its Applications, ISSN: 0219-4988.
- A. Maróti, M. Garonzi, Covering certain wreath products with proper subgroups; Journal of Group Theory, ISSN: 1433-5883.
- M. Garonzi, Covering certain monolithic groups with proper subgroups; Communications in Algebra, ISSN: 0092-7872