Polynomial identities and codimension growth
 Antonio Giambruno

Dipartimento di Matematica ed Informatica
Università di Palermo
$F=$ field of characteristic zero,
$A=$ non necessarily associative algebra over F.
$X=\left\{x_{1}, x_{2}, \ldots\right\}$ a countable set and $F\{X\}=$ the free nonassociative algebra on X over F.
$F=$ field of characteristic zero,
$A=$ non necessarily associative algebra over F.
$X=\left\{x_{1}, x_{2}, \ldots\right\}$ a countable set and $F\{X\}=$ the free nonassociative algebra on X over F.

Definition. $I d(A)=\{f \in F\{X\} \mid f \equiv 0$ in $A\}=$ the T-ideal of polynomial identities of A.
$F=$ field of characteristic zero,
$A=$ non necessarily associative algebra over F.
$X=\left\{x_{1}, x_{2}, \ldots\right\}$ a countable set and $F\{X\}=$ the free nonassociative algebra on X over F.

Definition. $\quad I d(A)=\{f \in F\{X\} \mid f \equiv 0$ in $A\}=$ the T-ideal of polynomial identities of A.

Recall: $f\left(x_{1}, \ldots, x_{n}\right) \in F\{X\}$ is a polynomial identity of A if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{i} \in A$.
A is a PI-algebra if $\operatorname{Id}(A) \neq 0$.
$F=$ field of characteristic zero,
$A=$ non necessarily associative algebra over F.
$X=\left\{x_{1}, x_{2}, \ldots\right\}$ a countable set and $F\{X\}=$ the free nonassociative algebra on X over F.

Definition. $\quad I d(A)=\{f \in F\{X\} \mid f \equiv 0$ in $A\}=$ the T-ideal of polynomial identities of A.

Recall: $f\left(x_{1}, \ldots, x_{n}\right) \in F\{X\}$ is a polynomial identity of A if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{i} \in A$.
A is a PI-algebra if $\operatorname{Id}(A) \neq 0$.
For every $n \geq 1$, let P_{n} be the space of multilinear polynomials in x_{1}, \ldots, x_{n}.

Definition.

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap I d(A)}
$$

is the nth codimension of A.

Definition.

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap I d(A)}
$$

is the nth codimension of A.

EXAMPLES

Definition.

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap I d(A)}
$$

is the nth codimension of A.

EXAMPLES

- The number of distinct arrangements of parentheses on a monomial of length n is the Catalan number $\frac{1}{n}\binom{2 n-2}{n-1}$.
Hence
$c_{n}(F\{X\})=\operatorname{dim}_{F} P_{n}=\binom{2 n-2}{n-1}(n-1)!$.

Definition.

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap I d(A)}
$$

is the nth codimension of A.

EXAMPLES

- The number of distinct arrangements of parentheses on a monomial of length n is the Catalan number $\frac{1}{n}\binom{2 n-2}{n-1}$.
Hence
$c_{n}(F\{X\})=\operatorname{dim}_{F} P_{n}=\binom{2 n-2}{n-1}(n-1)!$.
- If $F\langle X\rangle$ is the free associative algebra, $c_{n}(F\langle X\rangle)=n$!
- For $L\langle X\rangle=$ the free Lie algebra, $c_{n}(L\langle X\rangle)=(n-1)$!.

Regev (1972). If A is an associative PI -algebra, then there exists $d \geq 1$ such that $c_{n}(A) \leq d^{n}$, for all n.

Regev (1972). If A is an associative PI -algebra, then there exists $d \geq 1$ such that $c_{n}(A) \leq d^{n}$, for all n.

- If A is a Lie algebra or a Jordan algebra which is PI , then $c_{n}(A)$ can have overexponential growth.

Regev (1972). If A is an associative PI -algebra, then there exists $d \geq 1$ such that $c_{n}(A) \leq d^{n}$, for all n.

- If A is a Lie algebra or a Jordan algebra which is PI , then $c_{n}(A)$ can have overexponential growth.

Kemer (1978). For an associative PI-algebra A, $c_{n}(A), n=1,2, \ldots$, is either polynomially bounded or grows exponentially.

Regev (1972). If A is an associative PI -algebra, then there exists $d \geq 1$ such that $c_{n}(A) \leq d^{n}$, for all n.

- If A is a Lie algebra or a Jordan algebra which is PI , then $c_{n}(A)$ can have overexponential growth.

Kemer (1978). For an associative PI-algebra A, $c_{n}(A), n=1,2, \ldots$, is either polynomially bounded or grows exponentially.

- For a Lie or Jordan or alternative PI-algebra, there is no intermediate growth of the codimensions.
G.-Zaicev (1999). For an associative PI-algebra A,

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

exists and is an integer called the PI -exponent of A.
G.-Zaicev (1999). For an associative PI-algebra A,

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

exists and is an integer called the PI -exponent of A.

Notation. $\left\langle f_{1}, \ldots, f_{t}\right\rangle_{T}=$ the T-ideal generated by f_{1}, \ldots, f_{t}
G.-Zaicev (1999). For an associative PI-algebra A,

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

exists and is an integer called the PI -exponent of A.

Notation. $\left\langle f_{1}, \ldots, f_{t}\right\rangle_{T}=$ the T-ideal generated by f_{1}, \ldots, f_{t}
EXAMPLES

- $A=F[x]$

$$
\begin{aligned}
& \operatorname{Id}(A)=\left\langle\left[x_{1}, x_{2}\right]\right\rangle_{T} \\
& \quad c_{n}(A)=1, \text { for all } n \geq 1, \exp (F[x])=1 .
\end{aligned}
$$

- $G=\left\langle e_{1}, e_{2}, \ldots\right| e_{i} e_{j}=-e_{j} e_{i}$, for all $\left.i, j\right\rangle$ is the infinite dimensional Grassmann algebra over F.
- $G=\left\langle e_{1}, e_{2}, \ldots\right| e_{i} e_{j}=-e_{j} e_{i}$, for all $\left.i, j\right\rangle$ is the infinite dimensional Grassmann algebra over F.

$$
\begin{aligned}
& \operatorname{Id}(G)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\right\rangle_{T} \\
& \quad c_{n}(G)=2^{n-1}, \text { for all } n \geq 1, \quad \exp (G)=2 .
\end{aligned}
$$

- $G=\left\langle e_{1}, e_{2}, \ldots\right| e_{i} e_{j}=-e_{j} e_{i}$, for all $\left.i, j\right\rangle$ is the infinite dimensional Grassmann algebra over F.

$$
I d(G)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\right\rangle_{T}
$$

$$
c_{n}(G)=2^{n-1}, \text { for all } n \geq 1, \quad \exp (G)=2 .
$$

- $U T_{2}=\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right) 2 \times 2$ upper triangular matrices
- $G=\left\langle e_{1}, e_{2}, \ldots\right| e_{i} e_{j}=-e_{j} e_{i}$, for all $\left.i, j\right\rangle$ is the infinite dimensional Grassmann algebra over F.

$$
\begin{aligned}
& \operatorname{Id}(G)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\right\rangle_{T} \\
& \quad c_{n}(G)=2^{n-1}, \text { for all } n \geq 1, \quad \exp (G)=2 .
\end{aligned}
$$

- $U T_{2}=\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right) 2 \times 2$ upper triangular matrices
$\operatorname{Id}\left(U T_{2}\right)=\left\langle\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]\right\rangle_{T}$
$c_{n}\left(U T_{2}\right)=2^{n-1}(n-2)+2$, for all $n \geq 1, \exp \left(U T_{2}\right)=2$.
- $G=\left\langle e_{1}, e_{2}, \ldots\right| e_{i} e_{j}=-e_{j} e_{i}$, for all $\left.i, j\right\rangle$ is the infinite dimensional Grassmann algebra over F.

$$
\begin{aligned}
& \operatorname{Id}(G)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\right\rangle_{T} \\
& \quad c_{n}(G)=2^{n-1}, \text { for all } n \geq 1, \quad \exp (G)=2 .
\end{aligned}
$$

- $U T_{2}=\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right) 2 \times 2$ upper triangular matrices
$\operatorname{Id}\left(U T_{2}\right)=\left\langle\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]\right\rangle_{T}$
$c_{n}\left(U T_{2}\right)=2^{n-1}(n-2)+2$, for all $n \geq 1, \exp \left(U T_{2}\right)=2$.
- $M_{2}(F)=\left(\begin{array}{ll}F & F \\ F & F\end{array}\right) 2 \times 2$ matrices over F
- $G=\left\langle e_{1}, e_{2}, \ldots\right| e_{i} e_{j}=-e_{j} e_{i}$, for all $\left.i, j\right\rangle$ is the infinite dimensional Grassmann algebra over F.

$$
\begin{aligned}
& I d(G)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\right\rangle_{T} \\
& \quad c_{n}(G)=2^{n-1}, \text { for all } n \geq 1, \quad \exp (G)=2 .
\end{aligned}
$$

- $U T_{2}=\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right) 2 \times 2$ upper triangular matrices
$\operatorname{Id}\left(U T_{2}\right)=\left\langle\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]\right\rangle_{T}$
$c_{n}\left(U T_{2}\right)=2^{n-1}(n-2)+2$, for all $n \geq 1, \exp \left(U T_{2}\right)=2$.
- $M_{2}(F)=\left(\begin{array}{ll}F & F \\ F & F\end{array}\right) 2 \times 2$ matrices over F

$$
c_{n}\left(M_{2}(F)\right)_{n \rightarrow \infty^{\prime}}^{\frac{4}{}_{n-1}^{n \pi n}},
$$

$\exp \left(M_{2}(F)=4\right.$.

- $A=\left(\begin{array}{cc}G & G \\ 0 & G_{0}\end{array}\right) \quad$ where $G=G_{0} \oplus G_{1}$,

$$
\begin{aligned}
& G_{0}=\operatorname{span}_{F}\left\{e_{i_{1}} \cdots e_{i_{2 t}} \mid 1 \leq i_{1}<\cdots<i_{2 t}\right\}, \\
& G_{1}=\operatorname{span}_{F}\left\{e_{i_{1}} \cdots e_{i_{2 t+1}} \mid 1 \leq i_{1}<\cdots<i_{2 t+1}\right\}
\end{aligned}
$$

- $A=\left(\begin{array}{cc}G & G \\ 0 & G_{0}\end{array}\right)$ where $G=G_{0} \oplus G_{1}$,

$$
\begin{aligned}
& G_{0}=\operatorname{span}_{F}\left\{e_{i_{1}} \cdots e_{i_{2 t}} \mid 1 \leq i_{1}<\cdots<i_{2 t}\right\}, \\
& G_{1}=\operatorname{span}_{F}\left\{e_{i_{1}} \cdots e_{i_{2 t+1}} \mid 1 \leq i_{1}<\cdots<i_{2 t+1}\right\}
\end{aligned}
$$

$$
I d(A)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\left[x_{4}, x_{5}\right]\right\rangle_{T}
$$

- $A=\left(\begin{array}{cc}G & G \\ 0 & G_{0}\end{array}\right) \quad$ where $G=G_{0} \oplus G_{1}$,

$$
\begin{aligned}
& G_{0}=\operatorname{span}_{F}\left\{e_{i_{1}} \cdots e_{i_{2 t}} \mid 1 \leq i_{1}<\cdots<i_{2 t}\right\} \\
& G_{1}=\operatorname{span}_{F}\left\{e_{i_{1}} \cdots e_{i_{2 t+1}} \mid 1 \leq i_{1}<\cdots<i_{2 t+1}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Id}(A)=\left\langle\left[x_{1}, x_{2}, x_{3}\right]\left[x_{4}, x_{5}\right]\right\rangle_{T} \\
\exp (A)=3 .
\end{gathered}
$$

Remark. In general for nonassociative algebras $c_{n}(A), n=1,2, \ldots$ can have overexponential growth.

Remark. In general for nonassociative algebras $c_{n}(A), n=1,2, \ldots$ can have overexponential growth.

Theorem (Bahturin-Drensky) if $\operatorname{dim} A=d<\infty$, then $c_{n}(A) \leq d^{n+1}$.

Remark. In general for nonassociative algebras $c_{n}(A), n=1,2, \ldots$ can have overexponential growth.

Theorem (Bahturin-Drensky) if $\operatorname{dim} A=d<\infty$, then $c_{n}(A) \leq d^{n+1}$.
OPEN PROBLEM. In case the sequence of codimensions is exponentially bounded, does $\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exist? Is it an integer?

Remark. In general for nonassociative algebras $c_{n}(A), n=1,2, \ldots$ can have overexponential growth.

Theorem (Bahturin-Drensky) if $\operatorname{dim} A=d<\infty$, then $c_{n}(A) \leq d^{n+1}$.
OPEN PROBLEM. In case the sequence of codimensions is exponentially bounded, does $\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exist? Is it an integer?

Zaicev (2001). For any finite dimensional Lie algebra $L, \exp (L)$ exists and is an integer.

Remark. In general for nonassociative algebras $c_{n}(A), n=1,2, \ldots$ can have overexponential growth.

Theorem (Bahturin-Drensky) if $\operatorname{dim} A=d<\infty$, then $c_{n}(A) \leq d^{n+1}$.
OPEN PROBLEM. In case the sequence of codimensions is exponentially bounded, does $\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exist? Is it an integer?

Zaicev (2001). For any finite dimensional Lie algebra $L, \exp (L)$ exists and is an integer.
G.-Shestakov-Zaicev (2011). For any finite dimensional Jordan or alternative algebra $J, \exp (J)$ exists and is an integer.

There are cases when the PI-exponent exists but is not an integer.

There are cases when the PI-exponent exists but is not an integer.
G.-Mishchenko-Zaicev (2008). For any real number $\alpha>1$, one can construct an algebra A_{α} whose sequence of codimensions grows exponentially and $\exp \left(A_{\alpha}\right)=\alpha$.

There are cases when the PI-exponent exists but is not an integer.
G.-Mishchenko-Zaicev (2008). For any real number $\alpha>1$, one can construct an algebra A_{α} whose sequence of codimensions grows exponentially and $\exp \left(A_{\alpha}\right)=\alpha$.

Focus on finite dimensional simple algebras.

There are cases when the PI-exponent exists but is not an integer.
G.-Mishchenko-Zaicev (2008). For any real number $\alpha>1$, one can construct an algebra A_{α} whose sequence of codimensions grows exponentially and $\exp \left(A_{\alpha}\right)=\alpha$.

Focus on finite dimensional simple algebras.
Shestakov-Zaicev (2011). Two finite dimensional simple algebras A and B over an algebraically closed field are isomorphic if and only if $I d(A)=I d(B)$.

There are cases when the PI-exponent exists but is not an integer.
G.-Mishchenko-Zaicev (2008). For any real number $\alpha>1$, one can construct an algebra A_{α} whose sequence of codimensions grows exponentially and $\exp \left(A_{\alpha}\right)=\alpha$.

Focus on finite dimensional simple algebras.
Shestakov-Zaicev (2011). Two finite dimensional simple algebras A and B over an algebraically closed field are isomorphic if and only if $I d(A)=I d(B)$.

Theorem Let A be a finite dimensional associative algebra over an algebraically closed field F. Then $\exp (A)=\operatorname{dim} A$ if and only if A is simple.

Let A be a finite dimensional algebra over F.
let $\alpha(x, y)$ be a fixed linear combination of elements of the type
$T_{u} T_{v}^{\prime}, T_{u v}$, where T, T^{\prime} are left or right multiplication and
$\{u, v\}=\{x, y\}$.
Denote by $\langle x, y\rangle=\operatorname{tr}(\alpha(x, y))$ the bilinear form determined by α.

Let A be a finite dimensional algebra over F.
let $\alpha(x, y)$ be a fixed linear combination of elements of the type
$T_{u} T_{v}^{\prime}, T_{u v}$, where T, T^{\prime} are left or right multiplication and
$\{u, v\}=\{x, y\}$.
Denote by $\langle x, y\rangle=\operatorname{tr}(\alpha(x, y))$ the bilinear form determined by α.
G.-Shestakov-Zaicev (2011).

Let A be a finite dimensional simple algebra over an algebraically closed field F and suppose that for some α, the form $\langle x, y\rangle=\operatorname{tr}(\alpha(x, y))$ is non-degenerate on A. Then $\exp (A)$ exists and $\exp (A)=\operatorname{dim} A$.

Let A be a finite dimensional algebra over F.
let $\alpha(x, y)$ be a fixed linear combination of elements of the type
$T_{u} T_{v}^{\prime}, T_{u v}$, where T, T^{\prime} are left or right multiplication and
$\{u, v\}=\{x, y\}$.
Denote by $\langle x, y\rangle=\operatorname{tr}(\alpha(x, y))$ the bilinear form determined by α.
G.-Shestakov-Zaicev (2011).

Let A be a finite dimensional simple algebra over an algebraically closed field F and suppose that for some α, the form $\langle x, y\rangle=\operatorname{tr}(\alpha(x, y))$ is non-degenerate on A. Then $\exp (A)$ exists and $\exp (A)=\operatorname{dim} A$.
G.-Zaicev (2012). Let A be a finite dimensional simple algebra over a field of characteristic zero. Then $\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exists and $\exp (A) \leq \operatorname{dim} A$.

Simple Lie superalgebras over an algebraically closed field of characteristic zero were classified by Kac.

Simple Lie superalgebras over an algebraically closed field of characteristic zero were classified by Kac.

One of the infinite families in this classification consists of the Lie superalgebras $b(t), t \geq 3$.

Simple Lie superalgebras over an algebraically closed field of characteristic zero were classified by Kac.

One of the infinite families in this classification consists of the Lie superalgebras $b(t), t \geq 3$.
$b(t)$ is the Lie superalgebra of $2 t \times 2 t$ matrices over F of the type

$$
\left(\begin{array}{cc}
A & B \\
C & -A^{T}
\end{array}\right),
$$

where $A, B, C \in M_{t}(F), B^{T}=B, C^{T}=-C$ and $\operatorname{tr} A=0$.

Fix $t \geq 3$ and write $b(t)=L=L_{0} \oplus L_{1}$ where

$$
L_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right) \right\rvert\, A \in M_{t}(F), \operatorname{tr}(A)=0\right\},
$$

and

$$
L_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B^{T}=B, C^{T}=-C \in M_{t}(F)\right\} .
$$

Fix $t \geq 3$ and write $b(t)=L=L_{0} \oplus L_{1}$ where

$$
L_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right) \right\rvert\, A \in M_{t}(F), \operatorname{tr}(A)=0\right\}
$$

and

$$
L_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B^{T}=B, C^{T}=-C \in M_{t}(F)\right\} .
$$

The algebra L is a Lie superalgebra with \mathbb{Z}_{2}-grading $L=L_{0} \oplus L_{1}$ if we define a product $[$,$] of two homogeneous elements x, y \in L$ as

$$
[x, y]=x y-(-1)^{|x||y|} y x .
$$

Fix $t \geq 3$ and write $b(t)=L=L_{0} \oplus L_{1}$ where

$$
L_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right) \right\rvert\, A \in M_{t}(F), \operatorname{tr}(A)=0\right\}
$$

and

$$
L_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B^{T}=B, C^{T}=-C \in M_{t}(F)\right\} .
$$

The algebra L is a Lie superalgebra with \mathbb{Z}_{2}-grading $L=L_{0} \oplus L_{1}$ if we define a product $[$,$] of two homogeneous elements x, y \in L$ as

$$
[x, y]=x y-(-1)^{|x||y|} y x .
$$

Theorem Let L be a finite dimensional simple Lie superalgebra of type $b(t), t \geq 3$. Then the PI-exponent of L exists and $\exp (L)<2 t^{2}-1=\operatorname{dim} L$.

Theorem Let L be a finite dimensional simple Lie superalgebra of type $b(t), t \geq 3$. Then the PI-exponent of L exists and $\exp (L)<2 t^{2}-1=\operatorname{dim} L$.

Methods

$S_{n}=$ the symmetric group acts on the left on P_{n} :

Methods

$S_{n}=$ the symmetric group acts on the left on P_{n} :
if $\sigma \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right) \in P_{n}$, then

$$
\sigma f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Methods

$S_{n}=$ the symmetric group acts on the left on P_{n} :
if $\sigma \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right) \in P_{n}$, then

$$
\sigma f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

If $I d(A)$ is a T-ideal, $P_{n} \cap I d(A)$ is invariant under this action. Hence

$$
P_{n}(A)=\frac{P_{n}}{P_{n} \cap I d(A)}
$$

has a structure of S_{n}-module.

Methods

$S_{n}=$ the symmetric group acts on the left on P_{n} :
if $\sigma \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right) \in P_{n}$, then

$$
\sigma f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

If $I d(A)$ is a T-ideal, $P_{n} \cap I d(A)$ is invariant under this action. Hence

$$
P_{n}(A)=\frac{P_{n}}{P_{n} \cap I d(A)}
$$

has a structure of S_{n}-module.
Let $\chi_{n}(A)$ be its S_{n}-character (called the n-th cocharacter of A).

By complete reducibility write

$$
\chi_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}
$$

where for a partition λ of n, χ_{λ} is the irreducible S_{n}-character associated to λ and $m_{\lambda} \geq 0$ is the corresponding multiplicity.

By complete reducibility write

$$
\chi_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}
$$

where for a partition λ of n, χ_{λ} is the irreducible S_{n}-character associated to λ and $m_{\lambda} \geq 0$ is the corresponding multiplicity.

Berele. For an associative PI -algebra A, the multiplicities
m_{λ} are polynomially bounded.
G.-Mishchenko-Zaicev If $\operatorname{dim} A=d<\infty$, then the
multiplicities m_{λ} are polynomially bounded
$\left(\sum_{\lambda \vdash n} m_{\lambda} \leq d(n+1)^{d^{2}+d}\right)$.

Amitsur-Regev. If A is a PI -algebra, there exist integers k, l such that

$$
\chi_{n}(A)=\sum_{\substack{\lambda \vdash n \\ \lambda \in H(k, l)}} m_{\lambda} \chi_{\lambda}
$$

where $H(k, l)=\bigcup_{n \geq 1}\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \vdash n \mid \lambda_{k+1} \leq l\right\}$.

Amitsur-Regev. If A is a PI -algebra, there exist integers k, l such that

$$
\chi_{n}(A)=\sum_{\substack{\lambda \vdash n \\ \lambda \in H(k, l)}} m_{\lambda} \chi_{\lambda}
$$

where $H(k, l)=\bigcup_{n>1}\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \vdash n \mid \lambda_{k+1} \leq l\right\}$.
Thus $H(k, l)=$ the set of all diagrams whose shape lies in the hook shaped region

$$
\begin{equation*}
c_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} d_{\lambda}, \tag{1}
\end{equation*}
$$

where $d_{\lambda}=\chi_{\lambda}(1)$.

$$
\begin{equation*}
c_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} d_{\lambda} \tag{2}
\end{equation*}
$$

where $d_{\lambda}=\chi_{\lambda}(1)$.
Key result.

$$
\sum_{\lambda \in H(k, l)} d_{\lambda} \underset{n \rightarrow \infty}{\simeq} C n^{t}(k+l)^{n} .
$$

$$
\begin{equation*}
c_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} d_{\lambda} \tag{3}
\end{equation*}
$$

where $d_{\lambda}=\chi_{\lambda}(1)$.
Key result.

$$
\sum_{\lambda \in H(k, l)} d_{\lambda} \underset{n \rightarrow \infty}{\simeq} C n^{t}(k+l)^{n}
$$

Theorem. If $\operatorname{dim} A=d<\infty$, then

$$
c_{n}(A)=\sum_{\substack{\lambda \vdash n \\ \lambda \in H(d, 0)}} m_{\lambda} d_{\lambda}
$$

it follows that asymptotically

$$
\begin{equation*}
\sqrt[n]{c_{n}(A)} \simeq \sqrt[n]{\left(d_{\lambda}\right)_{\max }}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(d_{\lambda}\right)_{\max }=\max \left\{d_{\lambda} \mid \lambda \vdash n \text { with } m_{\lambda} \neq 0 \text { in (1) }\right\} . \tag{5}
\end{equation*}
$$

Given a partititon $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$ of height $k \leq d$, we write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{k+1}=\ldots=\lambda_{d}=0$.

Given a partititon $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$ of height $k \leq d$, we write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{k+1}=\ldots=\lambda_{d}=0$.

Then we define

$$
\Phi(\lambda)=\frac{1}{z_{1}^{z_{1}} \cdots z_{d}^{z_{d}}},
$$

where $z_{1}=\frac{\lambda_{1}}{n}, \ldots, z_{d}=\frac{\lambda_{d}}{n}$ and we set $\lambda_{j}^{\lambda_{j}}=1$ if $\lambda_{j}=0$. Hence $0 \leq z_{1}, \ldots, z_{d} \leq 1$ and $z_{1}+\cdots+z_{d}=1$.

Given a partititon $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$ of height $k \leq d$, we write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{k+1}=\ldots=\lambda_{d}=0$.

Then we define

$$
\Phi(\lambda)=\frac{1}{z_{1}^{z_{1}} \cdots z_{d}^{z_{d}}},
$$

where $z_{1}=\frac{\lambda_{1}}{n}, \ldots, z_{d}=\frac{\lambda_{d}}{n}$ and we set $\lambda_{j}^{\lambda_{j}}=1$ if $\lambda_{j}=0$. Hence $0 \leq z_{1}, \ldots, z_{d} \leq 1$ and $z_{1}+\cdots+z_{d}=1$.

Remark. For n large and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$, with $k \leq d$, we have

$$
\frac{\Phi(\lambda)^{n}}{n^{d^{2}+d}} \leq d_{\lambda} \leq n \Phi(\lambda)^{n}
$$

Given a partititon $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$ of height $k \leq d$, we write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{k+1}=\ldots=\lambda_{d}=0$.

Then we define

$$
\Phi(\lambda)=\frac{1}{z_{1}^{z_{1}} \cdots z_{d}^{z_{d}}},
$$

where $z_{1}=\frac{\lambda_{1}}{n}, \ldots, z_{d}=\frac{\lambda_{d}}{n}$ and we set $\lambda_{j}^{\lambda_{j}}=1$ if $\lambda_{j}=0$. Hence $0 \leq z_{1}, \ldots, z_{d} \leq 1$ and $z_{1}+\cdots+z_{d}=1$.

Remark. For n large and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$, with $k \leq d$, we have

$$
\frac{\Phi(\lambda)^{n}}{n^{d^{2}+d}} \leq d_{\lambda} \leq n \Phi(\lambda)^{n}
$$

Thus $\sqrt[n]{c_{n}(A)} \simeq \Phi(\lambda)$ where $\lambda \vdash n$ is such that $d_{\lambda}=\left(d_{\lambda}\right)_{\max }$.

Given a partititon $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$ of height $k \leq d$, we write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{k+1}=\ldots=\lambda_{d}=0$.

Then we define

$$
\Phi(\lambda)=\frac{1}{z_{1}^{z_{1}} \cdots z_{d}^{z_{d}}},
$$

where $z_{1}=\frac{\lambda_{1}}{n}, \ldots, z_{d}=\frac{\lambda_{d}}{n}$ and we set $\lambda_{j}^{\lambda_{j}}=1$ if $\lambda_{j}=0$. Hence $0 \leq z_{1}, \ldots, z_{d} \leq 1$ and $z_{1}+\cdots+z_{d}=1$.

Remark. For n large and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$, with $k \leq d$, we have

$$
\frac{\Phi(\lambda)^{n}}{n^{d^{2}+d}} \leq d_{\lambda} \leq n \Phi(\lambda)^{n}
$$

Thus $\sqrt[n]{c_{n}(A)} \simeq \Phi(\lambda)$ where $\lambda \vdash n$ is such that $d_{\lambda}=\left(d_{\lambda}\right)_{\max }$.

