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F = field of characteristic zero,

A= non necessarily associative algebra over F .

X = {x1, x2, . . .} a countable set and F{X}= the free
nonassociative algebra on X over F.

Definition. Id(A) = {f ∈ F{X} | f ≡ 0 in A} = the T-ideal
of polynomial identities of A.

Recall: f(x1, . . . , xn) ∈ F{X} is a polynomial identity of A if
f(a1, . . . , an) = 0 for all ai ∈ A.

A is a PI-algebra if Id(A) 6= 0.

For every n ≥ 1, let Pn be the space of multilinear
polynomials in x1, . . . , xn.
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Definition.

cn(A) = dimF

Pn

Pn ∩ Id(A)

is the nth codimension of A.

EXAMPLES

- The number of distinct arrangements of parentheses on a
monomial of length n is the Catalan number 1

n

(

2n−2
n−1

)

.
Hence
cn(F{X}) = dimF Pn =

(

2n−2
n−1

)

(n− 1)!.

- If F 〈X〉 is the free associative algebra, cn(F 〈X〉) = n!

- For L〈X〉 = the free Lie algebra, cn(L〈X〉) = (n− 1)!.
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Regev (1972). If A is an associative PI-algebra, then there
exists d ≥ 1 such that cn(A) ≤ dn, for all n.

• If A is a Lie algebra or a Jordan algebra which is PI, then
cn(A) can have overexponential growth.

Kemer (1978). For an associative PI-algebra A,
cn(A), n = 1, 2, . . . , is either polynomially bounded or grows
exponentially.

• For a Lie or Jordan or alternative PI-algebra, there is no
intermediate growth of the codimensions.
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G.-Zaicev (1999). For an associative PI-algebra A,

exp(A) = lim
n→∞

n

√

cn(A)

exists and is an integer called the PI-exponent of A.
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G.-Zaicev (1999). For an associative PI-algebra A,

exp(A) = lim
n→∞

n

√

cn(A)

exists and is an integer called the PI-exponent of A.

Notation. 〈f1, . . . , ft〉T = the T-ideal generated by f1, . . . , ft

EXAMPLES

A = F [x]

Id(A) = 〈[x1, x2]〉T

cn(A) = 1, for all n ≥ 1, exp(F [x]) = 1.
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G = 〈e1, e2, . . . | eiej = −ejei, for all i, j〉 is the infinite
dimensional Grassmann algebra over F .
Id(G) = 〈[x1, x2, x3]〉T

cn(G) = 2n−1, for all n ≥ 1, exp(G) = 2.

UT2 =





F F

0 F



 2× 2 upper triangular matrices

Id(UT2) = 〈[x1, x2][x3, x4]〉T

cn(UT2) = 2n−1(n− 2) + 2, for all n ≥ 1, exp(UT2) = 2.

M2(F ) =





F F

F F



 2× 2 matrices over F

cn(M2(F )) ≃
n→∞

4n−1

n
√
πn
,

exp(M2(F ) = 4.
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A =





G G

0 G0



 where G = G0 ⊕G1,

G0 = spanF {ei1 · · · ei2t | 1 ≤ i1 < · · · < i2t},
G1 = spanF {ei1 · · · ei2t+1

| 1 ≤ i1 < · · · < i2t+1}
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A =





G G

0 G0



 where G = G0 ⊕G1,

G0 = spanF {ei1 · · · ei2t | 1 ≤ i1 < · · · < i2t},
G1 = spanF {ei1 · · · ei2t+1

| 1 ≤ i1 < · · · < i2t+1}

Id(A) = 〈[x1, x2, x3][x4, x5]〉T

exp(A) = 3.

– p. 7



Remark. In general for nonassociative algebras cn(A), n = 1, 2, . . .

can have overexponential growth.

– p. 8



Remark. In general for nonassociative algebras cn(A), n = 1, 2, . . .

can have overexponential growth.

Theorem (Bahturin-Drensky) if dimA = d < ∞, then cn(A) ≤ dn+1.

– p. 8



Remark. In general for nonassociative algebras cn(A), n = 1, 2, . . .

can have overexponential growth.

Theorem (Bahturin-Drensky) if dimA = d < ∞, then cn(A) ≤ dn+1.

OPEN PROBLEM. In case the sequence of codimensions is
exponentially bounded, does exp(A) = lim

n→∞

n
√

cn(A) exist? Is it an

integer?

– p. 8



Remark. In general for nonassociative algebras cn(A), n = 1, 2, . . .

can have overexponential growth.

Theorem (Bahturin-Drensky) if dimA = d < ∞, then cn(A) ≤ dn+1.

OPEN PROBLEM. In case the sequence of codimensions is
exponentially bounded, does exp(A) = lim

n→∞

n
√

cn(A) exist? Is it an

integer?

Zaicev (2001). For any finite dimensional Lie algebra L, exp(L) exists
and is an integer.

– p. 8
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can have overexponential growth.

Theorem (Bahturin-Drensky) if dimA = d < ∞, then cn(A) ≤ dn+1.

OPEN PROBLEM. In case the sequence of codimensions is
exponentially bounded, does exp(A) = lim

n→∞

n
√

cn(A) exist? Is it an

integer?

Zaicev (2001). For any finite dimensional Lie algebra L, exp(L) exists
and is an integer.

G.-Shestakov-Zaicev (2011). For any finite dimensional Jordan or
alternative algebra J , exp(J) exists and is an integer.
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There are cases when the PI-exponent exists but is not an integer.

G.-Mishchenko-Zaicev (2008). For any real number α > 1, one can
construct an algebra Aα whose sequence of codimensions grows
exponentially and exp(Aα) = α.

Focus on finite dimensional simple algebras.

Shestakov-Zaicev (2011). Two finite dimensional simple algebras A

and B over an algebraically closed field are isomorphic if and only if
Id(A) = Id(B).

Theorem Let A be a finite dimensional associative algebra over an
algebraically closed field F . Then exp(A) = dimA if and only if A is
simple.
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Let A be a finite dimensional algebra over F .
let α(x, y) be a fixed linear combination of elements of the type
TuT

′
v, Tuv, where T, T ′ are left or right multiplication and

{u, v} = {x, y}.
Denote by 〈x, y〉 = tr(α(x, y)) the bilinear form determined by α.
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{u, v} = {x, y}.
Denote by 〈x, y〉 = tr(α(x, y)) the bilinear form determined by α.

G.-Shestakov-Zaicev (2011).
Let A be a finite dimensional simple algebra over an algebraically
closed field F and suppose that for some α, the form
〈x, y〉 = tr(α(x, y)) is non-degenerate on A. Then exp(A) exists and
exp(A) = dimA.

– p. 10



Let A be a finite dimensional algebra over F .
let α(x, y) be a fixed linear combination of elements of the type
TuT

′
v, Tuv, where T, T ′ are left or right multiplication and

{u, v} = {x, y}.
Denote by 〈x, y〉 = tr(α(x, y)) the bilinear form determined by α.

G.-Shestakov-Zaicev (2011).
Let A be a finite dimensional simple algebra over an algebraically
closed field F and suppose that for some α, the form
〈x, y〉 = tr(α(x, y)) is non-degenerate on A. Then exp(A) exists and
exp(A) = dimA.

G.-Zaicev (2012). Let A be a finite dimensional simple algebra over a
field of characteristic zero. Then exp(A) = limn→∞

n
√

cn(A) exists and
exp(A) ≤ dimA.

– p. 10



Simple Lie superalgebras over an algebraically closed field of
characteristic zero were classified by Kac.

– p. 11



Simple Lie superalgebras over an algebraically closed field of
characteristic zero were classified by Kac.

One of the infinite families in this classification consists of the Lie
superalgebras b(t), t ≥ 3.

– p. 11



Simple Lie superalgebras over an algebraically closed field of
characteristic zero were classified by Kac.

One of the infinite families in this classification consists of the Lie
superalgebras b(t), t ≥ 3.

b(t) is the Lie superalgebra of 2t× 2t matrices over F of the type





A B

C −AT



 ,

where A,B,C ∈ Mt(F ), BT = B,CT = −C and trA = 0.
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Fix t ≥ 3 and write b(t) = L = L0 ⊕ L1 where

L0 = {





A 0

0 −AT



 | A ∈ Mt(F ), tr(A) = 0},

and

L1 = {





0 B

C 0



 | BT = B,CT = −C ∈ Mt(F )}.
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Theorem Let L be a finite dimensional simple Lie superalgebra of type
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exp(L) < 2t2 − 1 = dimL.

– p. 13



Theorem Let L be a finite dimensional simple Lie superalgebra of type
b(t), t ≥ 3. Then the PI-exponent of L exists and
exp(L) < 2t2 − 1 = dimL.

– p. 13



Methods

Sn= the symmetric group acts on the left on Pn:

– p. 14



Methods

Sn= the symmetric group acts on the left on Pn:
if σ ∈ Sn, f(x1, . . . , xn) ∈ Pn, then

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

– p. 14



Methods

Sn= the symmetric group acts on the left on Pn:
if σ ∈ Sn, f(x1, . . . , xn) ∈ Pn, then

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

If Id(A) is a T-ideal, Pn ∩ Id(A) is invariant under this
action. Hence

Pn(A) =
Pn

Pn ∩ Id(A)

has a structure of Sn-module.

– p. 14



Methods

Sn= the symmetric group acts on the left on Pn:
if σ ∈ Sn, f(x1, . . . , xn) ∈ Pn, then

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

If Id(A) is a T-ideal, Pn ∩ Id(A) is invariant under this
action. Hence

Pn(A) =
Pn

Pn ∩ Id(A)

has a structure of Sn-module.
Let χn(A) be its Sn-character (called the n-th cocharacter
of A).
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By complete reducibility write

χn(A) =
∑

λ⊢n

mλχλ

where for a partition λ of n, χλ is the irreducible
Sn-character associated to λ and mλ ≥ 0 is the
corresponding multiplicity.
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By complete reducibility write

χn(A) =
∑

λ⊢n

mλχλ

where for a partition λ of n, χλ is the irreducible
Sn-character associated to λ and mλ ≥ 0 is the
corresponding multiplicity.

Berele. For an associative PI-algebra A, the multiplicities
mλ are polynomially bounded.
G.-Mishchenko-Zaicev If dimA = d < ∞, then the
multiplicities mλ are polynomially bounded
(
∑

λ⊢n mλ ≤ d(n+ 1)d
2+d).
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Amitsur-Regev. If A is a PI-algebra, there exist integers k, l such that

χn(A) =
∑

λ⊢n
λ∈H(k,l)

mλχλ

where H(k, l) =
⋃

n≥1{λ = (λ1, λ2, . . .) ⊢ n | λk+1 ≤ l}.
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Amitsur-Regev. If A is a PI-algebra, there exist integers k, l such that

χn(A) =
∑

λ⊢n
λ∈H(k,l)

mλχλ

where H(k, l) =
⋃

n≥1{λ = (λ1, λ2, . . .) ⊢ n | λk+1 ≤ l}.
Thus H(k, l) = the set of all diagrams whose shape lies in the hook
shaped region

-�

6

?

l

k
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cn(A) =
∑

λ⊢n

mλdλ, (1)

where dλ = χλ(1).

– p. 17



cn(A) =
∑

λ⊢n

mλdλ, (2)

where dλ = χλ(1).

Key result.
∑

λ∈H(k,l)

dλ ≃
n→∞

Cnt(k + l)n.

– p. 17



cn(A) =
∑

λ⊢n

mλdλ, (3)

where dλ = χλ(1).

Key result.
∑

λ∈H(k,l)

dλ ≃
n→∞

Cnt(k + l)n.

Theorem . If dimA = d < ∞, then

cn(A) =
∑

λ⊢n
λ∈H(d,0)

mλdλ
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it follows that asymptotically

n
√

cn(A) ≃
n
√

(dλ)max, (4)

where

(dλ)max = max{dλ | λ ⊢ n with mλ 6= 0 in (1)}. (5)
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Given a partititon λ = (λ1, . . . , λk) ⊢ n of height k ≤ d, we write
λ = (λ1, . . . , λd) with λk+1 = . . . = λd = 0.
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