Polynomial identities and codimension
growth

ntoni lambruno

Dipartimento di Matematica ed Informatica

Universita di Palermo




F' = field of characteristic zero,
A= non necessarily associative algebra over F..

X =A{xy,z9,...} acountable set and F'{ X }= the free
nonassociative algebra on X over F.




F' = field of characteristic zero,
A= non necessarily associative algebra over F..

X =A{xy,z9,...} acountable set and F'{ X }= the free
nonassociative algebra on X over F.

Definition.  [d(A) ={f € F{X} | f=0in A} = the T-ideal
of polynomial identities of A.




F' = field of characteristic zero,
A= non necessarily associative algebra over F..

X =A{xy,z9,...} acountable set and F'{ X }= the free
nonassociative algebra on X over F.

Definition.  [d(A) ={f € F{X} | f=0in A} = the T-ideal
of polynomial identities of A.

Recall: f(zq,...,x,) € F{X} is a polynomial identity of A if
flay,...,a,) =0forall a; € A.

Ais a Pl-algebra if Id(A) # 0.




F' = field of characteristic zero,
A= non necessarily associative algebra over F..

X =A{xy,z9,...} acountable set and F'{ X }= the free
nonassociative algebra on X over F.

Definition.  [d(A) ={f € F{X} | f=0in A} = the T-ideal
of polynomial identities of A.

Recall: f(zq,...,x,) € F{X} is a polynomial identity of A if
flay,...,a,) =0forall a; € A.

Ais a Pl-algebra if Id(A) # 0.

For every n > 1, let P, be the space of multilinear
polynomials in x4, ..., z,.




Definition.

IS the nth codimension of A.

by

P, N Id(A)

—-p. 3



Definition.

IS the nth codimension of A.

EXAMPLES

by

P, N Id(A)

—-p. 3



Definition.
I

P, N Id(A)

IS the nth codimension of A.

EXAMPLES

- The number of distinct arrangements of parentheses on a
monomial of length n is the Catalan number 1 (>"~%).
Hence
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Definition.
I

en(A) = dimr 5270

IS the nth codimension of A.

EXAMPLES

- The number of distinct arrangements of parentheses on a
monomial of length n is the Catalan number 1 (>"~%).
Hence

cn(F{X}) = dimp P, = (2"=])(n — D).

n—1

- If F'(X) is the free associative algebra, c,(F (X)) = n!
- For L(X) = the free Lie algebra, c¢,(L{X)) = (n— 1)
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Regev (1972). If A is an associative Pl-algebra, then there
exists d > 1 such that ¢, (A) < d", for all n.
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Regev (1972). If A is an associative Pl-algebra, then there
exists d > 1 such that ¢,(A) < d", for all n.

e If Ais a Lie algebra or a Jordan algebra which is PI, then
c,(A) can have overexponential growth.

Kemer (1978). For an associative Pl-algebra A,
cn(A),n =1,2,..., is either polynomially bounded or grows
exponentially.

e For a Lie or Jordan or alternative Pl-algebra, there is no
iIntermediate growth of the codimensions.

—-p. 4



G.-Zaicev (1999). For an associative Pl-algebra A,

exp(A) = lim {/c,(A)

n—oo

exists and is an integer called the Pl-exponent of A.
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G.-Zaicev (1999). For an associative Pl-algebra A,

exp(A) = lim {/c,(A)

n—oo

exists and is an integer called the Pl-exponent of A.

Notation. (f1,..., fi)r = the T-ideal generated by f1,..., f;

EXAMPLES

» A= F|x]
I[d(A) =

(z1, Z2])T

cn(A) =1, foralln > 1, exp(Flz]) = 1.
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» G = <€1, PR ’ €;,€; — —€;€;, for all Z,j> IS the infinite
dimensional Grassmann algebra over F..
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® G = (e eq,...|ee;=—ese; foralli,j) is the infinite
dimensional Grassmann algebra over F..
Id(G) = (|x1, 29, T3])T
cn(G)=2""1 foralln>1, exp(G)=2.

F
® UT, = 2 X 2 upper triangular matrices

0 F
[d(UT3) = (|21, T2| |5, 4])1
cn(UTy) = 2" (n —2)+2,foralln > 1, exp(UT,) = 2.
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® G = (e eq,...|ee;=—ese; foralli,j) is the infinite
dimensional Grassmann algebra over F..
Id(G) = (|x1, 29, T3])T
cn(G)=2""1 foralln>1, exp(G)=2.

F
® UT, = 2 X 2 upper triangular matrices

0 F
[d(UT3) = (|21, T2| |5, 4])1
cn(UTy) = 2" (n —2)+2,foralln > 1, exp(UT,) = 2.

FF

® VMy(F) = 2 X 2 matrices over F
F F
ea(Ma(F)) =

n—oo

exp(Msy(F) = 4.
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G G
0 Gy

» A=

Go = spang{e;, -
G, = spany{e;, -

where G = Gy @ Gy,

€y | 1 <iiq <o <oy},
" S | 1 <1 <"'<i2t_|_1}
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G G
A= where G = Gy @ Gy,
0 Gy

Go = SpanF{eil 000 (B8 | 1< < < igt},
G = SpanF{eil "0 | 1< <0 < 7:275_|_1}

Id(A) = (|x1, x2, 23] [T, T5])T
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G G
A= where G = Gy @ Gy,
0 Gy

Go = SpanF{eil 000 (B8 | 1< < < igt},
G = SpanF{eil "0 | 1< <0 < 7:275_|_1}

Id(A) = (|x1, x2, 23] [T, T5])T
exp(A) = 3.
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Remark. In general for nonassociative algebras c,(A), n=1,2,...
can have overexponential growth.

Theorem (Bahturin-Drensky) if dim A = d < oo, then ¢, (A) < d*T1.

OPEN PROBLEM. In case the sequence of codimensions is

exponentially bounded, does exp(A) = lim {/c,(A) exist? Is it an
n—oo

Integer?

Zaicev (2001). For any finite dimensional Lie algebra L, exp(L) exists
and is an integer.

G.-Shestakov-Zaicev (2011). For any finite dimensional Jordan or
alternative algebra J, exp(J) exists and is an integer.
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There are cases when the Pl-exponent exists but is not an integer.
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G.-Mishchenko-Zaicev (2008). For any real number o > 1, one can
construct an algebra A, whose sequence of codimensions grows
exponentially and exp(A,) = a.
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There are cases when the Pl-exponent exists but is not an integer.

G.-Mishchenko-Zaicev (2008). For any real number «« > 1, one can
construct an algebra A, whose sequence of codimensions grows
exponentially and exp(A,) = a.

Focus on finite dimensional simple algebras.

Shestakov-Zaicev (2011). Two finite dimensional simple algebras A
and B over an algebraically closed field are isomorphic if and only if
Id(A) = Id(B).

Theorem Let A be a finite dimensional associative algebra over an
algebraically closed field F'. Then exp(A) = dim A if and only if A is
simple.
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Let A be a finite dimensional algebra over F'.
let a(x, y) be a fixed linear combination of elements of the type
T.T!, T, where T, T" are left or right multiplication and

{u, v} = {2, Y.

Denote by (x,y) = tr(a(z, y)) the bilinear form determined by «.
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T.T!, T, where T, T" are left or right multiplication and

{u, v} = {2, Y.

Denote by (z,y) = tr(a(x,y)) the bilinear form determined by «.

G.-Shestakov-Zaicev (2011).

Let A be a finite dimensional simple algebra over an algebraically
closed field ' and suppose that for some «, the form

(x,y) = tr(a(x,y)) iIs non-degenerate on A. Then exp(A) exists and
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Let A be a finite dimensional algebra over F..
let a(x, y) be a fixed linear combination of elements of the type
T.T!, T, where T, T" are left or right multiplication and

{u, v} = {2, Y.

Denote by (z,y) = tr(a(x,y)) the bilinear form determined by «.

G.-Shestakov-Zaicev (2011).

Let A be a finite dimensional simple algebra over an algebraically
closed field ' and suppose that for some «, the form

(x,y) = tr(a(x,y)) iIs non-degenerate on A. Then exp(A) exists and
erp(A) = dim A.

G.-Zaicev (2012). Let A be a finite dimensional simple algebra over a
field of characteristic zero. Then exp(A) = lim,, , /¢, (A) exists and
exp(4) < dim A.
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Simple Lie superalgebras over an algebraically closed field of
characteristic zero were classified by Kac.
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Simple Lie superalgebras over an algebraically closed field of
characteristic zero were classified by Kac.

One of the infinite families in this classification consists of the Lie
superalgebras b(t), t > 3.

b(t) is the Lie superalgebra of 2t x 2t matrices over F' of the type

A B
C -—-AT

Y

where A, B,C € M;(F), BY = B,CT = —-C and trA = 0.
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Fix ¢ > 3 and write b(t) = L = Ly & Ly where

Lo{(A ’ )AEMt(F)at"“(A)O}a
0 —AT

and

L1{< Vo ) | B = B,CT = —-C ¢ My(F)}.
C 0
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Fix ¢ > 3 and write b(t) = L = Ly & Ly where

Lo = (A ’ )AEMt(F)at"“(A)O}a
0 —AT

and

0 B
Li= ( )BTB,CTCEMt(F)}.

The algebra L is a Lie superalgebra with Z,-grading L = Ly & Lq if we
define a product | , | of two homogeneous elements z,y € L as

[z, y] = wy — (1) W¥lyg,
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Theorem Let L be a finite dimensional simple Lie superalgebra of type
b(t), t > 3. Then the Pl-exponent of L exists and
exp(L) < 2t — 1 = dim L.
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Methods

S, = the symmetric group acts on the left on P,:
ifoeS,, flxy,...,z,) € P,, then

O-f(ajh s 7$n) — f($0(1)7 s 7330'(?1))'

If Id(A) is a T-ideal, P, N Id(A) is invariant under this

action. Hence
P,

~ P, N Id(A)
has a structure of .S,,.-module.

Fa(A)
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Methods

S, = the symmetric group acts on the left on P,:
ifoeS,, flxy,...,z,) € P,, then

O-f('rh s 7$n) — f('ra(l)7 s 7330'(71))'

If Id(A) is a T-ideal, P, N Id(A) is invariant under this

action. Hence
P,

~ P, N Id(A)
has a structure of .S,,.-module.

Let x,.(A) be its S,,-character (called the n-th cocharacter
of A).

Fa(A)
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By complete reduciblility write

Xn(A) = Z TMAX

where for a partition A of n, x, Is the irreducible
S,,-character associated to A and m, > 0 Is the
corresponding multiplicity.
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By complete reduciblility write

Xn(A) = Z TMAX

where for a partition A of n, x, Is the irreducible
S,,-character associated to A and m, > 0 Is the
corresponding multiplicity.

Berele. For an associative Pl-algebra A, the multiplicities
m, are polynomially bounded.

G.-Mishchenko-Zaicev If dim A = d < oo, then the
multiplicities m, are polynomially bounded

(Xsen ma < d(n 4 1)49),
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Amitsur-Regev. If A is a Pl-algebra, there exist integers &, [ such that

Xn (A) — Z XX\

AFn
AEH (k,I)

where H(k,1) = U, {2 = (A, Agy -2 o | Ao < 1
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Amitsur-Regev. If A is a Pl-algebra, there exist integers &, [ such that

Xn (A) — Z XX\

AFn
AEH (k,I)

where H(k,l) = U,>1{* = (A, Az, ) B | Adggr < U}
Thus H(k,l) = the set of all diagrams whose shape lies in the hook
shaped region

—p. 16



(1)
Z m)\d)\a
cn(A) =

).
where dy = X)\(
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cp(A) = Z mdy, (2)
where d) = ya(1).
Key result.

> dy = Cn'(k+1)"

AEH (k,l)
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cn(A) =) mada, (3)
where d) = ya(1).

Key result.
E dy ~ Cn'(k+1)"
n—oo

AEH (k,l)

Theorem . If dim A = d < oo, then

Cn(A) p— Z m,\d,\

AFn
AEH (d,0)
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it follows that asymptotically

\ Cn(A) = 7{/(d)\)mazm (4)

where
(d)\)maa: = max{dA | A nwithmy #0In (I]])} (5)
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Given a partititon A = (A1, ..., \x) F n of height £ < d, we write
A= (Al,...,)\d)With )\k—l—l =...= g =0.
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