Finite simple quotients of groups satisfying property (T).

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

ISCHIA GROUP THEORY 2012 March, 26th - 29th

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (T).

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition: ϵ -**Expander**

For $\mathbf{0} < \epsilon \in \mathbb{R}$ a graph

$$X = (V, E)$$

 $\uparrow \uparrow$
vertices edges

is
$$\epsilon$$
-expander if $\forall A \subset V$, with $|A| \leq \frac{|V|}{2}$, $|\partial A| \geq \epsilon |A|$,
where ∂A = boundary of $A = \{v \in V : dist(v, A) = 1\}$

Definition: Expander family

A family $\{X_i\}_{i \in \mathbb{N}}$ of k-regular finite graphs is a *family of expanders* if $\exists \epsilon > 0$ such that $\forall i \ X_i$ is an ϵ -expander and $|X_i| \to \infty$.

Expanders are simultaneously sparse and highly connected.

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

イロン イ部ン イヨン イヨン 三日

Definition: ϵ -**Expander**

For $\mathbf{0} < \epsilon \in \mathbb{R}$ a graph

$$X = (V, E)$$

 $\uparrow \uparrow$
vertices edges

is ϵ -expander if $\forall A \subset V$, with $|A| \leq \frac{|V|}{2}$, $|\partial A| \geq \epsilon |A|$, where ∂A = boundary of $A = \{v \in V : dist(v, A) = 1\}$

Definition: Expander family

A family $\{X_i\}_{i\in\mathbb{N}}$ of k-regular finite graphs is a *family of expanders* if $\exists \epsilon > 0$ such that $\forall i \ X_i$ is an ϵ -expander and $|X_i| \to \infty$.

Expanders are simultaneously sparse and highly connected.

ロト (日) (日) (日) (日) (日) (日)

Definition: ϵ -**Expander**

For $\mathbf{0} < \epsilon \in \mathbb{R}$ a graph

$$X = (V, E)$$

 $\uparrow \uparrow$
vertices edges

is ϵ -expander if $\forall A \subset V$, with $|A| \leq \frac{|V|}{2}$, $|\partial A| \geq \epsilon |A|$, where ∂A = boundary of $A = \{v \in V : dist(v, A) = 1\}$

Definition: Expander family

A family $\{X_i\}_{i\in\mathbb{N}}$ of k-regular finite graphs is a *family of expanders* if $\exists \epsilon > 0$ such that $\forall i \ X_i$ is an ϵ -expander and $|X_i| \to \infty$.

Expanders are simultaneously sparse and highly connected.

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

→ 同 → → 目 → → 目 → → 目

. . .

Applications of expanders:

Network constructions Error-correcting codes Cryptography Number Theory

Expander families exist: 1973: Pinsker: Using counting arguments

For applications one wants explicit constructions.

1973: Margulis: an explicit construction using property (T) of Kazhdan

Applications of expanders:

Network constructions Error-correcting codes Cryptography Number Theory

•••

Expander families exist:

1973: Pinsker: Using counting arguments

For applications one wants explicit constructions.

1973: Margulis: an explicit construction using property (T) of Kazhdan

. . .

Applications of expanders:

Network constructions Error-correcting codes Cryptography Number Theory

Expander families exist:

1973: Pinsker: Using counting arguments

For applications one wants explicit constructions.

1973: Margulis: an explicit construction using property (T) of Kazhdan

- 4 同 6 4 日 6 4 日 6

. . .

Applications of expanders:

Network constructions Error-correcting codes Cryptography Number Theory

Expander families exist:

1973: Pinsker: Using counting arguments

For applications one wants explicit constructions.

1973: Margulis: an explicit construction using property (T) of Kazhdan

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition: **Property** (T) (1967, Kazhdan)

Let $\Gamma = \langle S \rangle$ with S finite. Then Γ has property (T) if $\exists \epsilon > 0$ such that

 $\forall \rho : \Gamma \to U(\mathcal{H})$ (where \mathcal{H} is a Hilbert space) and $\forall v \in \mathcal{H}_0^{\perp}$ (where \mathcal{H}_0 is the space of Γ -invariant vectors of \mathcal{H})

 $\|\rho(s)v - v\| \ge \epsilon \|v\|, \forall s \in S.$

There are not almost Г-invariant vectors in $\mathcal{H}_0^\perp.$

- 4 同 6 4 日 6 4 日 6

Definition: **Property** (*T*) (1967, Kazhdan)

Let $\Gamma = \langle S \rangle$ with S finite. Then Γ has property (T) if $\exists \epsilon > 0$ such that

 $\forall \rho : \Gamma \to U(\mathcal{H})$ (where \mathcal{H} is a Hilbert space) and $\forall v \in \mathcal{H}_0^{\perp}$ (where \mathcal{H}_0 is the space of Γ -invariant vectors of \mathcal{H})

$$\|\rho(s)\mathbf{v}-\mathbf{v}\|\geq\epsilon\|\mathbf{v}\|, \forall s\in S.$$

There are not almost Γ-invariant vectors in $\mathcal{H}_0^\perp.$

イロト イポト イヨト イヨト

Definition: **Property** (*T*) (1967, Kazhdan)

Let $\Gamma = \langle S \rangle$ with S finite. Then Γ has property (T) if $\exists \epsilon > 0$ such that

 $\forall \rho : \Gamma \to U(\mathcal{H})$ (where \mathcal{H} is a Hilbert space) and $\forall v \in \mathcal{H}_0^{\perp}$ (where \mathcal{H}_0 is the space of Γ -invariant vectors of \mathcal{H})

$$\|\rho(s)\mathbf{v}-\mathbf{v}\| \geq \epsilon \|\mathbf{v}\|, \forall s \in S.$$

There are not almost Γ -invariant vectors in \mathcal{H}_0^{\perp} .

▲圖▶ ★ 国▶ ★ 国▶

Let $\Gamma = \langle S \rangle$ (with $S = S^{-1}$ finite) is infinite and residually finite and satisfies property (T)

Let $\{\Gamma_i\}_{i\in\mathbb{N}}$ a family of normal subgroups of Γ of finite index such that $|\Gamma/\Gamma_i|$ tends to infinity.

Then the Cayley graphs $X_i = \operatorname{Cay}(\Gamma/\Gamma_i; S)$ form a family of expanders.

Definition: Property tau (1989 Lubotzky, Zimmer)

 Γ has *property tau* if $\exists \epsilon > 0$ such that

 $orall
ho: \Gamma o U(\mathcal{H})$ s.t. $ho(\Gamma)$ is finite and $orall v \in \mathcal{H}_0^\perp$

$|\rho(s)v - v|| \ge \epsilon ||v||, \forall s \in S.$

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

Let $\Gamma = \langle S \rangle$ (with $S = S^{-1}$ finite) is infinite and residually finite and satisfies property (T)

Let $\{\Gamma_i\}_{i\in\mathbb{N}}$ a family of normal subgroups of Γ of finite index such that $|\Gamma/\Gamma_i|$ tends to infinity.

Then the Cayley graphs $X_i = \operatorname{Cay}(\Gamma/\Gamma_i; S)$ form a family of expanders.

Definition: Property tau (1989 Lubotzky, Zimmer)

 Γ has property tau if $\exists \epsilon > 0$ such that

 $orall
ho: \Gamma o U(\mathcal{H})$ s.t. $ho(\Gamma)$ is finite and $orall v \in \mathcal{H}_0^\perp$

 $|\rho(s)v - v|| \ge \epsilon ||v||, \forall s \in S.$

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

Let $\Gamma = \langle S \rangle$ (with $S = S^{-1}$ finite) is infinite and residually finite and satisfies property (T)

Let $\{\Gamma_i\}_{i\in\mathbb{N}}$ a family of normal subgroups of Γ of finite index such that $|\Gamma/\Gamma_i|$ tends to infinity.

Then the Cayley graphs $X_i = \operatorname{Cay}(\Gamma/\Gamma_i; S)$ form a family of expanders.

Definition: Property tau (1989 Lubotzky, Zimmer)

 Γ has property tau if $\exists \epsilon > 0$ such that

 $orall
ho: \Gamma o U(\mathcal{H}) ext{ s.t. }
ho(\Gamma) ext{ is finite and } orall v \in \mathcal{H}_0^\perp$

 $|\rho(s)v - v|| \ge \epsilon ||v||, \forall s \in S.$

Finite simple quotients of groups satisfying property (T).

Let $\Gamma = \langle S \rangle$ (with $S = S^{-1}$ finite) is infinite and residually finite and satisfies property (T)

Let $\{\Gamma_i\}_{i\in\mathbb{N}}$ a family of normal subgroups of Γ of finite index such that $|\Gamma/\Gamma_i|$ tends to infinity.

Then the Cayley graphs $X_i = \operatorname{Cay}(\Gamma/\Gamma_i; S)$ form a family of expanders.

Definition: **Property tau** (1989 Lubotzky, Zimmer)

 Γ has property tau if $\exists \epsilon > 0$ such that

 $orall
ho: \Gamma o U(\mathcal{H}) ext{ s.t. }
ho(\Gamma) ext{ is finite and } orall v \in \mathcal{H}_0^\perp$

 $\|\rho(s)v - v\| \ge \epsilon \|v\|, \forall s \in S.$

Finite simple quotients of groups satisfying property (T).

Let $\Gamma = \langle S \rangle$ (with $S = S^{-1}$ finite) is infinite and residually finite and satisfies property (T)

Let $\{\Gamma_i\}_{i\in\mathbb{N}}$ a family of normal subgroups of Γ of finite index such that $|\Gamma/\Gamma_i|$ tends to infinity.

Then the Cayley graphs $X_i = \operatorname{Cay}(\Gamma/\Gamma_i; S)$ form a family of expanders.

Definition: **Property tau** (1989 Lubotzky, Zimmer)

 Γ has property tau if $\exists \epsilon > 0$ such that

 $\forall \rho : \Gamma \to U(\mathcal{H}) \text{ s.t. } \rho(\Gamma) \text{ is finite and } \forall v \in \mathcal{H}_0^{\perp}$

$$\|\rho(s)\mathbf{v}-\mathbf{v}\|\geq\epsilon\|\mathbf{v}\|, \forall s\in S.$$

Definition: family of group expanders

A family $\{G_i\}$ of finite groups is a *family of expanders* if $\exists k \in \mathbb{N}$ and $\epsilon > 0$ such that every group G_i has a symmetric subset S_i of k generators for which $Cay(G_i; S_i)$ is an ϵ -expander.

Example: If Γ is a finitely generated group satisfying property (T) or tau, then

 $\{$ finite quotients of $\Gamma \}$

is a family of expanders.

Conjecture (1989 Babai, Kantor and Lubotzky)

The family of all the finite (nonabelian) simple groups is a family of group expanders.

イロン 不同と 不同と 不同と

Definition: family of group expanders

A family $\{G_i\}$ of finite groups is a *family of expanders* if $\exists k \in \mathbb{N}$ and $\epsilon > 0$ such that every group G_i has a symmetric subset S_i of k generators for which $Cay(G_i; S_i)$ is an ϵ -expander.

Example: If Γ is a finitely generated group satisfying property (T) or tau, then

{finite quotients of Γ }

is a family of expanders.

Conjecture (1989 Babai, Kantor and Lubotzky)

The family of all the finite (nonabelian) simple groups is a family of group expanders.

・ロン ・回と ・ヨン・

Definition: family of group expanders

A family $\{G_i\}$ of finite groups is a *family of expanders* if $\exists k \in \mathbb{N}$ and $\epsilon > 0$ such that every group G_i has a symmetric subset S_i of k generators for which $Cay(G_i; S_i)$ is an ϵ -expander.

Example: If Γ is a finitely generated group satisfying property (T) or tau, then

{finite quotients of Γ }

is a family of expanders.

Conjecture (1989 Babai, Kantor and Lubotzky)

The family of all the finite (nonabelian) simple groups is a family of group expanders.

・ロン ・回と ・ヨン ・ヨン

There exists $k \in \mathbb{N}$ and $\epsilon > 0$ such that every every non-abelian finite simple group *G* has a set *S* of *k* generators for which Cay(G; S) is an ϵ -expander.

2005 M. Kassabov: $PSL_n(\mathbb{F}_q)(n \ge 3)$ and Alt_n 2005 N. Nikolov: classical groups of large rank 2005 A. Lubotzky: $PSL_2(\mathbb{F}_q)$ and simple groups of Lie type of bounded rank with the exception of the Suzuki groups 2010 E. Breulliard, B. Green and T. Tao: Suzuki groups.

・ロン ・回 と ・ ヨ と ・ ヨ と

There exists $k \in \mathbb{N}$ and $\epsilon > 0$ such that every every non-abelian finite simple group *G* has a set *S* of *k* generators for which Cay(G; S) is an ϵ -expander.

2005 M. Kassabov: $PSL_n(\mathbb{F}_q)(n \ge 3)$ and Alt_n

2005 N. Nikolov: classical groups of large rank 2005 A. Lubotzky: $PSL_2(\mathbb{F}_q)$ and simple groups of Lie type of bounded rank with the exception of the Suzuki groups 2010 E. Breulliard, B. Green and T. Tao: Suzuki groups.

- 4 同 6 4 日 6 4 日 6

There exists $k \in \mathbb{N}$ and $\epsilon > 0$ such that every every non-abelian finite simple group *G* has a set *S* of *k* generators for which Cay(G; S) is an ϵ -expander.

2005 M. Kassabov: $PSL_n(\mathbb{F}_q)(n \ge 3)$ and Alt_n 2005 N. Nikolov: classical groups of large rank 2005 A. Lubotzky: $PSL_2(\mathbb{F}_q)$ and simple groups of Lie type of bounded rank with the exception of the Suzuki groups 2010 E. Breulliard, B. Green and T. Tao: Suzuki groups.

(本間) (本語) (本語)

There exists $k \in \mathbb{N}$ and $\epsilon > 0$ such that every every non-abelian finite simple group *G* has a set *S* of *k* generators for which Cay(G; S) is an ϵ -expander.

2005 M. Kassabov: $PSL_n(\mathbb{F}_q)$ ($n \ge 3$) and Alt_n 2005 N. Nikolov: classical groups of large rank 2005 A. Lubotzky: $PSL_2(\mathbb{F}_q)$ and simple groups of Lie type of bounded rank with the exception of the Suzuki groups 2010 E. Breulliard, B. Green and T. Tao: Suzuki groups.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

There exists $k \in \mathbb{N}$ and $\epsilon > 0$ such that every every non-abelian finite simple group *G* has a set *S* of *k* generators for which Cay(G; S) is an ϵ -expander.

2005 M. Kassabov: $PSL_n(\mathbb{F}_q)$ ($n \ge 3$) and Alt_n 2005 N. Nikolov: classical groups of large rank 2005 A. Lubotzky: $PSL_2(\mathbb{F}_q)$ and simple groups of Lie type of bounded rank with the exception of the Suzuki groups 2010 E. Breulliard, B. Green and T. Tao: Suzuki groups.

(4月) イヨト イヨト

Definition: mother group

Let \mathcal{F} be a family of groups. We say that a group Γ is a mother group for \mathcal{F} if Γ maps onto every group from \mathcal{F} .

Question.

Let \mathcal{F} be a family of finite simple groups. Does \mathcal{F} have a finitely generated mother group satisfying Kazhdan's property (T) or property tau?

Example: $SL_3(\mathbb{Z})$ is a mother group of $\{PSL_3(\mathbb{F}_p)\}$.

イロト イポト イヨト イヨト

Definition: mother group

Let \mathcal{F} be a family of groups. We say that a group Γ is a mother group for \mathcal{F} if Γ maps onto every group from \mathcal{F} .

Question.

Let \mathcal{F} be a family of finite simple groups. Does \mathcal{F} have a finitely generated mother group satisfying Kazhdan's property (\mathcal{T}) or property tau?

Example: $SL_3(\mathbb{Z})$ is a mother group of $\{PSL_3(\mathbb{F}_p)\}$.

イロト イポト イヨト イヨト

Definition: mother group

Let \mathcal{F} be a family of groups. We say that a group Γ is a mother group for \mathcal{F} if Γ maps onto every group from \mathcal{F} .

Question.

Let \mathcal{F} be a family of finite simple groups. Does \mathcal{F} have a finitely generated mother group satisfying Kazhdan's property (\mathcal{T}) or property tau?

Example: $SL_3(\mathbb{Z})$ is a mother group of $\{PSL_3(\mathbb{F}_p)\}$.

- 4 同 6 4 日 6 4 日 6

- The family of all the non-abelian finite simple groups has a finitely generated mother group having property tau.
- A family *F* of non-abelian finite simple groups has a mother group having property (*T*) if and only if only finitely many finite simple groups of Lie type of rank 1 belongs to *F*.

Why do we exclude the groups of Lie type of rank 1 in (2)?

Theorem (folklore)

Let Γ maps on infinitely many $PSL_2(\mathbb{F}_q)$. Then Γ does not have property (T).

 $\mathit{SL}_2(\mathbb{Z}[1/2])$ has property tau and maps onto $\{\mathit{PSL}_2(\mathbb{F}_p)\}$

・ロン ・回と ・ヨン・

- The family of all the non-abelian finite simple groups has a finitely generated mother group having property tau.
- A family *F* of non-abelian finite simple groups has a mother group having property (*T*) if and only if only finitely many finite simple groups of Lie type of rank 1 belongs to *F*.

Why do we exclude the groups of Lie type of rank 1 in (2)?

Theorem (folklore)

Let Γ maps on infinitely many $PSL_2(\mathbb{F}_q)$. Then Γ does not have property (T).

 $SL_2(\mathbb{Z}[1/2])$ has property tau and maps onto $\{PSL_2(\mathbb{F}_p)\}$

・ロン ・回 と ・ ヨ と ・ ヨ と

- The family of all the non-abelian finite simple groups has a finitely generated mother group having property tau.
- A family *F* of non-abelian finite simple groups has a mother group having property (*T*) if and only if only finitely many finite simple groups of Lie type of rank 1 belongs to *F*.

Why do we exclude the groups of Lie type of rank 1 in (2)?

Theorem (folklore)

Let Γ maps on infinitely many $PSL_2(\mathbb{F}_q)$. Then Γ does not have property (T).

 $SL_2(\mathbb{Z}[1/2])$ has property tau and maps onto $\{PSL_2(\mathbb{F}_p)\}$

(日) (同) (E) (E) (E)

- The family of all the non-abelian finite simple groups has a finitely generated mother group having property tau.
- A family *F* of non-abelian finite simple groups has a mother group having property (*T*) if and only if only finitely many finite simple groups of Lie type of rank 1 belongs to *F*.

Why do we exclude the groups of Lie type of rank 1 in (2)?

Theorem (folklore)

Let Γ maps on infinitely many $PSL_2(\mathbb{F}_q)$. Then Γ does not have property (T).

 $SL_2(\mathbb{Z}[1/2])$ has property tau and maps onto $\{PSL_2(\mathbb{F}_p)\}$

(日) (同) (E) (E) (E)

Theorem

There exists a group Γ satisfying property (*T*) such that every finite simple group of Lie type of rank at least 2 is a quotient of Γ .

Main tool:

A method that allows to prove that some groups graded by root systems have property (T).

・ロン ・回と ・ヨン・

Theorem

There exists a group Γ satisfying property (*T*) such that every finite simple group of Lie type of rank at least 2 is a quotient of Γ .

Main tool:

A method that allows to prove that some groups graded by root systems have property (T).

(本間) (本語) (本語)

Definition

Let *E* be real vector space. A finite non-empty subset Φ of *E* is called a *root system in E* if

- (a) Φ spans E;
- (b) Φ does not contain 0;

(c) Φ is closed under inversion, that is, if $\alpha \in \Phi$ then $-\alpha \in \Phi$.

The dimension of *E* is called the *rank of* Φ .

Definition

A root system Φ in a space *E* will be called *classical* if *E* can be given the structure of a Euclidean space such that

(a) For any $\alpha, \beta \in \Phi$ we have $\frac{2(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z}$;

(b) If $\alpha, \beta \in \Phi$, then $\alpha - \frac{2(\alpha, \beta)}{(\beta, \beta)}\beta \in \Phi$

イロト イポト イヨト イヨト

Definition

Let *E* be real vector space. A finite non-empty subset Φ of *E* is called a *root system in E* if

- (a) Φ spans E;
- (b) Φ does not contain 0;

(c) Φ is closed under inversion, that is, if $\alpha \in \Phi$ then $-\alpha \in \Phi$.

The dimension of *E* is called the *rank of* Φ .

Definition

A root system Φ in a space E will be called *classical* if E can be given the structure of a Euclidean space such that

(a) For any
$$\alpha, \beta \in \Phi$$
 we have $\frac{2(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z}$;

(b) If $\alpha, \beta \in \Phi$, then $\alpha - \frac{2(\alpha, \beta)}{(\beta, \beta)}\beta \in \Phi$

イロト イポト イヨト イヨト

Definition

Let *E* be real vector space. A finite non-empty subset Φ of *E* is called a *root system in E* if

- (a) Φ spans E;
- (b) Φ does not contain 0;

(c) Φ is closed under inversion, that is, if $\alpha \in \Phi$ then $-\alpha \in \Phi$.

The dimension of *E* is called the *rank of* Φ .

Definition

A root system Φ in a space *E* will be called *classical* if *E* can be given the structure of a Euclidean space such that

(a) For any
$$\alpha, \beta \in \Phi$$
 we have $\frac{2(\alpha,\beta)}{(\beta,\beta)} \in \mathbb{Z}$;

(b) If $\alpha, \beta \in \Phi$, then $\alpha - \frac{2(\alpha, \beta)}{(\beta, \beta)}\beta \in \Phi$

イロト イポト イヨト イヨト

э
Root systems

Remark: Every irreducible classical root system is isomorphic to one of the following: $A_n, B_n(n \ge 2), C_n(n \ge 3), BC_n(n \ge 1), D_n(n \ge 4), E_6, E_7, E_8, F_4, G_2.$

Root systems

Remark: Every irreducible classical root system is isomorphic to one of the following: A_n , $B_n(n \ge 2)$, $C_n(n \ge 3)$, $BC_n(n \ge 1)$, $D_n(n \ge 4)$, E_6 , E_7 , E_8 , F_4 , G_2 .

Definition: Φ-grading

 Φ a root system, G a group. A Φ -grading of G is a collection of subgroups $\{X_{\alpha}\}_{\alpha\in\Phi}$ of G, called root subgroups such that (i) $\{X_{\alpha}\}_{\alpha\in\Phi}$ generate G(ii) For any $\alpha, \beta \in \Phi$, with $\alpha \notin \mathbb{R}_{<0}\beta$, we have

$$[X_{\alpha}, X_{\beta}] \subseteq \langle X_{\gamma} \mid \gamma = a\alpha + b\beta \in \Phi, \ a, b \ge 1 \rangle$$

Informal definition: graded cover

A graded cover of a grading $\{X_{\alpha}\}_{\alpha \in \Phi}$ is the quotient of the free product of $\{X_{\alpha}\}_{\alpha \in \Phi}$ by the normal subgroup generated by relations that appear in (ii) of the previous definition

・ロト ・回ト ・ヨト ・ヨト

Definition: Φ-grading

 Φ a root system, G a group. A Φ -grading of G is a collection of subgroups $\{X_{\alpha}\}_{\alpha \in \Phi}$ of G, called root subgroups such that (i) $\{X_{\alpha}\}_{\alpha \in \Phi}$ generate G(ii) For any $\alpha, \beta \in \Phi$, with $\alpha \notin \mathbb{R}_{<0}\beta$, we have

$$[X_{lpha}, X_{eta}] \subseteq \langle X_{\gamma} \mid \gamma = alpha + beta \in \Phi, \ a, b \ge 1
angle$$

Informal definition: graded cover

A graded cover of a grading $\{X_{\alpha}\}_{\alpha \in \Phi}$ is the quotient of the free product of $\{X_{\alpha}\}_{\alpha \in \Phi}$ by the normal subgroup generated by relations that appear in (ii) of the previous definition

(ロ) (同) (E) (E) (E)

Theorem (2010, Ershov, Jaikin, Kassabov)

Let Φ be a *regular* (for example, classical) root system of rank at least two. Let G be a finitely generated group and $\{X_{\alpha}\}_{\alpha\in\Phi}$ its Φ -grading. Assume that

- the grading $\{X_{\alpha}\}$ is *strong* and
- 2 the pair $(G, \cup_{\alpha \in \Phi} X_{\alpha})$ has relative Kazhdan property,

then G has property (T).

2008 Ershov, Jaikin: the case of groups with A_2 -grading

Theorem(2008, Ershov, Jaikin)

Let R be a finitely generated ring and $n \ge 3$. Let $G = EL_n(R)$, that is, the subgroup of $GL_n(R)$ generated by elementary matrices. Then G has property (T).

イロン イヨン イヨン イヨン

Theorem (2010, Ershov, Jaikin, Kassabov)

Let Φ be a *regular* (for example, classical) root system of rank at least two. Let G be a finitely generated group and $\{X_{\alpha}\}_{\alpha\in\Phi}$ its Φ -grading. Assume that

- the grading $\{X_{\alpha}\}$ is *strong* and
- **2** the pair $(G, \bigcup_{\alpha \in \Phi} X_{\alpha})$ has relative Kazhdan property,

then G has property (T).

2008 Ershov, Jaikin: the case of groups with A_2 -grading

Theorem(2008, Ershov, Jaikin)

Let R be a finitely generated ring and $n \ge 3$. Let $G = EL_n(R)$, that is, the subgroup of $GL_n(R)$ generated by elementary matrices. Then G has property (T).

Theorem (2010, Ershov, Jaikin, Kassabov)

Let Φ be a *regular* (for example, classical) root system of rank at least two. Let G be a finitely generated group and $\{X_{\alpha}\}_{\alpha\in\Phi}$ its Φ -grading. Assume that

- the grading $\{X_{\alpha}\}$ is *strong* and
- **2** the pair $(G, \cup_{\alpha \in \Phi} X_{\alpha})$ has relative Kazhdan property,

then G has property (T).

2008 Ershov, Jaikin: the case of groups with A_2 -grading

Theorem(2008, Ershov, Jaikin)

Let R be a finitely generated ring and $n \ge 3$. Let $G = EL_n(R)$, that is, the subgroup of $GL_n(R)$ generated by elementary matrices. Then G has property (T).

・ロン ・回と ・ヨン ・ヨン

э

Groups graded by root systems

The simple groups of Lie type have natural gradings

Type of simple group	Classical group	Graded cover
$A_n(q)$	$PSL_{n+1}(\mathbb{F}_q)$	$St_{A_n}(\mathbb{F}_q)$
$B_n(q)$ (q is odd)	$\Omega_{2n+1}(\mathbb{F}_q)$	$St_{B_n}(\mathbb{F}_q)$
$C_n(q) \ (q \neq 2 \text{ if } n = 2)$	$PSp_{2n}(\mathbb{F}_q)$	$St_{C_n}(\mathbb{F}_q)$
$D_n(q)$	$P\Omega^+_{2n}(\mathbb{F}_q)$	$St_{D_n}(\mathbb{F}_q)$
$\Phi(q) \ (\Phi = G_2, E_n$ or F_4 and $q \neq 2$ if $\Phi = G_2$)	4 🗆	$St_{\Phi}(\mathbb{F}_q)$

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

Groups graded by root systems

The simple groups of Lie type have natural gradings

Type of simple group	Classical group	Graded cover
$A_n(q)$	$PSL_{n+1}(\mathbb{F}_q)$	$St_{A_n}(\mathbb{F}_q)$
$B_n(q)$ (q is odd)	$\Omega_{2n+1}(\mathbb{F}_q)$	$St_{B_n}(\mathbb{F}_q)$
$C_n(q) \ (q \neq 2 \text{ if } n = 2)$	$PSp_{2n}(\mathbb{F}_q)$	$St_{C_n}(\mathbb{F}_q)$
$D_n(q)$	$P\Omega^+_{2n}(\mathbb{F}_q)$	$St_{D_n}(\mathbb{F}_q)$
$\Phi(q) \ (\Phi = G_2, E_n$ or F_4 and $q \neq 2$ if $\Phi = G_2$)	<	$St_{\Phi}(\mathbb{F}_q)$

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

Type of simple group	Classical group	Graded cover
$^{2}A_{2m-1}(q)$	$PSU_{2m}(\mathbb{F}_q)$	$St^1_{C_m}(\mathbb{F}_{q^2},*),$
$^{2}A_{2m}(q)$	$PSU_{2m+1}(\mathbb{F}_q)$	$St_{BC_m}(\mathbb{F}_{q^2},*),$
$^{2}D_{m}(q)$	$P\Omega^{-}_{2m}(\mathbb{F}_q)$	$St^1_{B_{m-1}}(\mathbb{F}_{q^2}, \mathcal{Id}, \sigma)$
${}^{3}D_{4}(q)$		$St_{G_2}(\mathbb{F}_{q^3},\sigma),$
${}^{2}E_{6}(q)$		$St_{F_4}(\mathbb{F}_{q^2},\sigma),$

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

回 と く ヨ と く ヨ と

Groups graded by root systems

 $^{2}F_{4}(2^{k})(k\geq1)$ is graded and its graded cover is $St_{^{2}F_{4}}(\mathbb{F}_{2^{2k+1}})$

Groups graded by root systems

 ${}^{2}F_{4}(2^{k})(k \geq 1)$ is graded and its graded cover is $St_{{}^{2}F_{4}}(\mathbb{F}_{2^{2k+1}})$

Theorem

There exists a group Γ satisfying property (T) such that every finite simple group of Lie type of rank at least 2 is a quotient of Γ .

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

伺 ト イヨト イヨ

For each r, there exists a group Γ_r satisfying property (T) such that every finite simple group of Lie type of rank at least 2 and at most r is a quotient of Γ_r .

Proof in the non-twisted case:

We fix a root system Φ .

 $St_{\Phi}(\mathbb{F}_q)$ is the graded cover of the simple group $\Phi(q)$ (with a finite number of exceptions).

 $St_{\Phi}(\mathbb{Z}[t])$ maps onto $St_{\Phi}(\mathbb{F}_q)$.

 $St_{\Phi}(\mathbb{Z}[t])$ has property (T).

(本間) (本語) (本語)

For each r, there exists a group Γ_r satisfying property (T) such that every finite simple group of Lie type of rank at least 2 and at most r is a quotient of Γ_r .

Proof in the non-twisted case:

We fix a root system Φ .

 $St_{\Phi}(\mathbb{F}_q)$ is the graded cover of the simple group $\Phi(q)$ (with a finite number of exceptions).

 $St_{\Phi}(\mathbb{Z}[t])$ maps onto $St_{\Phi}(\mathbb{F}_q)$.

 $St_{\Phi}(\mathbb{Z}[t])$ has property (\mathcal{T}) .

- 4 同 6 4 日 6 4 日 6

For each r, there exists a group Γ_r satisfying property (T) such that every finite simple group of Lie type of rank at least 2 and at most r is a quotient of Γ_r .

Proof in the non-twisted case:

We fix a root system Φ .

 $St_{\Phi}(\mathbb{F}_q)$ is the graded cover of the simple group $\Phi(q)$ (with a finite number of exceptions).

 $St_{\Phi}(\mathbb{Z}[t])$ maps onto $St_{\Phi}(\mathbb{F}_q)$.

 $St_{\Phi}(\mathbb{Z}[t])$ has property (*T*).

(1) マン・ション・

For each r, there exists a group Γ_r satisfying property (T) such that every finite simple group of Lie type of rank at least 2 and at most r is a quotient of Γ_r .

Proof in the non-twisted case:

We fix a root system Φ .

 $St_{\Phi}(\mathbb{F}_q)$ is the graded cover of the simple group $\Phi(q)$ (with a finite number of exceptions).

 $St_{\Phi}(\mathbb{Z}[t])$ maps onto $St_{\Phi}(\mathbb{F}_q)$.

 $St_{\Phi}(\mathbb{Z}[t])$ has property (*T*).

(日本) (日本) (日本)

For each r, there exists a group Γ_r satisfying property (T) such that every finite simple group of Lie type of rank at least 2 and at most r is a quotient of Γ_r .

Proof in the non-twisted case:

We fix a root system Φ .

 $St_{\Phi}(\mathbb{F}_q)$ is the graded cover of the simple group $\Phi(q)$ (with a finite number of exceptions).

 $St_{\Phi}(\mathbb{Z}[t])$ maps onto $St_{\Phi}(\mathbb{F}_q)$.

 $St_{\Phi}(\mathbb{Z}[t])$ has property (*T*).

$$A_2 = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$$

 A_2 -grading of $SL_n(\mathbb{F}_q)$, with n = k + l + m:

$$X_{\alpha} = \begin{pmatrix} 1 & \operatorname{Mat}_{k \times I}(\mathbb{F}_{q}) & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{\beta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \operatorname{Mat}_{I \times m}(\mathbb{F}_{q})\\ 0 & 0 & 1 \end{pmatrix}$$
$$X_{\alpha+\beta} = \begin{pmatrix} 1 & 0 & \operatorname{Mat}_{k \times m}(\mathbb{F}_{q})\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{-\gamma} = (X_{\gamma})^{transp}$$

 $L_{3}(\operatorname{Mat}_{k \times k}(\mathbb{F}_{q})) \cong SL_{3k}(\mathbb{F}_{q})$ Let $R = \mathbb{Z} \langle x, y \rangle$, then $EL_{3}(R)$ maps onto $EL_{3}(\operatorname{Mat}_{k \times k}(\mathbb{F}_{q}))$.

This proves that $\{PSL_{3k}(\mathbb{F}_q)\}$ has a mother group with property

(日) (四) (王) (王) (王)

 $A_2 = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$ A₂-grading of $SL_n(\mathbb{F}_q)$, with n = k + l + m:

$$\begin{aligned} X_{\alpha} &= \begin{pmatrix} 1 & \operatorname{Mat}_{k \times I}(\mathbb{F}_{q}) & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{\beta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \operatorname{Mat}_{I \times m}(\mathbb{F}_{q})\\ 0 & 0 & 1 \end{pmatrix} \\ X_{\alpha+\beta} &= \begin{pmatrix} 1 & 0 & \operatorname{Mat}_{k \times m}(\mathbb{F}_{q})\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{-\gamma} = (X_{\gamma})^{transp} \end{aligned}$$

 $EL_{3}(\operatorname{Mat}_{k \times k}(\mathbb{F}_{q})) \cong SL_{3k}(\mathbb{F}_{q})$ Let $R = \mathbb{Z} \langle x, y \rangle$, then $EL_{3}(R)$ maps onto $EL_{3}(\operatorname{Mat}_{k \times k}(\mathbb{F}_{q}))$.

This proves that $\{PSL_{3k}(\mathbb{F}_q)\}$ has a mother group with property (\mathcal{T}) .

 $A_2 = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$ A₂-grading of $SL_n(\mathbb{F}_q)$, with n = k + l + m:

$$\begin{aligned} X_{\alpha} &= \begin{pmatrix} 1 & \operatorname{Mat}_{k \times I}(\mathbb{F}_{q}) & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{\beta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \operatorname{Mat}_{I \times m}(\mathbb{F}_{q})\\ 0 & 0 & 1 \end{pmatrix} \\ X_{\alpha+\beta} &= \begin{pmatrix} 1 & 0 & \operatorname{Mat}_{k \times m}(\mathbb{F}_{q})\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{-\gamma} = (X_{\gamma})^{transp} \end{aligned}$$

$EL_3(\operatorname{Mat}_{k\times k}(\mathbb{F}_q))\cong SL_{3k}(\mathbb{F}_q)$

Let $R = \mathbb{Z} < x, y >$, then $EL_3(R)$ maps onto $EL_3(Mat_{k \times k}(\mathbb{F}_q))$.

This proves that $\{PSL_{3k}(\mathbb{F}_q)\}$ has a mother group with property (\mathcal{T}) .

 $A_2 = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$ A₂-grading of $SL_n(\mathbb{F}_q)$, with n = k + l + m:

$$\begin{aligned} X_{\alpha} &= \begin{pmatrix} 1 & \operatorname{Mat}_{k \times I}(\mathbb{F}_{q}) & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{\beta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \operatorname{Mat}_{I \times m}(\mathbb{F}_{q})\\ 0 & 0 & 1 \end{pmatrix} \\ X_{\alpha+\beta} &= \begin{pmatrix} 1 & 0 & \operatorname{Mat}_{k \times m}(\mathbb{F}_{q})\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{-\gamma} = (X_{\gamma})^{transp} \end{aligned}$$

 $EL_3(\operatorname{Mat}_{k \times k}(\mathbb{F}_q)) \cong SL_{3k}(\mathbb{F}_q)$ Let $R = \mathbb{Z} < x, y >$, then $EL_3(R)$ maps onto $EL_3(\operatorname{Mat}_{k \times k}(\mathbb{F}_q))$.

This proves that $\{PSL_{3k}(\mathbb{F}_q)\}$ has a mother group with property (\mathcal{T}) .

$$\begin{array}{l} \mathcal{A}_2 = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\} \\ \mathcal{A}_2\text{-grading of } \mathcal{SL}_n(\mathbb{F}_q), \text{ with } n = k + l + m: \end{array}$$

$$\begin{aligned} X_{\alpha} &= \begin{pmatrix} 1 & \operatorname{Mat}_{k \times I}(\mathbb{F}_{q}) & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{\beta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \operatorname{Mat}_{I \times m}(\mathbb{F}_{q})\\ 0 & 0 & 1 \end{pmatrix} \\ X_{\alpha+\beta} &= \begin{pmatrix} 1 & 0 & \operatorname{Mat}_{k \times m}(\mathbb{F}_{q})\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, X_{-\gamma} = (X_{\gamma})^{transp} \end{aligned}$$

 $EL_3(\operatorname{Mat}_{k \times k}(\mathbb{F}_q)) \cong SL_{3k}(\mathbb{F}_q)$ Let $R = \mathbb{Z} < x, y >$, then $EL_3(R)$ maps onto $EL_3(\operatorname{Mat}_{k \times k}(\mathbb{F}_q))$.

This proves that $\{PSL_{3k}(\mathbb{F}_q)\}$ has a mother group with property (\mathcal{T}) .

Let
$$J = \begin{pmatrix} 0 & 0 & 0 & l_k \\ 0 & 0 & l_k & 0 \\ 0 & -l_k & 0 & 0 \\ -l_k & 0 & 0 & 0 \end{pmatrix} \in \operatorname{Mat}_{4k}(\mathbb{F}_q)$$

$$Sp_{4k}(\mathbb{F}_q) = \{A \in GL_{4k}(\mathbb{F}_q): A^{transp}JA = J\}$$

There is no a symplectic group over non-commutative ring.

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (T).

個 と く ヨ と く ヨ と …

Let
$$J = \begin{pmatrix} 0 & 0 & 0 & l_k \\ 0 & 0 & l_k & 0 \\ 0 & -l_k & 0 & 0 \\ -l_k & 0 & 0 & 0 \end{pmatrix} \in \operatorname{Mat}_{4k}(\mathbb{F}_q)$$

$$Sp_{4k}(\mathbb{F}_q) = \{A \in GL_{4k}(\mathbb{F}_q) : A^{transp}JA = J\}$$

There is no a symplectic group over non-commutative ring.

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (T).

個 と く ヨ と く ヨ と …

Let
$$J = \begin{pmatrix} 0 & 0 & 0 & l_k \\ 0 & 0 & l_k & 0 \\ 0 & -l_k & 0 & 0 \\ -l_k & 0 & 0 & 0 \end{pmatrix} \in \operatorname{Mat}_{4k}(\mathbb{F}_q)$$

$$Sp_{4k}(\mathbb{F}_q) = \{A \in GL_{4k}(\mathbb{F}_q) : A^{transp}JA = J\}$$

There is no a symplectic group over non-commutative ring.

ヨット イヨット イヨッ

$$C_2$$
-grading of $Sp_{4k}(\mathbb{F}_q)$ $(A, B = B^{transp} \in Mat_k(\mathbb{F}_q)\})$

$$\begin{split} X_{e_1-e_2} &= \{ \left(\begin{array}{cccc} 1 & A & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -{}^t A \\ 0 & 0 & 0 & 1 \end{array} \right) \}, \ X_{e_1+e_2} = \{ \left(\begin{array}{cccc} 1 & 0 & A & 0 \\ 0 & 1 & 0 & {}^t A \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \}, \\ X_{2e_1} &= \{ \left(\begin{array}{cccc} 1 & 0 & 0 & B \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \}, \ X_{2e_2} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & B & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \} \\ X_{-\gamma} &= (X_{\gamma})^{transp} \end{split}$$

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (T).

個 と く ヨ と く ヨ と

Let $R = \mathbb{Z} < x, y > be$ a free ring and * the involution of R such that $x = x^*$ and $y = y^*$. Let G be a subgroup of $EL_4(R)$ generated by the following root subgroups $(a, b = b^* \in R)$

$$X_{e_1-e_2} = \left\{ \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -a^* \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \ X_{e_1+e_2} = \left\{ \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & a^* \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \ X_{2e_1} = \left\{ \begin{pmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \ X_{2e_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \ X_{-\gamma} = (X_{\gamma})^{transp}$$

Then G has property (T) (we prove it using our method) and G maps onto $Sp_{4k}(\mathbb{F}_q)$ (Mat_k(\mathbb{F}_q) can be generated as a ring b

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (T).

Let $R = \mathbb{Z} < x, y > be$ a free ring and * the involution of R such that $x = x^*$ and $y = y^*$. Let G be a subgroup of $EL_4(R)$ generated by the following root subgroups $(a, b = b^* \in R)$

$$\begin{aligned} X_{e_1-e_2} &= \left\{ \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -a^* \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \ X_{e_1+e_2} &= \left\{ \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & a^* \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \\ X_{2e_1} &= \left\{ \begin{pmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \ X_{2e_2} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}, \\ X_{-\gamma} &= (X_{\gamma})^{transp} \end{aligned}$$

Then G has property (T) (we prove it using our method) and G maps onto $Sp_{4k}(\mathbb{F}_q)$ (Mat_k(\mathbb{F}_q) can be generated as a ring by two symmetric matrices)

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

Let $R = \mathbb{Z} < x, y > be$ a free ring and * the involution of R such that $x = x^*$ and $y = y^*$. Let G be a subgroup of $EL_4(R)$ generated by the following root subgroups $(a, b = b^* \in R)$

$$\begin{split} X_{e_1-e_2} = \{ \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -a^* \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \ X_{e_1+e_2} = \{ \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & a^* \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \\ X_{2e_1} = \{ \begin{pmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \ X_{2e_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \\ X_{-\gamma} = (X_{\gamma})^{transp} \end{split}$$

Then G has property (T) (we prove it using our method) and G maps onto $Sp_{4k}(\mathbb{F}_q)$ (Mat_k(\mathbb{F}_q) can be generated as a ring by two symmetric matrices)

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

Let $R = \mathbb{Z} < x, y > be$ a free ring and * the involution of R such that $x = x^*$ and $y = y^*$. Let G be a subgroup of $EL_4(R)$ generated by the following root subgroups $(a, b = b^* \in R)$

$$\begin{split} X_{e_1-e_2} = \{ \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -a^* \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \ X_{e_1+e_2} = \{ \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & a^* \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \\ X_{2e_1} = \{ \begin{pmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \ X_{2e_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \\ X_{-\gamma} = (X_{\gamma})^{transp} \end{split}$$

Then G has property (T) (we prove it using our method) and G maps onto $Sp_{4k}(\mathbb{F}_q)$ (Mat_k(\mathbb{F}_q) can be generated as a ring by two symmetric matrices)

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

Let $R = \mathbb{Z} < x, y > be$ a free ring and * the involution of R such that $x = x^*$ and $y = y^*$. Let G be a subgroup of $EL_4(R)$ generated by the following root subgroups $(a, b = b^* \in R)$

$$\begin{split} X_{e_1-e_2} &= \{ \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -a^* \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \ X_{e_1+e_2} = \{ \begin{pmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & a^* \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \\ X_{2e_1} &= \{ \begin{pmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \ X_{2e_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \}, \\ X_{-\gamma} &= (X_{\gamma})^{transp} \end{split}$$

Then G has property (T) (we prove it using our method) and G maps onto $Sp_{4k}(\mathbb{F}_q)$ (Mat_k(\mathbb{F}_q) can be generated as a ring by two symmetric matrices)

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov

Open questions

Question 1

Assume that G maps on infinitely many twisted Lie groups of rank 1:

$${}^{2}A_{2}(q) = PSU_{3}(\mathbb{F}_{q}), \text{ Suzuki groups } {}^{2}B_{2}(2^{2n+1})$$

or Ree groups ${}^{2}G_{2}(3^{2n+1}).$

Is it true that G can not have property (T)?

Question 2

Is there a finitely generated group with property tau that maps on all $PSL_2(\mathbb{F}_q)$?

Question 3

Is there a finitely generated group with property (T) or tau that maps on infinitely many (all) Alt_n ?

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

イロン イロン イヨン イヨン

Open questions

Question 1

Assume that G maps on infinitely many twisted Lie groups of rank 1:

$${}^{2}A_{2}(q) = PSU_{3}(\mathbb{F}_{q}), \text{ Suzuki groups } {}^{2}B_{2}(2^{2n+1})$$

or Ree groups ${}^{2}G_{2}(3^{2n+1}).$

Is it true that G can not have property (T)?

Question 2

Is there a finitely generated group with property tau that maps on all $PSL_2(\mathbb{F}_q)$?

Question 3

Is there a finitely generated group with property (T) or tau that maps on infinitely many (all) Alt_n ?

イロン イロン イヨン

Open questions

Question 1

Assume that G maps on infinitely many twisted Lie groups of rank 1:

$$^{2}A_{2}(q) = PSU_{3}(\mathbb{F}_{q}), \text{ Suzuki groups } ^{2}B_{2}(2^{2n+1})$$

or Ree groups $^{2}G_{2}(3^{2n+1}).$

Is it true that G can not have property (T)?

Question 2

Is there a finitely generated group with property tau that maps on all $PSL_2(\mathbb{F}_q)$?

Question 3

Is there a finitely generated group with property (T) or tau that maps on infinitely many (all) A/t_n ?

THANK YOU FOR YOUR ATTENTION

Mikhail Ershov, Andrei Jaikin-Zapirain and Martin Kassabov Finite simple quotients of groups satisfying property (*T*).

イロン イヨン イヨン イヨン

æ