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Expanders

Definition: ε-Expander

For 0 < ε ∈ R a graph

X = ( V , E )
↑ ↑

vertices edges

is ε-expander if ∀A ⊂ V , with |A| ≤ |V |2 , |∂A| ≥ ε|A|,
where ∂A = boundary of A = {v ∈ V : dist(v ,A) = 1}

Definition: Expander family

A family {Xi}i∈N of k-regular finite graphs is a family of expanders
if ∃ε > 0 such that ∀i Xi is an ε-expander and |Xi | → ∞.

Expanders are simultaneously sparse and highly connected.
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Expanders

Applications of expanders:
Network constructions
Error-correcting codes
Cryptography
Number Theory
...

Expander families exist:
1973: Pinsker: Using counting arguments

For applications one wants explicit constructions.

1973: Margulis: an explicit construction using property (T ) of
Kazhdan
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Property (T )

Definition: Property (T ) (1967, Kazhdan)

Let Γ = 〈S〉 with S finite. Then Γ has property (T ) if ∃ε > 0 such
that

∀ρ : Γ→ U(H) (where H is a Hilbert space) and ∀v ∈ H⊥0 (where
H0 is the space of Γ-invariant vectors of H)

‖ρ(s)v − v‖ ≥ ε‖v‖,∀s ∈ S .

There are not almost Γ-invariant vectors in H⊥0 .
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Construction of expanders using property (T )

Let Γ = 〈S〉 (with S = S−1 finite) is infinite and residually finite
and satisfies property (T )

Let {Γi}i∈N a family of normal subgroups of Γ of finite index such
that |Γ/Γi | tends to infinity.

Then the Cayley graphs Xi = Cay(Γ/Γi ;S) form a family of
expanders.

Definition: Property tau (1989 Lubotzky, Zimmer)

Γ has property tau if ∃ε > 0 such that

∀ρ : Γ→ U(H) s.t. ρ(Γ) is finite and ∀v ∈ H⊥0

‖ρ(s)v − v‖ ≥ ε‖v‖, ∀s ∈ S .
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Family of group expanders

Definition: family of group expanders

A family {Gi} of finite groups is a family of expanders if ∃k ∈ N
and ε > 0 such that every group Gi has a symmetric subset Si of k
generators for which Cay(Gi ; Si ) is an ε-expander.

Example: If Γ is a finitely generated group satisfying property (T )
or tau, then

{finite quotients of Γ}

is a family of expanders.

Conjecture (1989 Babai, Kantor and Lubotzky)

The family of all the finite (nonabelian) simple groups is a family
of group expanders.
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Family of group expanders

Theorem (Kassabov, Nikolov, Lubotzky, Breulliard, Green, Tao)

There exists k ∈ N and ε > 0 such that every every non-abelian
finite simple group G has a set S of k generators for which
Cay(G ; S) is an ε-expander.

2005 M. Kassabov: PSLn(Fq)(n ≥ 3) and Altn
2005 N. Nikolov: classical groups of large rank
2005 A. Lubotzky: PSL2(Fq) and simple groups of Lie type of
bounded rank with the exception of the Suzuki groups
2010 E. Breulliard, B. Green and T. Tao: Suzuki groups.
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Mother group

Definition: mother group

Let F be a family of groups. We say that a group Γ is a mother
group for F if Γ maps onto every group from F .

Question.

Let F be a family of finite simple groups. Does F have a finitely
generated mother group satisfying Kazhdan’s property (T ) or
property tau?

Example: SL3(Z) is a mother group of {PSL3(Fp)}.
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Mother group

Conjecture

1 The family of all the non-abelian finite simple groups has a
finitely generated mother group having property tau.

2 A family F of non-abelian finite simple groups has a mother
group having property (T ) if and only if only finitely many
finite simple groups of Lie type of rank 1 belongs to F .

Why do we exclude the groups of Lie type of rank 1 in (2)?

Theorem (folklore)

Let Γ maps on infinitely many PSL2(Fq). Then Γ does not have
property (T ).

SL2(Z[1/2]) has property tau and maps onto {PSL2(Fp)}
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Main result

Theorem

There exists a group Γ satisfying property (T ) such that every
finite simple group of Lie type of rank at least 2 is a quotient of Γ.

Main tool:
A method that allows to prove that some groups graded by root
systems have property (T ).
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Root systems

Definition

Let E be real vector space. A finite non-empty subset Φ of E is
called a root system in E if

(a) Φ spans E ;

(b) Φ does not contain 0;

(c) Φ is closed under inversion, that is, if α ∈ Φ then −α ∈ Φ.

The dimension of E is called the rank of Φ.

Definition

A root system Φ in a space E will be called classical if E can be
given the structure of a Euclidean space such that

(a) For any α, β ∈ Φ we have 2(α,β)
(β,β) ∈ Z;

(b) If α, β ∈ Φ, then α− 2(α,β)
(β,β) β ∈ Φ
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Root systems

Remark: Every irreducible classical root system is isomorphic
to one of the following: An,Bn(n ≥ 2),Cn(n ≥ 3),BCn(n ≥
1),Dn(n ≥ 4),E6,E7,E8,F4,G2.

α

J • I

IJ

β

J

I
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α
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N

I

II

JJ
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J J

I I
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I

IJ
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J H
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IJ

β I
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Figure: Classical irreducible root systems of rank 2.
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Groups graded by root systems

Definition: Φ-grading

Φ a root system, G a group. A Φ-grading of G is a collection of
subgroups {Xα}α∈Φ of G , called root subgroups such that

(i) {Xα}α∈Φ generate G

(ii) For any α, β ∈ Φ, with α 6∈ R<0β, we have

[Xα,Xβ] ⊆ 〈Xγ | γ = aα + bβ ∈ Φ, a, b ≥ 1〉

Informal definition: graded cover

A graded cover of a grading {Xα}α∈Φ is the quotient of the free
product of {Xα}α∈Φ by the normal subgroup generated by
relations that appear in (ii) of the previous definition
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Groups graded by root systems

Theorem (2010, Ershov, Jaikin, Kassabov)

Let Φ be a regular (for example, classical) root system of rank at
least two. Let G be a finitely generated group and {Xα}α∈Φ its
Φ-grading. Assume that

1 the grading {Xα} is strong and

2 the pair (G ,∪α∈ΦXα) has relative Kazhdan property,

then G has property (T ).

2008 Ershov, Jaikin: the case of groups with A2-grading

Theorem(2008, Ershov, Jaikin)

Let R be a finitely generated ring and n ≥ 3. Let G = ELn(R),
that is, the subgroup of GLn(R) generated by elementary matrices.
Then G has property (T ).
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Groups graded by root systems

The simple groups of Lie type have natural gradings
Type of simple group Classical group Graded cover

An(q) PSLn+1(Fq) StAn(Fq)

Bn(q) (q is odd) Ω2n+1(Fq) StBn(Fq)

Cn(q) (q 6= 2 if n = 2) PSp2n(Fq) StCn(Fq)

Dn(q) PΩ+
2n(Fq) StDn(Fq)

Φ(q) (Φ = G2,En StΦ(Fq)
or F4 and q 6= 2 if Φ = G2)
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Groups graded by root systems

Type of simple group Classical group Graded cover

2A2m−1(q) PSU2m(Fq) St1
Cm

(Fq2 , ∗),

2A2m(q) PSU2m+1(Fq) StBCm(Fq2 , ∗),

2Dm(q) PΩ−2m(Fq) St1
Bm−1

(Fq2 , Id , σ)

3D4(q) StG2(Fq3 , σ),

2E6(q) StF4(Fq2 , σ),
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Groups graded by root systems

2F4(2k)(k ≥ 1) is graded and its graded cover is St2F4
(F22k+1)

◦

◦ ◦ ◦ ◦

◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦

◦ ◦ ◦ ◦

◦
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Main result

Theorem

There exists a group Γ satisfying property (T ) such that every
finite simple group of Lie type of rank at least 2 is a quotient of Γ.
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Bounded rank case

Bounded rank case

For each r , there exists a group Γr satisfying property (T ) such
that every finite simple group of Lie type of rank at least 2 and at
most r is a quotient of Γr .

Proof in the non-twisted case:

We fix a root system Φ.

StΦ(Fq) is the graded cover of the simple group Φ(q) (with a finite
number of exceptions).

StΦ(Z[t]) maps onto StΦ(Fq).

StΦ(Z[t]) has property (T ).
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Mother group with property (T) for {PSLn(Fq)}
A2 = {±α,±β,±(α + β)}
A2-grading of SLn(Fq), with n = k + l + m:

Xα =

 1 Matk×l(Fq) 0
0 1 0
0 0 1

 ,Xβ =

 1 0 0
0 1 Matl×m(Fq)
0 0 1



Xα+β =

 1 0 Matk×m(Fq)
0 1 0
0 0 1

 ,X−γ = (Xγ)transp

EL3(Matk×k(Fq)) ∼= SL3k(Fq)

Let R = Z < x , y >, then EL3(R) maps onto EL3(Matk×k(Fq).

This proves that {PSL3k(Fq)} has a mother group with property
(T ).
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Mother group with property (T) for symplectic groups

Let J =


0 0 0 Ik
0 0 Ik 0
0 −Ik 0 0
−Ik 0 0 0

 ∈ Mat4k(Fq)

Sp4k(Fq) = {A ∈ GL4k(Fq) : AtranspJA = J}

There is no a symplectic group over non-commutative ring.
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Mother group with property (T) for symplectic groups

C2-grading of Sp4k(Fq) (A,B = Btransp ∈ Matk(Fq)})

Xe1−e2 = {


1 A 0 0
0 1 0 0
0 0 1 −tA
0 0 0 1

}, Xe1+e2 = {


1 0 A 0
0 1 0 tA
0 0 1 0
0 0 0 1

},

X2e1 = {


1 0 0 B
0 1 0 0
0 0 1 0
0 0 0 1

}, X2e2 =


1 0 0 0
0 1 B 0
0 0 1 0
0 0 0 1

}
X−γ = (Xγ)transp
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Mother group with property (T) for symplectic groups

Let R = Z < x , y > be a free ring and ∗ the involution of R such
that x = x∗ and y = y∗. Let G be a subgroup of EL4(R)
generated by the following root subgroups (a, b = b∗ ∈ R)

Xe1−e2 = {


1 a 0 0
0 1 0 0
0 0 1 −a∗
0 0 0 1

}, Xe1+e2 = {


1 0 a 0
0 1 0 a∗

0 0 1 0
0 0 0 1

},

X2e1 = {


1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1

}, X2e2 =


1 0 0 0
0 1 b 0
0 0 1 0
0 0 0 1

},
X−γ = (Xγ)transp

Then G has property (T) (we prove it using our method) and
G maps onto Sp4k(Fq) (Matk(Fq) can be generated as a ring by
two symmetric matrices)
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Open questions

Question 1

Assume that G maps on infinitely many twisted Lie groups of rank
1:

2A2(q) = PSU3(Fq), Suzuki groups 2B2(22n+1)

or Ree groups 2G2(32n+1).

Is it true that G can not have property (T )?

Question 2

Is there a finitely generated group with property tau that maps on
all PSL2(Fq)?

Question 3

Is there a finitely generated group with property (T ) or tau that
maps on infinitely many (all) Altn?
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