SOME QUESTIONS ARISING FROM THE STUDY OF THE GENERATING GRAPH

Andrea Lucchini

Università di Padova, Italy

ISCHIA GROUP THEORY 2012
March, 26th - 29th
The generating graph $\Gamma(G)$ of a group G is the graph defined on the non-identity elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G.
The generating graph $\Gamma(G)$ of a group G is the graph defined on the non-identity elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G.

The graph $\Gamma(G)$ has “many” edges when G is a finite non abelian simple group: a finite non abelian simple group G can be generated by 2 elements and the probability that a random pair of vertices of $\Gamma(G)$ is connected by an edge tends to 1 as $|G|$ tends to infinity.
The generating graph $\Gamma(G)$ of a group G is the graph defined on the non-identity elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G.

The graph $\Gamma(G)$ has “many” edges when G is a finite non abelian simple group: a finite non abelian simple group G can be generated by 2 elements and the probability that a random pair of vertices of $\Gamma(G)$ is connected by an edge tends to 1 as $|G|$ tends to infinity.

Many deep results about finite simple groups G can equivalently be stated as theorems about $\Gamma(G)$.

- (Guralnick and Kantor, 2000) There is no isolated vertex in $\Gamma(G)$.
- (Breuer, Guralnick and Kantor, 2008) The diameter of $\Gamma(G)$ is at most 2.
A Hamiltonian cycle is a cycle in an undirected simple graph which visits each vertex exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.
A Hamiltonian cycle is a cycle in an undirected simple graph which visits each vertex exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

Theorem (Breuer, Guralnick, AL, Maróti, Nagy (2010))

For every sufficiently large finite simple group G, the graph $\Gamma(G)$ contains a Hamiltonian cycle.
A Hamiltonian cycle is a cycle in an undirected simple graph which visits each vertex exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

Theorem (Breuer, Guralnick, Al, Maróti, Nagy (2010))

For every sufficiently large finite simple group G, the graph $\Gamma(G)$ contains a Hamiltonian cycle.

Conjecture

Let G be a finite group with at least 4 elements. Then $\Gamma(G)$ contains a Hamiltonian cycle if and only if G/N is cyclic for all non-trivial normal subgroups N of G.
The conjecture is true for finite soluble groups.

For every sufficiently large symmetric group $\text{Sym}(n)$, the graph $\Gamma(\text{Sym}(n))$ contains a Hamiltonian cycle.

For every sufficiently large non-abelian finite simple group S, the graph $\Gamma(S \wr C_m)$ contains a Hamiltonian cycle, where m denotes a prime power.
The conjecture is true for finite soluble groups.

For every sufficiently large symmetric group $\text{Sym}(n)$, the graph $\Gamma(\text{Sym}(n))$ contains a Hamiltonian cycle.

For every sufficiently large non-abelian finite simple group S, the graph $\Gamma(S \wr C_m)$ contains a Hamiltonian cycle, where m denotes a prime power.

Moreover computer calculations show that the following groups contain Hamiltonian cycles.

- Non-abelian simple groups of orders at most 10^7,
- groups G containing a unique minimal normal subgroup N such that N has order at most 10^6, N is nonsolvable, and G/N is cyclic,
- alternating and symmetric groups on n points, with $5 \leq n \leq 13$,
- sporadic simple groups and automorphism groups of sporadic simple groups.
The proofs rely on classical results in graph theory that ensure that a graph Γ contains a Hamiltonian cycle provided that “many vertices of Γ have large degree”.
The proofs rely on classical results in graph theory that ensure that a graph Γ contains a Hamiltonian cycle provided that “many vertices of Γ have large degree”.

Pósa’s criterion

A graph with m vertices and list of vertex degrees $d_1 \leq \ldots \leq d_m$ contains a Hamiltonian cycle if $d_k \geq k + 1$ for all $k < m/2$.
The proofs rely on classical results in graph theory that ensure that a graph \(\Gamma \) contains a Hamiltonian cycle provided that “many vertices of \(\Gamma \) have large degree”.

Pósa’s criterion

A graph with \(m \) vertices and list of vertex degrees \(d_1 \leq \ldots \leq d_m \) contains a Hamiltonian cycle if \(d_k \geq k + 1 \) for all \(k < m/2 \).

The \(n \)-closure of a graph \(\Gamma \) is the graph obtained from \(\Gamma \) by recursively joining pairs of nonadjacent vertices whose degree sum is at least \(n \) until no such pair remains.

Bondy, Chvátal

A graph with \(m \) vertices is Hamiltonian if and only if its \(m \)-closure is Hamiltonian.
Let $m \in \mathbb{N}$ and let S be a nonabelian simple group and consider the wreath product $G = S \wr C_m$. Is the generating graph of G Hamiltonian?
Let $m \in \mathbb{N}$ and let S be a nonabelian simple group and consider the wreath product $G = S \wr C_m$. Is the generating graph of G Hamiltonian?

- Let $\pi : G = S \wr C_m \to C_m$ the projection to the top group C_m.
- If $\pi(g_1)$ and $\pi(g_2)$ generate C_m, then g_1 and g_2 are connected in $\Gamma(G)$ with high probability.
- $\deg(g, \Gamma(G)) \sim \deg(\pi(g), \Gamma(C_m))|S|^m$ if S is large.
Let $m \in \mathbb{N}$ and let S be a nonabelian simple group and consider the wreath product $G = S \wr C_m$. Is the generating graph of G Hamiltonian?

Let $\pi : G = S \wr C_m \to C_m$ the projection to the top group C_m.

If $\pi(g_1)$ and $\pi(g_2)$ generate C_m, then g_1 and g_2 are connected in $\Gamma(G)$ with high probability.

$\deg(g, \Gamma(G)) \sim \deg(\pi(g), \Gamma(C_m))|S|^m$ if S is large.

The conditions in Posa’s criterion and in the Bondy-Chvátal Theorem are satisfied by $\Gamma(G)$ provided that the graph $\Gamma(C_m)$ satisfies similar conditions.
Definition

\[\Lambda_m := \text{the } (m + 1)-\text{closure of the generating graph } \Gamma(C_m). \]

We say that \(m \) is **Hamiltonian** if every \(1 \neq x \in C_m \) generating a subgroup of \(C_m \) of odd index is connected in \(\Lambda_m \) to any other vertex.
Definition

\[\Lambda_m := \text{the} (m + 1)-\text{closure of the generating graph} \Gamma(C_m). \]

We say that \(m \) is **Hamiltonian** if every \(1 \neq x \in C_m \) generating a subgroup of \(C_m \) of odd index is connected in \(\Lambda_m \) to any other vertex.

Theorem (E. Crestani and AL (2011))

Assume that \(m \) is Hamiltonian. There exists a positive integer \(\tau \) such that if \(S \) is a nonabelian simple group with \(|S| \geq \tau \), then the graph \(\Gamma(S \wr C_m) \) contains a Hamiltonian cycle.
Definition

\[\Lambda_m := \text{the } (m + 1)-\text{closure of the generating graph } \Gamma(C_m). \]

We say that \(m \) is Hamiltonian if every \(1 \neq x \in C_m \) generating a subgroup of \(C_m \) of odd index is connected in \(\Lambda_m \) to any other vertex.

Theorem (E. Crestani and AL (2011))

Assume that \(m \) is Hamiltonian. There exists a positive integer \(\tau \) such that if \(S \) is a nonabelian simple group with \(|S| \geq \tau \), then the graph \(\Gamma(S \wr C_m) \) contains a Hamiltonian cycle.

Conjecture

Every positive integer is Hamiltonian.
Corollary

Let $m = \prod_{i=1}^{s} p_i^{\alpha_i}$, where $p_s < p_{s-1} < \cdots < p_1$ are distinct primes and $\alpha_i > 0$ for every $1 \leq i \leq s$. Assume that one of the following holds:

1. $s \leq 2$;
2. $\varphi(m)/m \geq (p_s - 1)/(2p_s - 1)$;
3. m is odd and $p_s \geq s + 1$;
4. m is even and $p_{s-1} \geq 2s - 1$.

There exists τ such that if $|S| \geq \tau$, then the graph $\Gamma(S \wr C_m)$ contains a Hamiltonian cycle.
S a finite non abelian simple group

\(\delta(S) := \) number of \((\text{Aut } S)\)-orbits on pairs of generators for \(S \)

\(S^n \) is still 2-generated if and only if \(n \leq \delta(S) \).
S a finite non abelian simple group

δ(S) := number of (Aut S)-orbits on pairs of generators for S

S^n is still 2-generated if and only if $n \leq \delta(S)$.

δ(S) increases with $|S|$ and the probability that a random pair of vertices of $\Gamma(S^{\delta(S)})$ is connected by an edge tends to 0 as $|S| \to \infty$.
• S a finite non abelian simple group
• $\delta(S) :=$ number of $(\text{Aut } S)$-orbits on pairs of generators for S

S^n is still 2-generated if and only if $n \leq \delta(S)$.

$\delta(S)$ increases with $|S|$ and the probability that a random pair of vertices of $\Gamma(S^{\delta(S)})$ is connected by an edge tends to 0 as $|S| \to \infty$.

Nevertheless, the abundance of edges in the graph $\Gamma(S)$ reflects on $\Gamma(S^{\delta(S)})$.
Let $n \leq \delta(S) = \delta$. If n is large, it is no more true that $\Gamma(S^n)$ has no isolated vertices. We will concentrate our attention on the subgraph $\Gamma_n(S)$ obtained from $\Gamma(S^n)$ by removing the isolated vertices.
Let $n \leq \delta(S) = \delta$. If n is large, it is no more true that $\Gamma(S^n)$ has no isolated vertices. We will concentrate our attention on the subgraph $\Gamma_n(S)$ obtained from $\Gamma(S^n)$ by removing the isolated vertices.

- $\{(a_1, b_1), \ldots, (a_\delta, b_\delta)\}$ a set of representatives for the $\text{Aut}(S)$-orbits on the ordered pairs of generators for S
- C_1, \ldots, C_u the $\text{Aut}(S)$-orbits on $S \setminus \{1\}$
- $\delta_r = |\{i \mid a_i \in C_r\}|$
Let \(n \leq \delta(S) = \delta \). If \(n \) is large, it is no more true that \(\Gamma(S^n) \) has no isolated vertices. We will concentrate our attention on the subgraph \(\Gamma_n(S) \) obtained from \(\Gamma(S^n) \) by removing the isolated vertices.

- \(\{(a_1, b_1), \ldots, (a_\delta, b_\delta)\} \) a set of representatives for the \(\text{Aut}(S) \)-orbits on the ordered pairs of generators for \(S \)
- \(C_1, \ldots, C_u \) the \(\text{Aut}(S) \)-orbits on \(S \setminus \{1\} \)
- \(\delta_r = |\{i \mid a_i \in C_r\}| \)

\[
S^n = \langle (x_1, \ldots, x_n), (y_1, \ldots, y_n) \rangle \quad \iff \\
(x_1, y_1), \ldots, (x_n, y_n) \text{ are not } \text{Aut}(S)\text{-conjugated generating pairs of } S
\]
Let $n \leq \delta(S) = \delta$. If n is large, it is no more true that $\Gamma(S^n)$ has no isolated vertices. We will concentrate our attention on the subgraph $\Gamma_n(S)$ obtained from $\Gamma(S^n)$ by removing the isolated vertices.

- $\{(a_1, b_1), \ldots, (a_\delta, b_\delta)\}$ a set of representatives for the $\text{Aut}(S)$-orbits on the ordered pairs of generators for S
- C_1, \ldots, C_u the $\text{Aut}(S)$-orbits on $S \setminus \{1\}$
- $\delta_r = |\{i \mid a_i \in C_r\}|$

$$S^n = \langle (x_1, \ldots, x_n), (y_1, \ldots, y_n) \rangle \iff (x_1, y_1), \ldots, (x_n, y_n) \text{ are not } \text{Aut}(S)\text{-conjugated generating pairs of } S$$

$x = (x_1, \ldots, x_n)$ is a nonisolated vertex of $\Gamma(S^n)$

$$\iff |\{i \mid x_i \in C_r\}| \leq \delta_r \text{ for } 1 \leq r \leq u.$$
The generating graph
Hamiltonian cycles
Direct power of simple groups
Soluble groups

$S = \text{Alt}(5), \quad \delta(S) = 19, \quad u = 3$

$(1, 2, 3, 4, 5) \in C_1 \Rightarrow \delta_1 = 10$
$(1, 2, 3) \in C_2 \Rightarrow \delta_2 = 6$
$(1, 2)(3, 4) \in C_3 \Rightarrow \delta_3 = 3$

$x = (x_1, \ldots, x_n)$
is a non-isolated vertex in $\Gamma(S^n)$
if and only if x has
at most 10 entries of order 5,
at most 6 entries of order 3,
at most 3 entries of order 2.
\begin{itemize}
 \item \(\text{Aut}(S^\delta) \cong \text{Aut}(S) \wr \text{Sym}(\delta) \leq \text{Aut}(\Gamma_{\delta}(S)). \)
 \item \(S^\delta = \langle x, y \rangle = \langle \bar{x}, \bar{y} \rangle \Rightarrow (\bar{x}, \bar{y}) = (x^\alpha, y^\alpha) \ \exists \alpha \in \text{Aut}(S^\delta).\)
\end{itemize}
\begin{itemize}
 \item $\text{Aut}(S^\delta) \cong \text{Aut}(S) \wr \text{Sym}(\delta) \leq \text{Aut}(\Gamma_{\delta}(S))$.
 \item $S^\delta = \langle x, y \rangle = \langle \bar{x}, \bar{y} \rangle \Rightarrow (\bar{x}, \bar{y}) = (x^\alpha, y^\alpha) \ \exists \alpha \in \text{Aut}(S^\delta)$.
\end{itemize}

\begin{itemize}
 \item $\Gamma_{\delta}(S)$ is vertex-transitive and edge-transitive.
 \item $\Gamma_{\delta}(S)$ has $\frac{|\text{Aut}(S)|^\delta \delta!}{2}$ edges and $\frac{|\text{Aut}(S)|^\delta \delta!}{\prod_{1 \leq i \leq u} \gamma_i^{\delta_i} \delta_i!}$ vertices, with $\gamma_i = |C_{\text{Aut}(S)}(x_i)|$ for $x_i \in C_i$.
\end{itemize}
Aut(S^\delta) \cong Aut(S) \wr Sym(\delta) \leq Aut(\Gamma^\delta(S)).

S^\delta = \langle x, y \rangle = \langle \bar{x}, \bar{y} \rangle \Rightarrow (\bar{x}, \bar{y}) = (x^\alpha, y^\alpha) \exists \alpha \in Aut(S^\delta).

\Gamma^\delta(S) \text{ is vertex-transitive and edge-transitive.}

\Gamma^\delta(S) \text{ has } \frac{|Aut(S)|^\delta \delta!}{2} \text{ edges and } \frac{|Aut(S)|^\delta \delta!}{\prod_{1 \leq i \leq u} \gamma_i^{\delta_i} \delta_i!} \text{ vertices, with }
\gamma_i = |C_{Aut(S)}(x_i)| \text{ for } x_i \in C_i.

For example, \Gamma_{19}(Alt(5)) \text{ is a graph with } 2^{45} \cdot 3^{14} \cdot 5^9 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \text{ vertices, whose degree is equal to } 2^{28} \cdot 3^{13} \cdot 5^{13} \cdot 7.
Theorem (E. Crestani and AL (2011))

If S is a non abelian simple group, then the graph $\Gamma_n(S)$ is connected for $n \leq \delta(S)$.
THEOREM (E. Crestani and AL (2011))

If S is a non abelian simple group, then the graph $\Gamma_n(S)$ is connected for $n \leq \delta(S)$.

THEOREM (E. Crestani and AL (2011))

Let S be a finite non abelian simple group and let $\delta = \delta(S)$.

1. If $n < \delta$, then the diameter of $\Gamma_n(S)$ is at most $2 + 4(n - 1)$.
2. The diameter of $\Gamma_\delta(S)$ is at most $4\delta + c$ for an absolute constant c.
3. The diameter of $\Gamma_\delta(S)$ is at most 4δ if $|S|$ is large enough.
Theorem (E. Crestani and AL (2011))

If S is a non abelian simple group, then the graph $\Gamma_n(S)$ is connected for $n \leq \delta(S)$.

Theorem (E. Crestani and AL (2011))

Let S be a finite non abelian simple group and let $\delta = \delta(S)$.

1. If $n < \delta$, then the diameter of $\Gamma_n(S)$ is at most $2 + 4(n - 1)$.
2. The diameter of $\Gamma_\delta(S)$ is at most $4\delta + c$ for an absolute constant c.
3. The diameter of $\Gamma_\delta(S)$ is at most 4δ if $|S|$ is large enough.

Theorem (E. Crestani and AL (2011))

Let $S = SL(2, 2^p)$ with p an odd prime. Then $\text{diam}(\Gamma_\delta(S)) \geq 2^{p-2} - 1$ if p is large enough.
For a given graph Γ, the clique number $\omega(\Gamma)$ of Γ is the size of a largest complete subgraph.
For a given graph Γ, the clique number $\omega(\Gamma)$ of Γ is the size of a largest complete subgraph.

If a graph has “many” edges, then by Turán’s Theorem, it should contain a “large” complete subgraph. Applying this result to $\Gamma(S)$ when S is a nonabelian simple group with large order, it follows:

Theorem (Liebeck and Shalev (1995))

There exists a positive constant c_1 such that $c_1 \cdot m(S) \leq \omega(\Gamma(S))$ for any finite simple group S where $m(S)$ denotes the minimal index of a proper subgroup in S.
For a given graph Γ, the clique number $\omega(\Gamma)$ of Γ is the size of a largest complete subgraph.

If a graph has “many” edges, then by Turán’s Theorem, it should contain a “large” complete subgraph. Applying this result to $\Gamma(S)$ when S is a nonabelian simple group with large order, it follows:

Theorem (Liebeck and Shalev (1995))

There exists a positive constant c_1 such that $c_1 \cdot m(S) \leq \omega(\Gamma(S))$ for any finite simple group S where $m(S)$ denotes the minimal index of a proper subgroup in S.

The value of $\omega(\Gamma(S))$ is in general much larger than $m(S)$. For example $\omega(\Gamma(\text{Alt}(n))) = 2^{n-2}$ if n is large and not divisible by 4.
For a given graph \(\Gamma \), the clique number \(\omega(\Gamma) \) of \(\Gamma \) is the size of a largest complete subgraph.

If a graph has “many” edges, then by Turán’s Theorem, it should contain a “large” complete subgraph. Applying this result to \(\Gamma(S) \) when \(S \) is a nonabelian simple group with large order, it follows:

Theorem (Liebeck and Shalev (1995))

There exists a positive constant \(c_1 \) such that \(c_1 \cdot m(S) \leq \omega(\Gamma(S)) \) for any finite simple group \(S \) where \(m(S) \) denotes the minimal index of a proper subgroup in \(S \).

The value of \(\omega(\Gamma(S)) \) is in general much larger than \(m(S) \). For example \(\omega(\Gamma(\text{Alt}(n))) = 2^{n-2} \) if \(n \) is large and not divisible by 4.

Theorem (A. Maroti and AL (2009))

If \(\delta = \delta(S) \), then \(\omega(\Gamma(S^\delta)) = \omega(\Gamma_\delta(S)) \) is at most \((1 + o(1))m(S)\), so \(\omega(\Gamma_i(S)) \) decreases drastically with \(i \).
No good lower bound for $\omega(\Gamma_\delta(S))$ is known.
No good lower bound for $\omega(\Gamma_\delta(S))$ is known.

Question

Do there exist simple groups S for which $\omega(\Gamma_\delta(S))$ is arbitrarily large?
No good lower bound for $\omega(\Gamma_\delta(S))$ is known.

Question

Do there exist simple groups S for which $\omega(\Gamma_\delta(S))$ is arbitrarily large?

- $G = \langle x, y \rangle \Rightarrow \{x, y, xy\}$ is a complete subgraph of $\Gamma(G)$.
- If G is 2-generated, then $\omega(\Gamma(G)) \geq 3$.
No good lower bound for $\omega(\Gamma_\delta(S))$ is known.

Question

Do there exist simple groups S for which $\omega(\Gamma_\delta(S))$ is arbitrarily large?

- $G = \langle x, y \rangle \Rightarrow \{x, y, xy\}$ is a complete subgraph of $\Gamma(G)$.
- If G is 2-generated, then $\omega(\Gamma(G)) \geq 3$.

Question

Is there a non abelian simple group S for which $\omega(\Gamma_\delta(S)) > 3$?
No good lower bound for $\omega(\Gamma_\delta(S))$ is known.

Question

Do there exist simple groups S for which $\omega(\Gamma_\delta(S))$ is arbitrarily large?

- $G = \langle x, y \rangle \Rightarrow \{x, y, xy\}$ is a complete subgraph of $\Gamma(G)$.
- If G is 2-generated, then $\omega(\Gamma(G)) \geq 3$.

Question

Is there a non abelian simple group S for which $\omega(\Gamma_\delta(S)) > 3$?

Theorem

$\omega(\Gamma_{19}(\text{Alt}(5))) = 4$.

Andrea Lucchini

Some questions arising from the study of the generating graph
<table>
<thead>
<tr>
<th>(1, 2, 3, 4, 5)</th>
<th>(1, 3, 4, 2, 5)</th>
<th>(1, 5, 3, 2, 4)</th>
<th>(1, 5, 2, 3, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(1, 4, 5, 3, 2)</td>
<td>(3, 5, 4)</td>
<td>(1, 3)(2, 5)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(1, 5, 2, 4, 3)</td>
<td>(1, 4, 2)</td>
<td>(2, 3, 5)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(1, 2, 3, 5, 4)</td>
<td>(1, 3)(2, 5)</td>
<td>(2, 4, 3)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(3, 4, 5)</td>
<td>(1, 2, 4, 3, 5)</td>
<td>(1, 4, 2)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(2, 5, 3)</td>
<td>(1, 5)(3, 4)</td>
<td>(1, 2, 4, 5, 3)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(3, 5, 4)</td>
<td>(1, 2, 5)</td>
<td>(1, 5, 3, 2, 4)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(2, 3, 5)</td>
<td>(1, 3, 4, 2, 5)</td>
<td>(1, 2)(4, 5)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(1, 3)(2, 4)</td>
<td>(1, 4, 5, 3, 2)</td>
<td>(1, 2, 5)</td>
</tr>
<tr>
<td>(1, 2, 3, 4, 5)</td>
<td>(2, 3)(4, 5)</td>
<td>(1, 3, 5)</td>
<td>(1, 5, 3, 4, 2)</td>
</tr>
<tr>
<td>(1, 2, 3)</td>
<td>(1, 5, 4, 3, 2)</td>
<td>(3, 5, 4)</td>
<td>(1, 3, 5, 4, 2)</td>
</tr>
<tr>
<td>(1, 2, 3)</td>
<td>(1, 3, 5, 2, 4)</td>
<td>(1, 4)(2, 5)</td>
<td>(1, 4, 3, 2, 5)</td>
</tr>
<tr>
<td>(1, 2, 3)</td>
<td>(1, 2, 3, 5, 4)</td>
<td>(1, 3, 2, 5, 4)</td>
<td>(1, 5, 4)</td>
</tr>
<tr>
<td>(1, 2, 3)</td>
<td>(1, 4, 2, 5, 3)</td>
<td>(1, 5, 3, 4, 2)</td>
<td>(2, 4)(3, 5)</td>
</tr>
<tr>
<td>(1, 2, 3)</td>
<td>(3, 4, 5)</td>
<td>(1, 2, 4, 5, 3)</td>
<td>(1, 2, 3, 5, 4)</td>
</tr>
<tr>
<td>(1, 2, 3)</td>
<td>(2, 4)(3, 5)</td>
<td>(1, 4, 2, 5, 3)</td>
<td>(1, 2, 4, 3, 5)</td>
</tr>
<tr>
<td>(1, 2)(3, 4)</td>
<td>(1, 3, 5, 2, 4)</td>
<td>(1, 4, 5, 2, 3)</td>
<td>(1, 5, 3)</td>
</tr>
<tr>
<td>(1, 2)(3, 4)</td>
<td>(1, 2, 3, 4, 5)</td>
<td>(1, 3, 5)</td>
<td>(1, 3, 4, 5, 2)</td>
</tr>
<tr>
<td>(1, 2)(3, 4)</td>
<td>(2, 3, 5)</td>
<td>(1, 3, 4, 5, 2)</td>
<td>(1, 3, 5, 2, 4)</td>
</tr>
</tbody>
</table>
Assume that G is a 2-generated finite group and let $\sigma(G)$ denote the least number of proper subgroups of G whose union is G.

A set that generates G pairwise cannot contain two elements of any proper subgroup, hence $\omega(\Gamma(G)) \leq \sigma(G)$.
Assume that G is a 2-generated finite group and let $\sigma(G)$ denote the least number of proper subgroups of G whose union is G.

A set that generates G pairwise cannot contain two elements of any proper subgroup, hence $\omega(\Gamma(G)) \leq \sigma(G)$.

In general $\omega(\Gamma(G)) \neq \sigma(G)$. $\omega(\Gamma(\text{Alt}(5))) = 8$ and $\sigma(\text{Alt}(5)) = 10$.

However no example is known of a finite 2-generated soluble non cyclic group G with $\omega(\Gamma(G)) \neq \sigma(G)$.
If G is a finite, 2-generated, non cyclic, soluble group and A is the set of the chief factors G having more than one complement, then

$$
\min_{A \in \mathcal{A}} (1 + |\text{End}_G(A)|) \leq \omega(\Gamma(G)) \leq \sigma(G) = \min_{A \in \mathcal{A}} (1 + |A|).
$$
Theorem (E. Crestani and AL (2012))

If G *is a finite, 2-generated, non cyclic, soluble group and* A *is the set of the chief factors* G *having more than one complement, then*

$$\min_{A \in A} (1 + |\text{End}_G(A)|) \leq \omega(\Gamma(G)) \leq \sigma(G) = \min_{A \in A} (1 + |A|).$$

Corollary (A. Maroti and AL (2009))

Let G *be a finite soluble group with Fitting height at most 2. Then* $\omega(\Gamma(G)) = \sigma(G)$.
Definition

\[\mu_d(G) := \text{the largest } m \text{ for which there exists an } m\text{-tuple of elements of } G \text{ such that any of its } d \text{ entries generate } G \quad (\mu_2(G) = \omega(\Gamma(G))). \]

Theorem

Let \(G \) be a \(d \)-generated finite soluble group with \(d \geq 2 \) and let \(A \) be the set of the chief factors \(G \) having more than one complement. Assume that a positive integer \(t \) satisfies the following property:

1. \(t \leq |A| \) for each \(A \in A \) with \(C_G(A) = G \).
2. \(\left(\frac{t-1}{d-1} \right) \leq |\text{End}_G(A)| \) for each \(A \in A \) with \(C_G(A) \neq G \).

Then \(\mu_G(d) \geq t \).

Corollary

Let \(G \) be a \(d \)-generated finite group, with \(d \geq 2 \), and let \(p \) be the smallest prime divisor of the order of \(G \). Then \(\left(\frac{\mu_d(G)}{d-1} \right) > p \).
A question in linear algebra plays a crucial role in the study of the value of $\mu_d(G)$ when G is soluble.

$M_{r \times s}(F)$ the ring of the $r \times s$ matrices with coefficients over F.

Let $t \geq d$. Assume that $A_1, \ldots, A_t \in M_{n \times n}(F)$ have the property that

$\text{rank} \left(A_{i_1} \cdots A_{i_d} \right) = n$ whenever $1 \leq i_1 < i_2 < \cdots < i_d \leq t$.

Can we find $B_1, \ldots, B_t \in M_{n(d-1) \times n}(F)$ with the property that

$\det \begin{pmatrix} A_{i_1} & \cdots & A_{i_d} \\ B_{i_1} & \cdots & B_{i_d} \end{pmatrix} \neq 0$ whenever $1 \leq i_1 < i_2 < \cdots < i_d \leq t$?
PROOF.

\[
\begin{align*}
 x &= (x_1, \ldots, x_\delta) \quad \bar{x} = (\bar{x}_1, \ldots, \bar{x}_\delta) \\
 y &= (y_1, \ldots, y_\delta) \quad \bar{y} = (\bar{y}_1, \ldots, \bar{y}_\delta) \\
 \downarrow \\
 (\bar{x}_{i\pi}, \bar{y}_{i\pi}) &= (x_i)_{a_i}^{\pi} \quad \exists \pi \in \text{Sym}(\delta), (a_1, \ldots, a_\delta) \in \text{Aut}(S)^\delta \\
 \downarrow \\
 (\bar{x}, \bar{y}) &= (x^\alpha, y^\alpha) \quad \text{for } \alpha = (a_1, \ldots, a_\delta)\pi \in \text{Aut}(S^\delta).
\end{align*}
\]
Turán’s Theorem

Let Γ be a graph with n vertices and e edges. If $\omega(\Gamma) \leq r$ then

$$e \leq \left(1 - \frac{1}{r}\right) \frac{n^2}{2}.$$
Assume that \(\{g_1, \ldots, g_r\} \) is a complete subgraph of \(\Gamma_\delta(S) \).

\(S^\delta = \langle g_1, g_2 \rangle \) and for each \(i \in \{3, \ldots, r\} \) there exists a word \(w_i(x_1, x_2) \) such that \(g_i = w_i(g_1, g_2) \).

\[
S = \langle s_1, s_2 \rangle \\
\downarrow \\
\{s_1, s_2, w_3(s_1, s_2), \ldots, w_r(s_1, s_2)\}
\]

is a complete subgraph of \(\Gamma(S) \).