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The character degree graph

G finite group

Irr(G ) = {irreducible characters of G}

cd(G ) = {χ(1) : χ ∈ Irr(G )}

π(G ) = {primes that divide |G |}

ρ(G ) = {primes that divide some degree in cd(G )} =

Ito,Michler
= π(G )−{p ∈ π(G ) : if P ∈ Sylp(G ), then P�G ,P ′ = 1}
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In 1988 Manz, Staszewski and Willems defined the

character degree graph Γ(G )

vertices = ρ(G )

edges : p and q are adjacent if pq divides some degree in cd(G )

Definition

complete vertex = vertex adjacent to all the others

complete graph = graph with all vertices complete

Notation

F = Fit(G )

Φ = Φ(G )

h(G )= Fitting height of G (if G is solvable)
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Properties of Γ(G ) for solvable groups

Manz (1985)

Γ(G ) has at most two connected components

Manz, Willems, Wolf (1989)

diam(Γ(G )) ≤ 3

Manz, Wolf (1993)

if Γ(G ) is disconnected, then h(G ) ≤ 4

Palfy (1998)

any three vertices in Γ(G ), there is an edge

Lewis (2001)

there exists G having graph with diameter 3

Lewis (2001)

groups with disconnected graph are classified
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Graph and Fitting height

Problem
Which assumptions on Γ(G ) to obtain a bound on h(G )?

Lewis (2000)

Example

Let Γ(G) have p and q complete for some G .

For every integer k there exists H with h(H) = k and ρ(H) = {p, q} with
p 6∼Γ(H) q.

Now Γ(G × H) = Γ(G) and h(G × H) = k is arbitrarily large.

Γ(G ) has at least two complete vertices

⇓

h(G ) unbounded
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Theorem 1 (M.Z. 2012)

Γ(G ) has no complete vertices

⇓

h(G ) ≤ 4

Example

H ' GL(2, 3)

K : ρ(K ) = {p, q} with (pq, 6) = 1 and p 6∼Γ(K) q

Γ(H × K ) has no complete vertices and h(H × K ) = 4

=⇒ the bound is the best possible
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Proof of Theorem 1

1. If Φ = 1 and π(F2/F ) 3 p 6∼ q

⇓

∃! non central minimal normal subgroup M:

CG (M)/F is a {p, q}′- group

either h(G/CG (M)) ≤ 2 or G/CG (M) ' GL(2, 3)
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2. If p, q ∈ π(G/F ) with p 6∼ q
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ξ(G ) = {primes corresponding to normal non abelian Sylow ′s}

Σ(G ) = {primes that are not adjacent to some prime of ξ(G )}

3. Σ(G )-Hall subgroups are abelian
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4. Assume the hypotheses of theorem 1.

Following (2), let K be the intersection of all Npq’s obtained by
each pair of non adjacent primes of π(G/F ) and suppose
G/Npq 6' GL(2, 3) for any pair;

h(G/K ) ≤ 2

π(K/F ) ⊆ Σ(G )
(3)

=⇒ h(K/F ) ≤ 1⇒ h(G ) ≤ 4

If G/Npq ' GL(2, 3)⇒ G/F ' GL(2, 3)× H with h(H) ≤ 3

⇓

h(G ) ≤ 4
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Proof of Theorem 2

Let p be the complete vertex.

If p ∈ ξ(G ) and P ∈ Sylp(G )⇒ Γ(G/P ′) has no complete vertices

⇒ h(G ) = h(G/P ′) ≤ 4

If p 6∈ ξ(G ), define K as in proof of Theorem 1 and suppose
G/Npq 6' GL(2, 3) for any pair of non adjacent primes in π(G/F );

h(G/K ) ≤ 2

π(K/F ) ⊆ Σ(G ) ∪ {p} (3)
=⇒ h(K/F ) ≤ 3⇒ h(G ) ≤ 6

If G/Npq ' GL(2, 3)⇒ G/F ' GL(2, 3)× H with h(H) ≤ 5

⇒ h(G ) ≤ 6
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