GROUPS WITH FEW ISOMORPHISM TYPES OF DERIVED SUBGROUPS

Derek J.S. Robinson

Department of Mathematics,
 University of Illinois.

1. Introduction.

By a derived subgroup in a group G is meant the derived (or commutator) subgroup H^{\prime} of a subgroup H of G. Define

$$
\mathcal{D}(G)
$$

to be the set of derived subgroups in the group G. A general question of interest is:

How important is the subset $\mathcal{D}(G)$ in $\mathcal{S}(G)$, the lattice of all subgroups of G ?

One would expect consequences for the structure of G^{\prime} if conditions are imposed on the set of derived subgroups.

A recent result in this direction is:
Theorem 1. If G has finitely many derived subgroups and also G is locally graded, then G^{\prime} is finite ([2],[4]).

The classes \mathfrak{D}_{n}.

Let

$$
\mathfrak{D}_{n}, \quad(n \geq 1)
$$

be the class of groups in which the number of isomorphism types of derived subgroup is at most n. Then

$$
\mathfrak{D}_{1} \subseteq \mathfrak{D}_{2} \subseteq \cdots \mathfrak{D}_{n} \subseteq \cdots
$$

and \mathfrak{D}_{1} is the class of abelian groups. Not much is known about \mathfrak{D}_{n} for $n>2$, apart from the following result.

Theorem 2.

(a) A finite \mathfrak{D}_{4}-group is soluble, but A_{5} is a \mathfrak{D}_{5}-group.
(b) A finite soluble \mathfrak{D}_{n}-group has derived length at most n.

The class \mathfrak{D}_{2}.

We report on recent work on the structure of \mathfrak{D}_{2}-groups. (This is joint research with P . Longobardi, M. Maj and H. Smith [5]). First note that $G \in \mathfrak{D}_{2}$ if and only if $H^{\prime} \simeq G^{\prime}$ for all non-abelian $H \leq G$.

Examples of \mathfrak{D}_{2}-groups
(i) Abelian groups.
(ii) If G^{\prime} is cyclic of order ∞ or a prime, then $G \in \mathfrak{D}_{2}$.
(iii) Free groups of countable rank.
(iv) Groups with all proper subgroups abelian, (and so all Tarski groups).
(v) $\mathbb{Q} * \mathbb{Z}$ (a locally free group).
(vi) Some examples of soluble \mathfrak{D}_{2}-groups are: $S_{3}, A_{4}, \operatorname{Dih}(2 n)(n$ odd), $\operatorname{Dih}(\infty), \mathbb{Z}$ wr \mathbb{Z}, \mathbb{Z}_{p} wr $\mathbb{Z}(p=$ a prime $)$.

2. Some general results.

(i) If $G \in \mathfrak{D}_{2}$, then G^{\prime} is countable.

For if G is non-abelian and $[g, h] \neq 1$ in G, let $H=\langle g, h\rangle$. Then $G^{\prime} \simeq H^{\prime}$, which is countable.
(ii) Theorem 3. Let $G \in \mathfrak{D}_{2}$. If G has a non-trivial finite quotient, then $G \neq G^{\prime}$

Corollary. Let $G \in \mathfrak{D}_{2}$. If G^{\prime} has a proper subgroup of finite index, the derived series $\left\{G^{(\alpha)}\right\}$ of G reaches the identity subgroup transfinitely.

Proof. Recall that $G^{(\alpha+1)}=\left(G^{(\alpha)}\right)^{\prime}$ and, if λ is a limit ordinal, then $G^{(\lambda)}=\bigcap_{\alpha<\lambda} G^{(\alpha))}$. There is an ordinal $\alpha \geq 1$ such that $G^{(\alpha)}=G^{(\alpha+1)}$, so that $G^{(\alpha)}$ is perfect. Suppose that $G^{(\alpha)} \neq 1$. Then $G^{(\alpha+1)} \neq 1$, so $G^{(\alpha)}$ is not abelian. Hence $G^{\prime} \simeq\left(G^{(\alpha)}\right)^{\prime}=G^{(\alpha+1)}=G^{(\alpha)}$, so that G^{\prime} is perfect: but G^{\prime} has a proper subgroup of finite index, contradicting Theorem 3.

A stronger result of a similar type is:

Theorem 4. Let $G \in \mathfrak{D}_{2}$. If $G^{\prime} / G^{\prime \prime}$ is non-trivial and has finite p-rank for $p \geq 0$, then G is soluble and G^{\prime} is either finite elementary abelian-p or torsion-free abelian of finite rank. Corollary. Let $G \in \mathfrak{D}_{2}$. If G is not soluble and G^{\prime} is not perfect, then all elements of G with finite order belong to the centre $Z(G)$.

Proof. Let $a, b \in G$ have a finite order and put $H=\langle a, b\rangle$. Suppose H is not abelian. Then $G^{\prime} \simeq H^{\prime}$ and $G^{\prime} / G^{\prime \prime} \simeq H^{\prime} / H^{\prime \prime}$. Now H / H^{\prime} is finite, so H^{\prime} is finitely generated and not perfect. By Theorem 4 the subgroup H is soluble, whence G is too, a contradiction.

Hence H is abelian and the elements of finite order in G form an abelian normal subgroup F. If $F \not \leq Z(G)$, then $[F, g] \neq 1$ for some $g \in G$. Hence $\langle g, F\rangle^{\prime}=[F, g] \neq 1$ and $G^{\prime} \simeq[F, g] \leq F$, so G^{\prime} is abelian, a contradiction. Therefore $F \leq Z(G)$.

But note that $\operatorname{Dih}(\infty)$ is generated by elements of order 2.
As an application one can prove that if A, B are non-trivial abelian groups, the free product $A * B$ belongs to \mathfrak{D}_{2} if and only if either $|A|=2=|B|$ or A and B are countable and torsion-free.

3. Classifying \mathfrak{D}_{2}-groups.

A general classification of \mathfrak{D}_{2}-groups is not to be expected: there are too many different types. But it is possible for certain subclasses, for example nilpotent groups.

Theorem 5. A nilpotent group G belongs to \mathfrak{D}_{2} if and only if either it is abelian or G^{\prime} is cyclic of prime or infinite order.

Finite \mathfrak{D}_{2}-groups.

First we note that if G is a finite \mathfrak{D}_{2}-group, then G^{\prime} is abelian, so G is metabelian. Indeed suppose G is not soluble. Then G^{\prime} is not abelian. Hence G^{\prime} has a minimal nonabelian subgroup H and $G^{\prime} \simeq H^{\prime}$. By a classical result of G.A. Miller and H.C. Moreno [6], H is soluble. Hence so is G^{\prime}, and thus G is soluble, a contradiction. It follows from Theorem 2 that G is metabelian.

Constructing finite \mathfrak{D}_{2}-groups.

Let p be a prime and $m>1$ an integer prime to p. Let

$$
\begin{gathered}
n=|p|_{m} \\
3
\end{gathered}
$$

be the order of p modulo m, i.e., the smallest $n>0$ such that $p^{n} \equiv 1(\bmod m)$. Let F be a finite field of order p^{n}. Then F^{*} has a (cyclic) subgroup $X=\langle x\rangle$ of order m.

We make $A=F^{+}$into an X-module via the field multiplication and define

$$
G(p, m)=X \ltimes A,
$$

the semidirect product, which is a metabelian group of order $m p^{n}$.
Lemma 1. $G(p, m) \in \mathfrak{D}_{2}$ if and only if $|p|_{m}=|p|_{d}$ for $1<d \mid m$.
(Call such a pair (p, m) an allowable pair)
Proof (sufficiency). Assume (p, m) allowable and let H be a non-abelian subgroup of $G=$ $G(p, m)$. Then H has the form

$$
\left\langle x^{r} a_{0}, H \cap A\right\rangle
$$

where $1 \leq r<m, a_{0} \in A$ and $H \cap A \neq 1$. Now $H \cap A$ is an $\left\langle x^{r}\right\rangle$-submodule of A. Since $\operatorname{gcd}(p, m)=1$, Maschke's Theorem shows that $H \cap A$ is a direct sum of faithful simple $\left\langle x^{r}\right\rangle$-modules, each of which has dimension $|p|_{d}$ where $d=\left|x^{r}\right|=\frac{m}{\operatorname{gcd}(m, r)}>1$. By hypothesis $|p|_{d}=|p|_{m}=n$, so that $H \cap A=A$ and $A \leq H$. Hence $H=\left\langle x^{r}, A\right\rangle$ and $H^{\prime}=\left[A, x^{r}\right]=A$ since F is a field. Thus $G \in \mathfrak{D}_{2}$.

Arbitrary finite \mathfrak{D}_{2}-groups can be described in terms of these $G(p, m)$.
Theorem 6. Let G be a non-nilpotent group with G^{\prime} finite. Then $G \in \mathfrak{D}_{2}$ if and only if the following hold:
(i) $G=X \ltimes A$ where $A=G^{\prime}$ is elementary abelian-p and $X / C_{X}(A)$ is cyclic of order m;
(ii) $C_{X}(A)=Z(G), G / Z(G) \simeq G(p, m)$, and (p, m) is allowable.

Some remarks on allowable pairs.

(i) (p, m) is allowable if and only if $|p|_{m}=|p|_{q}$ for all primes $q \mid m$.
(ii) Let $m=q_{1}^{e_{1}} \cdots q_{k}^{e_{k}}$ be the primary decomposition of m. Then (p, m) is allowable if and only if each $\left(p, q_{i}^{e_{i}}\right)$ is allowable and $|p|_{q_{1}}=\cdots=|p|_{q_{k}}$.

This reduces the problem of finding allowable pairs (p, m) to the case $m=q^{e}$, with q a prime.
(iii) Lemma 2. If $q \neq p$ is a prime, then $\left(p, q^{e}\right)$ is allowable if and only if

$$
p^{q-1} \equiv 1 \quad\left(\bmod q^{e}\right) .
$$

The condition in Lemma 2 always holds if $e=1$, but rarely if $e>1$. Define $e(p, q)>0$ to be maximum subject to

$$
p^{n} \equiv 1 \quad\left(\bmod q^{e(p, q)}\right)
$$

where $n=|p|_{q}$. Then $1 \leq e(p, q)<p^{n}$. Clearly $\left(p, q^{e}\right)$ is allowable if and only if $e \leq e(p, q)$. Question: Given a prime p, does there exist a prime q such that $e(p, q) \geq 2$, or equivalently such that

$$
p^{q-1} \equiv 1 \quad\left(\bmod q^{2}\right) ?
$$

Group theoretically we are asking if $G\left(p, q^{2}\right) \in \mathfrak{D}_{2}$.
This is a hard number theoretic problem. A prime q such that $p^{q-1} \equiv 1\left(\bmod q^{2}\right)$ is called a base-p Wieferich prime (after Arthur Wieferich 1884-1954). A computer search shows that for all $p<100$, with the possible exception of $p=47$, there is at least one base- p Wieferich prime.

The case $p=2$.
Only two base- 2 Wieferich primes q are known, i.e., such that $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$, namely

$$
1093 \text { and } 3511 .
$$

There are no others $<6 \cdot 10^{9}$.
There is a connection with Fermat's Last Theorem. In 1909 Wieferich proved that if there is a non-trivial solution of $x^{q}+y^{q}=z^{q}$ with q a prime and $q \nmid x y z$, (which is referred to as FLT1), then q is a base- 2 Wieferich prime. This was subsequently extended to base- p Wieferich primes for primes $p \leq 89$ by Granville and Monagan [3].

4. Soluble \mathfrak{D}_{2}-groups.

Theorem 7. Let G be a non-nilpotent soluble \mathfrak{D}_{2}-group. Then
(i) $A=G^{\prime}$ is abelian, so G is metabelian.
(ii) A is elementary-p or free abelian or torsion-free of finite rank.
(iii) If A is torsion-free of finite rank, then $G / C_{G}(A)$ is finitely generated and each $x \in G \backslash C_{G}(A)$ acts fixed-point-freely on A.
(iv) If $1<[B,\langle x\rangle] \leq B \leq A$ where $x \in G$, then $B \simeq A$.
(v) Nilpotent subgroups of G are abelian.

Note that (iv) is a weak form of $\langle x\rangle$-simplicity

The case of finite rank.

When $A=G^{\prime}$ is torsion-free of finite rank, a soluble \mathfrak{D}_{2}-group G is constructible up to finite index from an algebraic number field.

Construction.

Let F be an algebraic number field and let $1<X \leq F^{*}$ with X finitely generated. Put $A_{0}=F^{+}$; then A_{0} is an X-module via the field multiplication. Set $C=\operatorname{Rg}\langle X\rangle$, which is a submodule of A_{0}, and define

$$
G(F, X)=X \ltimes C .
$$

Then $G(F, X)$ is finitely generated and metabelian, since $G(F, X)=\left\langle X, 1_{F}\right\rangle$. Note that if X is a group of algebraic units in F, then $G(F, X)$ is polycyclic.

Lemma 3. With the above notation, $G(F, X)$ is in \mathfrak{D}_{2} if and only if $B \simeq A$ whenever $0 \neq B=B x \leq A, x \neq 1$ in X. (This is a strong form of rational irreducibility).

Call (F, X) allowable in analogy with the finite case.
Theorem 8. Let $G \in \mathfrak{D}_{2}$ be an infinite soluble group with G^{\prime} of finite rank. Then there is a normal subgroup G_{0} with finite index in G such that $G_{0} / Z\left(G_{0}\right) \simeq G(F, X)$ where (F, X) is allowable.

Example

Let $F=\mathbb{Q}(\sqrt{3}), c=1+\sqrt{3}$ and $X=\langle c\rangle$. Then $c^{2}-2 c-2=0$, so $C=\operatorname{Rg}\langle c\rangle$ satisfies $C=2 C$. Hence C is a free \mathbb{Q}_{2}-module of rank 2 where $\mathbb{Q}_{2}=\left\{\left.\frac{m}{2^{n}} \right\rvert\, m, n \in \mathbb{Z}\right\}$. Let $k>0$; then c^{k} has irreducible polynomial of the form $t^{2}+2 r t+2 s,(r, s \in \mathbb{Z})$. If $0 \neq B=B c^{k} \leq A$, then $B=2 B$, so B is a free \mathbb{Q}_{2}-submodule of rank 2 , since \mathbb{Q}_{2} is a PID. Hence $B \simeq A$, so (G, X) is allowable and $G(F, X) \in \mathfrak{D}_{2}$.

Finally, a result on insoluble \mathfrak{D}_{2}-groups.
Theorem 9. Let G be a group with a non-cyclic free subgroup. Then $G \in \mathfrak{D}_{2}$ if and only if G^{\prime} is free of countable rank and L^{\prime} is not finitely generated whenever L is a non-abelian subgroup of G.

Corollary. A locally free group G belongs to \mathfrak{D}_{2} if and only if G^{\prime} is is a free group of countable rank.

References

[1] F. de Giovanni and F. de Mari. Groups with finitely many derived subgroups of nonnormal subgroups. Arch. Math. (Basel) 86 (2006), 310-316.
[2] F. de Giovanni and D.J.S. Robinson. Groups with finitely many derived subgroups. J. London Math. Soc. (2) 71 (2005), 658-668.
[3] A. Granville and M.B. Monagan. The first case of Fermat's Last Theorem is true for all prime exponents up to $714,591,416,091,389$. Trans. Amer. Math. Soc. 306 (1988), 329-359.
[4] M. Herzog, P. Longobardi and M. Maj. On the number of commutators in groups. Ischia Group Theory 2004, 181-192, Contemp. Math., 402, Amer. Math. Soc., Providence, RI, 2006.
[5] P. Longobardi, M. Maj, D.J.S Robinson and H. Smith. preprint.
[6] G.A. Miller and H.C. Moreno. Non-abelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc. 4 (1903), 398-404.

