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1. Introduction.

By a derived subgroup in a group G is meant the derived (or commutator) subgroup H ′

of a subgroup H of G. Define

D(G)

to be the set of derived subgroups in the group G. A general question of interest is:

How important is the subset D(G) in S(G), the lattice of all subgroups of G?

One would expect consequences for the structure of G′ if conditions are imposed on the

set of derived subgroups.

A recent result in this direction is:

Theorem 1. If G has finitely many derived subgroups and also G is locally graded, then

G′ is finite ([2],[4]).

The classes Dn.

Let

Dn, (n ≥ 1),

be the class of groups in which the number of isomorphism types of derived subgroup is

at most n. Then

D1 ⊆ D2 ⊆ · · ·Dn ⊆ · · · .

and D1 is the class of abelian groups. Not much is known about Dn for n > 2, apart from

the following result.
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Theorem 2.

(a) A finite D4-group is soluble, but A5 is a D5-group.

(b) A finite soluble Dn-group has derived length at most n.

The class D2.

We report on recent work on the structure of D2-groups. (This is joint research with P.

Longobardi, M. Maj and H. Smith [5]). First note that G ∈ D2 if and only if H ′ ≃ G′ for

all non-abelian H ≤ G.

Examples of D2-groups

(i) Abelian groups.

(ii) If G′ is cyclic of order ∞ or a prime, then G ∈ D2.

(iii) Free groups of countable rank.

(iv) Groups with all proper subgroups abelian, (and so all Tarski groups).

(v) Q ∗ Z (a locally free group).

(vi) Some examples of solubleD2-groups are: S3, A4, Dih(2n) (n odd), Dih(∞), Z wrZ,

Zp wr Z (p = a prime).

2. Some general results.

(i) If G ∈ D2, then G′ is countable.

For if G is non-abelian and [g, h] ̸= 1 in G, let H = ⟨g, h⟩. Then G′ ≃ H ′, which is

countable.

(ii) Theorem 3. Let G ∈ D2. If G has a non-trivial finite quotient, then G ̸= G′

Corollary. Let G ∈ D2. If G′ has a proper subgroup of finite index, the derived series{
G(α)

}
of G reaches the identity subgroup transfinitely.

Proof. Recall that G(α+1) =
(
G(α)

)′
and, if λ is a limit ordinal, then G(λ) =

∩
α<λ

G(α)).

There is an ordinal α ≥ 1 such that G(α) = G(α+1), so that G(α) is perfect. Suppose that

G(α) ̸= 1. Then G(α+1) ̸= 1, so G(α) is not abelian. Hence G′ ≃
(
G(α)

)′
= G(α+1) = G(α),

so that G′ is perfect: but G′ has a proper subgroup of finite index, contradicting Theorem

3.

A stronger result of a similar type is:
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Theorem 4. Let G ∈ D2. If G′/G′′ is non-trivial and has finite p-rank for p ≥ 0, then G

is soluble and G′ is either finite elementary abelian-p or torsion-free abelian of finite rank.

Corollary. Let G ∈ D2. If G is not soluble and G′ is not perfect, then all elements of G

with finite order belong to the centre Z(G).

Proof. Let a, b ∈ G have a finite order and put H = ⟨a, b⟩. Suppose H is not abelian.

Then G′ ≃ H ′ and G′/G′′ ≃ H ′/H ′′. Now H/H ′ is finite, so H ′ is finitely generated and

not perfect. By Theorem 4 the subgroup H is soluble, whence G is too, a contradiction.

HenceH is abelian and the elements of finite order inG form an abelian normal subgroup

F . If F ̸≤ Z(G), then [F, g] ̸= 1 for some g ∈ G. Hence ⟨g, F ⟩′ = [F, g] ̸= 1 and

G′ ≃ [F, g] ≤ F , so G′ is abelian, a contradiction. Therefore F ≤ Z(G).

But note that Dih(∞) is generated by elements of order 2.

As an application one can prove that if A,B are non-trivial abelian groups, the free

product A ∗B belongs to D2 if and only if either |A| = 2 = |B| or A and B are countable

and torsion-free.

3. Classifying D2-groups.

A general classification of D2-groups is not to be expected: there are too many different

types. But it is possible for certain subclasses, for example nilpotent groups.

Theorem 5. A nilpotent group G belongs to D2 if and only if either it is abelian or G′ is

cyclic of prime or infinite order.

Finite D2-groups.

First we note that if G is a finite D2-group, then G′ is abelian, so G is metabelian.

Indeed suppose G is not soluble. Then G′ is not abelian. Hence G′ has a minimal non-

abelian subgroup H and G′ ≃ H ′. By a classical result of G.A. Miller and H.C. Moreno

[6], H is soluble. Hence so is G′, and thus G is soluble, a contradiction. It follows from

Theorem 2 that G is metabelian.

Constructing finite D2-groups.

Let p be a prime and m > 1 an integer prime to p. Let

n = |p|m
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be the order of p modulo m, i.e., the smallest n > 0 such that pn ≡ 1 (mod m). Let F be

a finite field of order pn. Then F ∗ has a (cyclic) subgroup X = ⟨x⟩ of order m.

We make A = F+ into an X-module via the field multiplication and define

G(p,m) = X nA,

the semidirect product, which is a metabelian group of order mpn.

Lemma 1. G(p,m) ∈ D2 if and only if |p|m = |p|d for 1 < d|m.

(Call such a pair (p,m) an allowable pair)

Proof (sufficiency). Assume (p,m) allowable and let H be a non-abelian subgroup of G =

G(p,m). Then H has the form

⟨xra0, H ∩A⟩

where 1 ≤ r < m, a0 ∈ A and H ∩ A ̸= 1. Now H ∩ A is an ⟨xr⟩-submodule of A. Since

gcd(p,m) = 1, Maschke’s Theorem shows that H ∩ A is a direct sum of faithful simple

⟨xr⟩-modules, each of which has dimension |p|d where d = |xr| = m

gcd(m, r)
> 1. By

hypothesis |p|d = |p|m = n, so that H ∩ A = A and A ≤ H. Hence H = ⟨xr, A⟩ and

H ′ = [A, xr] = A since F is a field. Thus G ∈ D2.

Arbitrary finite D2-groups can be described in terms of these G(p,m).

Theorem 6. Let G be a non-nilpotent group with G′ finite. Then G ∈ D2 if and only if

the following hold:

(i) G = X n A where A = G′ is elementary abelian-p and X/CX(A) is cyclic of

order m;

(ii) CX(A) = Z(G), G/Z(G) ≃ G(p,m), and (p,m) is allowable.

Some remarks on allowable pairs.

(i) (p,m) is allowable if and only if |p|m = |p|q for all primes q|m.

(ii) Let m = qe11 · · · qekk be the primary decomposition of m. Then (p,m) is allowable if and

only if each (p, qeii ) is allowable and |p|q1 = · · · = |p|qk .
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This reduces the problem of finding allowable pairs (p,m) to the case m = qe, with q a

prime.

(iii) Lemma 2. If q ̸= p is a prime, then (p, qe) is allowable if and only if

pq−1 ≡ 1 (mod qe).

The condition in Lemma 2 always holds if e = 1, but rarely if e > 1. Define e(p, q) > 0

to be maximum subject to

pn ≡ 1 (mod qe(p,q))

where n = |p|q. Then 1 ≤ e(p, q) < pn. Clearly (p, qe) is allowable if and only if e ≤ e(p, q).

Question: Given a prime p, does there exist a prime q such that e(p, q) ≥ 2, or equivalently

such that

pq−1 ≡ 1 (mod q2)?

Group theoretically we are asking if G(p, q2) ∈ D2.

This is a hard number theoretic problem. A prime q such that pq−1 ≡ 1 (mod q2) is

called a base-p Wieferich prime (after Arthur Wieferich 1884–1954). A computer search

shows that for all p < 100, with the possible exception of p = 47, there is at least one

base-p Wieferich prime.

The case p = 2.

Only two base-2 Wieferich primes q are known, i.e., such that 2q−1 ≡ 1 (mod q2),

namely

1093 and 3511.

There are no others < 6 · 109.

There is a connection with Fermat’s Last Theorem. In 1909 Wieferich proved that if

there is a non-trivial solution of xq +yq = zq with q a prime and q - xyz, (which is referred

to as FLT1), then q is a base-2 Wieferich prime. This was subsequently extended to base-p

Wieferich primes for primes p ≤ 89 by Granville and Monagan [3].
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4. Soluble D2-groups.

Theorem 7. Let G be a non-nilpotent soluble D2-group. Then

(i) A = G′ is abelian, so G is metabelian.

(ii) A is elementary−p or free abelian or torsion-free of finite rank.

(iii) If A is torsion-free of finite rank, then G/CG(A) is finitely generated and each

x ∈ G\CG(A) acts fixed-point-freely on A.

(iv) If 1 < [B, ⟨x⟩] ≤ B ≤ A where x ∈ G, then B ≃ A.

(v) Nilpotent subgroups of G are abelian.

Note that (iv) is a weak form of ⟨x⟩-simplicity

The case of finite rank.

When A = G′ is torsion-free of finite rank, a soluble D2-group G is constructible up to

finite index from an algebraic number field.

Construction.

Let F be an algebraic number field and let 1 < X ≤ F ∗ with X finitely generated. Put

A0 = F+; then A0 is an X-module via the field multiplication. Set C = Rg ⟨X⟩, which is

a submodule of A0, and define

G(F,X) = X n C.

Then G(F,X) is finitely generated and metabelian, since G(F,X) = ⟨X, 1F ⟩. Note that

if X is a group of algebraic units in F , then G(F,X) is polycyclic.

Lemma 3. With the above notation, G(F,X) is in D2 if and only if B ≃ A whenever

0 ̸= B = Bx ≤ A, x ̸= 1 in X. (This is a strong form of rational irreducibility).

Call (F,X) allowable in analogy with the finite case.

Theorem 8. Let G ∈ D2 be an infinite soluble group with G′ of finite rank. Then there is

a normal subgroup G0 with finite index in G such that G0/Z(G0) ≃ G(F,X) where (F,X)

is allowable.
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Example

Let F = Q(
√
3), c = 1 +

√
3 and X = ⟨c⟩. Then c2 − 2c − 2 = 0, so C = Rg ⟨c⟩ satisfies

C = 2C. Hence C is a free Q2-module of rank 2 where Q2 =
{m

2n
|m,n ∈ Z

}
. Let k > 0;

then ck has irreducible polynomial of the form t2+2rt+2s, (r, s ∈ Z). If 0 ̸= B = Bck ≤ A,

then B = 2B, so B is a free Q2-submodule of rank 2, since Q2 is a PID. Hence B ≃ A, so

(G,X) is allowable and G(F,X) ∈ D2.

Finally, a result on insoluble D2-groups.

Theorem 9. Let G be a group with a non-cyclic free subgroup. Then G ∈ D2 if and only

if G′ is free of countable rank and L′ is not finitely generated whenever L is a non-abelian

subgroup of G.

Corollary. A locally free group G belongs to D2 if and only if G′ is is a free group of

countable rank.
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