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Zassenhause Conjecture

Let G be a finite group and let V(ZG) denotes the group

Y. azg € UZG): ¥ ag =105 € Z } of normalized units of the
g€t gcG

integral group ring ZG .
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within the rational group algebra QG; i.e. there exist a group element
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Zassenhause Conjecture

Let G be a finite group and let V(ZG) denotes the group

Y. azg € UZG): ¥ ag =105 € Z } of normalized units of the
geai gcG

integral group ring ZG .

(ZC) Every torsion unit u in V(ZG) is conjugate to an element in G
within the rational group algebra QG; i.e. there exist a group element
g€ G andw € QG such that w—luw = g.

In parallel to (ZC) and as a usefull technique that we have used is the
cojecture of W. Kimmerle, which involves the concept of prime graph.

For a finite group G, let pr(G) denotes the set of all prime divisors of the
order of G. The Gruenberg-Kegel graph (or the prime graph) of G is a
graph(G) with vertices labelled by primes from pr(G), such that vertices p
and g are adjacent if and only if there is an element of order pq in the
group G.
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Kimmerle Conjecture

(KC) If G is a finite group, then 11(G) = (V(ZG), where 1t(G) is the
prime graph of the group G.
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Kimmerle Conjecture

(KC) If G is a finite group, then 11(G) = (V(ZG), where 1t(G) is the
prime graph of the group G.

@ Obviously, the Zassenhaus (ZC) implies the Kimmerle (KC).
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Kimmerle Conjecture

(KC) If G is a finite group, then 11(G) = (V(ZG), where 1t(G) is the
prime graph of the group G.

@ Obviously, the Zassenhaus (ZC) implies the Kimmerle (KC).

e It was shown that (KC) holds for finite Frobenius groups and solvable
groups.
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Kimmerle Conjecture

(KC) If G is a finite group, then 11(G) = (V(ZG), where 1t(G) is the
prime graph of the group G.

@ Obviously, the Zassenhaus (ZC) implies the Kimmerle (KC).
e It was shown that (KC) holds for finite Frobenius groups and solvable
groups.

@ The p-version of the (ZC) for Frobenius groups was completed by V.
Bovdi and M. Hertweck.
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(KC) If G is a finite group, then 11(G) = (V(ZG), where 1t(G) is the
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@ Obviously, the Zassenhaus (ZC) implies the Kimmerle (KC).

e It was shown that (KC) holds for finite Frobenius groups and solvable
groups.
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Kimmerle Conjecture

(KC) If G is a finite group, then 11(G) = (V(ZG), where 1t(G) is the
prime graph of the group G.

@ Obviously, the Zassenhaus (ZC) implies the Kimmerle (KC).
e It was shown that (KC) holds for finite Frobenius groups and solvable
groups.

@ The p-version of the (ZC) for Frobenius groups was completed by V.
Bovdi and M. Hertweck.

@ Bovdi, Konovalov, Jespers & Siciliano confirmed certain Mathieu
simple sporadic groups.

@ We had a partial answer for the alternating group Ag, then M.
Hertweck complete the remaining case for Ag.

@ Then, we did An, n < 10.

@ In this paper, we confirm (KC) for the symmetric group S7.
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In order to state the result, for a group G, let C = {Cy,..., Cp, ...} be
the collection of all conjugacy classes of G, where the first index denotes
the order of the elements of this conjugacy class and C; = {1}.
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In order to state the result, for a group G, let C = {Cy,..., Cp, ...} be
the collection of all conjugacy classes of G, where the first index denotes
the order of the elements of this conjugacy class and C; = {1}.

For any unit u =Y agg € V(ZG) of order k, let v, denote the partial
augmentation v (u) = ec,,(u) = YL ec,, &g of u with respect to Cp;.
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In order to state the result, for a group G, let C = {Cy,..., Cp, ...} be
the collection of all conjugacy classes of G, where the first index denotes
the order of the elements of this conjugacy class and C; = {1}.

For any unit u =Y agg € V(ZG) of order k, let v, denote the partial
augmentation v (u) = ec,,(u) = YL ec,, &g of u with respect to Cp;.
From Berman’s Theorem (see [2]), we know that v; = a3 =0 and v. =0
for any central element ¢ € G, and that

Z Vpt = 1. (1)

CpreC

Hence, for any character x of G, we have x(u) = Y v x(hnt), where hp:
is a representative of a conjugacy class Cp;.
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Theorem

Let G denote the symmetric group S; of degree seven. If u is a torsion
unit in V(ZG) of order |u|, and PA(u) denotes the tuple

14
(V2a, Vab, Vac, V3a, V3b, Vaa, Vab, Vsa, Vea, Vb, Véc, V7a, V10a, Vi2a) € Z

of partial augmentations of u in V(ZG). Then the following statements
hold :
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Let G denote the symmetric group S; of degree seven. If u is a torsion
unit in V(ZG) of order |u|, and PA(u) denotes the tuple
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(V2a, Vab, Vac, V3a, V3b, Vaa, Vab, Vsa, Vea, Vb, Véc, V7a, V10a, Vi2a) € Z

of partial augmentations of u in V(ZG). Then the following statements
hold :
(i) If |u| # 20, then |u| coincides with the order of some g € G.
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Theorem

Let G denote the symmetric group S; of degree seven. If u is a torsion
unit in V(ZG) of order |u|, and PA(u) denotes the tuple

14
(V2a, Vab, Vac, V3a, V3b, Vaa, Vab, Vsa, Vea, Vb, Véc, V7a, V10a, Vi2a) € Z

of partial augmentations of u in V(ZG). Then the following statements
hold :

(i) If |u| # 20, then |u| coincides with the order of some g € G.
(ii) If |u| € {3,5,7,10}, then u is rationally conjugate to some g € G.
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Theorem

Let G denote the symmetric group S; of degree seven. If u is a torsion
unit in V(ZG) of order |u|, and PA(u) denotes the tuple

14
(V2a, Vab, Vac, V3a, V3b, Vaa, Vab, Vsa, Vea, Vb, Véc, V7a, V10a, Vi2a) € Z

of partial augmentations of u in V(ZG). Then the following statements
hold :

(i) If |u| # 20, then |u| coincides with the order of some g € G.

(ii) If |u| € {3,5,7,10}, then u is rationally conjugate to some g € G.
(iii) If |u| = 2, the tuple of the partial augmentations (Va,, Vop, Vac) of u
belongs to the set

{(0,-1,2),(1,-1,1),(1,0,0), (0,0,1), (1,1, —1), (0,1,0)} and vjx = 0
for kx ¢ {2a,2b,2c}.
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Theorem

Let G denote the symmetric group S; of degree seven. If u is a torsion
unit in V(ZG) of order |u|, and PA(u) denotes the tuple

14
(VZay V2b1 V2C1 V3a: V?)br V4a: V4b1 1/531 1/631 1/6[)1 1/6C| V?av Vlan V12a) 6 Z

of partial augmentations of u in V(ZG). Then the following statements
hold :

(i) If |u| # 20, then |u| coincides with the order of some g € G.

(ii) If |u| € {3,5,7,10}, then u is rationally conjugate to some g € G.
(iii) If |u| = 2, the tuple of the partial augmentations (Va,, Vop, Vac) of u
belongs to the set
{(0,-1,2),(1,-1,1),(1,0,0),(0,0,1),(1,1,-1),(0,1,0)} and vx =0
for kx ¢ {2a,2b,2c}.

If G is the symmetric group S7 of degree seven, then 1(G) = (V(G)).

M. Salim (Institute) Torsion Units in ZAj



Preliminaries

For a torsion u in V(ZG), the (ZC) provides that x(u) = x(x;) for some

x; € G; and hence an equivalent statement for (ZC) was given in the
following statement:
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Preliminaries

For a torsion u in V(ZG), the (ZC) provides that x(u) = x(x;) for some
x; € G; and hence an equivalent statement for (ZC) was given in the
following statement:

Proposition

(Luthar-Passi & Marciniac-others) If u € V(ZG) is a torsion unit of order
k. Then u is conjugate to an element g € G if and only if for each divisor
d of k there is precisely one conjugacy class C with partial augmentation

ec(u?) # 0.
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Preliminaries

For a torsion u in V(ZG), the (ZC) provides that x(u) = x(x;) for some
x; € G; and hence an equivalent statement for (ZC) was given in the
following statement:

Proposition

(Luthar-Passi & Marciniac-others) If u € V(ZG) is a torsion unit of order
k. Then u is conjugate to an element g € G if and only if for each divisor
d of k there is precisely one conjugacy class C with partial augmentation

ec(u?) #0.

In fact to establish our investigation, we consider the calculation, by GAP,
of the indicated numbers p_ (u, x) in the what follow for each possible
order k of a torsion unit v in V(ZG), taking in account the relations
between |u| and the partial augmentations v; = €c,(u) given in the next
three Propositions.
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Proposition

(Hertwick) Let G be a finite group and let u be a torsion unit in V(ZG).
If x is an element of G whose p-part, for some prime p, has order strictly
greater than the order of the p-part of u, then & (u) = 0.
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Proposition

(Hertwick) Let G be a finite group and let u be a torsion unit in V(ZG).
If x is an element of G whose p-part, for some prime p, has order strictly
greater than the order of the p-part of u, then & (u) =0

| \

Proposition

(Hertwick & Luthar-Passi) Let either p be a prime divisor of |G| or p = 0.
Suppose that u € V(ZG) has finite order k such that k and p are
coprime if p # 0. If z is a primitive k-th root of unity and x is either a
classical character or a p-Brauer character of G then, for every integer m,
the number

w(u x.p) = ZTrzd/{x Nz=my

is a non-negative integer.

N
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Proposition

(Hertwick) Let G be a finite group and let u be a torsion unit in V(ZG).
If x is an element of G whose p-part, for some prime p, has order strictly
greater than the order of the p-part of u, then & (u) = 0.

| \

Proposition

(Hertwick & Luthar-Passi) Let either p be a prime divisor of |G| or p = 0.
Suppose that u € V(ZG) has finite order k such that k and p are
coprime if p # 0. If z is a primitive k-th root of unity and x is either a
classical character or a p-Brauer character of G then, for every integer m,
the number

w(u x.p) = ZTrzd/{x Nz=my

is a non-negative integer.

N

Note that if p = 0, we will use the notation y,(u, x, *) for y,(u, x,0).
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Proof of the Theorem

Proposition

(Cohn-Livingstone) The order of a torsion unit u € V(ZG) is a divisor of
the exponent of G.
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Proof of the Theorem

Proposition

(Cohn-Livingstone) The order of a torsion unit u € V(ZG) is a divisor of
the exponent of G.

By GAP, that |S;| = 7! = 5040 = 2*.32.5.7 and
exp(S7) =420=12%.3.5-7.
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Proof of the Theorem

Proposition

(Cohn-Livingstone) The order of a torsion unit u € V(ZG) is a divisor of
the exponent of G.

By GAP, that |S;| = 7! = 5040 = 2% -.32.5.7 and
exp(S7) = 420 =22.3.5.7. The group S; has 15 conjugacy classes 1a,
2a, 2b, 2c, 3a, 3b, 4a, 4b, ba, 6a, 6b, 6¢, 7a, 10a and 12a,
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Proof of the Theorem

Proposition
(Cohn-Livingstone) The order of a torsion unit u € V(ZG) is a divisor of
the exponent of G.

By GAP, that |S;| = 7! = 5040 = 2*.32.5.7 and

exp(S7) = 420 =22.3.5.7. The group S; has 15 conjugacy classes 1a,
2a, 2b, 2¢, 3a, 3b, 4a, 4b, 5a, 6a, 6b, 6¢, 7a, 10a and 12a,where | is the
order of elements in conjugacy classes ja , jb and jc ,
j€4{1,2,3,4,5,6,7,10}.
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Proof of the Theorem

Proposition

(Cohn-Livingstone) The order of a torsion unit u € V(ZG) is a divisor of
the exponent of G.

By GAP, that |S;| = 7! = 5040 = 2*.32.5.7 and

exp(S7) = 420 =22.3.5.7. The group S; has 15 conjugacy classes 1a,
2a, 2b, 2¢, 3a, 3b, 4a, 4b, 5a, 6a, 6b, 6¢, 7a, 10a and 12a,where | is the
order of elements in conjugacy classes ja , jb and jc ,
j€4{1,2,3,4,5,6,7,10}.

Since conjugate group elements have same character, then for any
normalized unit u = Y w;g; € V(ZS;), its character is

x(u) = X2, vix(x;), where vis(€ Z) are partial augmentations ec.(u) of
u, and x/s are representatives of distinct conjugacy classes C; in 57.
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If uis torsion in V(ZS7) and |u| = n, then (ZC) provides that
Xx(u) = x(x;) for some x; € G; and hence an equivalent statement for
(ZC) was given.
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If uis torsion in V(ZS7) and |u| = n, then (ZC) provides that

Xx(u) = x(x;) for some x; € G; and hence an equivalent statement for
(ZC) was given.

The character table of S7, as well as the Brauer character tables (denoted
by BEZ(p), where p € {2,3,5,7}), can be found by the GAP.
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If uis torsion in V(ZS7) and |u| = n, then (ZC) provides that

Xx(u) = x(x;) for some x; € G; and hence an equivalent statement for
(ZC) was given.

The character table of S7, as well as the Brauer character tables (denoted
by BEZ(p), where p € {2,3,5,7}), can be found by the GAP.

From the structure of the group S7, we known that it possesses elements
of orders 2, 3, 4,5, 6, 7, 10 and 12. We begin our investigation with units
of orders 2, 3, 5, 7 and 10.
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If uis torsion in V(ZS7) and |u| = n, then (ZC) provides that

x(u) = x(x;) for some x; € G; and hence an equivalent statement for
(ZC) was given.

The character table of S7, as well as the Brauer character tables (denoted
by BEZ(p), where p € {2,3,5,7}), can be found by the GAP.

From the structure of the group S7, we known that it possesses elements
of orders 2, 3, 4,5, 6, 7, 10 and 12. We begin our investigation with units
of orders 2, 3, 5, 7 and 10.

But, by Proposition 4, the order of each torsion unit divides the exponent
420 of S7, then it remains to consider only units of orders 14, 15, 20, 21
and 35. We prove that all units of these orders (except for 20) do not
appear in V(Z57).
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Now, we study each case according to Proposition 2, to find the
appropriate partial augmentations of those involved in (1). Then, applying
Proposition 3 to the apropriate character to get a system of inequalities.
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Now, we study each case according to Proposition 2, to find the
appropriate partial augmentations of those involved in (1). Then, applying
Proposition 3 to the apropriate character to get a system of inequalities.
Let |u| € {5,7}. Then, by Proposition 2, there is only one conjugacy class
in S; consisting of elements of each order |u|. Thus for each order there is
precisely one conjugacy class with non-zero partial augmentation.
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Now, we study each case according to Proposition 2, to find the
appropriate partial augmentations of those involved in (1). Then, applying
Proposition 3 to the apropriate character to get a system of inequalities.
Let |u| € {5,7}. Then, by Proposition 2, there is only one conjugacy class
in S; consisting of elements of each order |u|. Thus for each order there is
precisely one conjugacy class with non-zero partial augmentation.
Therefore, by Proposition 1, part (ii) of the Theorem holds for

lu| € {5,7}.
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Let u be an involution. By Propositions 1 & 2, we have that
Voa + Vap +Voc = 1. Applying Proposition 3 to the character )x,, x3 and
Xa. We get the following system
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Let u be an involution. By Propositions 1 & 2, we have that
Voa + Vap +Voc = 1. Applying Proposition 3 to the character )x,, x3 and
Xa. We get the following system

M. Salim (Institute)

(Vaa —vap — Vac +1) > 0;
(—(v2a —vop —v2c) +1) 20
(2025 + 4Vap +6) > 0;
(—(2va, + 4vop) +6) > 0;
(—2v, +4vy, +6) > 0.

N[= NI N N—= N[
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Let u be an involution. By Propositions 1 & 2, we have that
Voa + Vap +Voc = 1. Applying Proposition 3 to the character )x,, x3 and
Xa. We get the following system

Ho(u, xo, %) = %(VZa —Vpp—Vac+1) >0;
py(u, X, %) = 3(—(v2g —vap —v2c) +1) > 0
Mo (U, x3,%) = 3(2v25 + 4vp +6) > 0

py (U, x3,%) = 3(—(2v25 + 4v2p) +6) > 0;
iU, Xq, %) = %( 2vp, +4vp +6) > 0.

Since all p;(u, x;, p) are non-negative integers, then the only integral
solutions are (Vaa, Vop, Vac) €
{(0,-1,2),(1,-1,1),(1,0,0),(0,0,1),(1,1,—1),(0,1,0) }.
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Let u be a unit of order 3. By Propositions 1 & 2, we have that

V3, + v3p = 1. Applying Proposition 3 to the character ), and x; and
from Brauer character tables for p = 2 and 3, we get only trivial integer
solutions (v3,,v3p). So, part (ii) of the Theorem is completed for |u| = 3.
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Let u be a unit of order 10. By Propositions 1 & 2, we have

Voa + Vsa + Vop + Vo + Vips = 1.
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Let u be a unit of order 10. By Propositions 1 & 2, we have
V2a + Vsa + Vap + Vac + Vipa = 1.

Since |u®| = 2 for any character x of S; we need to consider six cases,
defined by part (iii) of the Theorem. We consider each case separately:
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Let u be a unit of order 10. By Propositions 1 & 2, we have
V2a + Vsa + Vap + Vac + Vipa = 1.

Since |u®| = 2 for any character x of S; we need to consider six cases,
defined by part (iii) of the Theorem. We consider each case separately:
Case 1. Let x(u®) = x(2a). Using Proposition 3, we get no integral
solution.

Case 2. Let x(u®) = x(2b). Using Proposition 3, we get only the
following trivial solution (0, 0, 0, 0, 1).

Case 3. Let x(u®) = x(2c). Using Proposition 3, we get no solution.
Case 4. Let x(u®) = —x(2b) +2x(2c). Using Proposition 3 we get no
solution.

Case 5. Let x(u®) = x(2a) — x(2b) + x(2¢). Using Proposition 3, we get
no solution.

Case 6. Let x(u®) = x(2a) + x(2b) — x(2¢). Using Proposition 3, we get
no solution.
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Let u be a unit of order 10. By Propositions 1 & 2, we have
V2a + Vsa + Vap + Vac + Vipa = 1.

Since |u®| = 2 for any character x of S; we need to consider six cases,
defined by part (iii) of the Theorem. We consider each case separately:
Case 1. Let x(u®) = x(2a). Using Proposition 3, we get no integral
solution.

Case 2. Let x(u®) = x(2b). Using Proposition 3, we get only the
following trivial solution (0, 0, 0, 0, 1).

Case 3. Let x(u®) = x(2c). Using Proposition 3, we get no solution.
Case 4. Let x(u®) = —x(2b) +2x(2c). Using Proposition 3 we get no
solution.

Case 5. Let x(u®) = x(2a) — x(2b) + x(2¢). Using Proposition 3, we get
no solution.

Case 6. Let x(u®) = x(2a) + x(2b) — x(2¢). Using Proposition 3, we get
no solution.

Then, for units of orders 10, there is precisely one conjugacy class with
non-zero partial augmentation.
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Let u be a unit of order 10. By Propositions 1 & 2, we have
V2a + Vsa + Vap + Vac + Vipa = 1.

Since |u®| = 2 for any character x of S; we need to consider six cases,
defined by part (iii) of the Theorem. We consider each case separately:
Case 1. Let x(u®) = x(2a). Using Proposition 3, we get no integral
solution.

Case 2. Let x(u®) = x(2b). Using Proposition 3, we get only the
following trivial solution (0, 0, 0, 0, 1).

Case 3. Let x(u®) = x(2c). Using Proposition 3, we get no solution.
Case 4. Let x(u®) = —x(2b) +2x(2c). Using Proposition 3 we get no
solution.

Case 5. Let x(u®) = x(2a) — x(2b) + x(2¢). Using Proposition 3, we get
no solution.

Case 6. Let x(u®) = x(2a) + x(2b) — x(2¢). Using Proposition 3, we get
no solution.

Then, for units of orders 10, there is precisely one conjugacy class with
non-zero partial augmentation.

Therefore, by Proposition 1, part (ii) of the Theorem is complete.
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Let u be a unit of order 14. By Propositions 1&2, we have

Vaa + Vop + Voc + V72 = 1.
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Let u be a unit of order 14. By Propositions 1&2, we have
Voa + Vop + Voc + V7, = L.

Since |u”| = 2 for any character x of S; we need to consider six cases,
defined by part (iii) of the Theorem.
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Let u be a unit of order 14. By Propositions 1&2, we have
Voa + Vop + Voc + V7, = L.

Since |u”| = 2 for any character x of S; we need to consider six cases,

defined by part (iii) of the Theorem.

Case 1. If x(u”) = x(2a). Applying Proposition 3 to the character x5, we

get no solution.

Case 2. If x(u")

Case 3. If x(u")
)
"

Xx(2b), we get no solution.

—x(2b) +2x(2¢), we get no solution.

Case 4. If )((u7 x(2a) — x(2b) + x(2c), we get no solution.

Case 5. If x(u (23) + x(2b) — x(2c¢), we get no integral solution.
Case 6. Finally, if x(u”) = x(2¢). Applying Proposition 3 to the
characters x, and x3, we get no solution.
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Let u be a unit of order 14. By Propositions 1&2, we have
Voa + Vop + Voc + V7, = L.

Since |u”| = 2 for any character x of S; we need to consider six cases,
defined by part (iii) of the Theorem.

Case 1. If x(u”) = x(2a). Applying Proposition 3 to the character x5, we
get no solution.
Case 2. If x(u
Case 3. If x(u’

") = x(2b), we get no solution.

) = —x(2b) +2x(2c), we get no solution.
Case 4. If)((u7) x(2a) — x(2b) + x(2c), we get no solution.
Case 5. If x(u”) (23) + x(2b) — x(2c¢), we get no integral solution.
Case 6. Finally, if x(u”) = x(2¢). Applying Proposition 3 to the
characters x, and x3, we get no solution.
Therefore there is no unit in V(Z5S7) of order 14.
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Let u be a unit of order 15. By Propositions 1&2 we have
V3, +V3p + Vss = 1. Since |u®| = 3 for any character x of G we need to
consider two cases.

M. Salim (Institute) Torsion Units in ZAp



Let u be a unit of order 15. By Propositions 1&2 we have

V3, +V3p + Vss = 1. Since |u®| = 3 for any character x of G we need to
consider two cases.

Case 1. Let x(u®) = x(3a). Applying Proposition 3 to the character x; of
G, we get the system

po(u, X5, %) = 75 (16(v3s + v3p) +24) > 0;
‘MS(U,X5, *) = 11—5(—8(1/33 + V3b) + 18) >0,

which has no integral solutions (v3a, V3p).

M. Salim (Institute) Torsion Units in ZAj



Let u be a unit of order 15. By Propositions 1&2 we have

V3, +V3p + Vss = 1. Since |u®| = 3 for any character x of G we need to
consider two cases.

Case 1. Let x(u®) = x(3a). Applying Proposition 3 to the character x; of
G, we get the system

po(u, x5, %) = 15 (16(v3a + v3p) +24) > 0;
]/lS(U,X5, *) = 11—5(—8(1/33 + V3b) + 18) >0,
which has no integral solutions (v3,, V3p).

Case 2. Let x(u®) = x(3b). Applying Proposition 3 to the character
of G, we get the following system

‘IIO(U,X3, *) = %(8(31/33 + V53> + 10) Z O;
py(u, X3, %) = 75 (—2(3v3s + vs55) +5) > 0,

which has no integral solution.
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Let u be a unit of order 15. By Propositions 1&2 we have

V3, +V3p + Vss = 1. Since |u®| = 3 for any character x of G we need to
consider two cases.

Case 1. Let x(u®) = x(3a). Applying Proposition 3 to the character x; of
G, we get the system

po(u, x5, %) = 15 (16(v3a + v3p) +24) > 0;
]/lS(U,X5, *) = 11—5(—8(1/33 + V3b) + 18) >0,
which has no integral solutions (v3,, V3p).

Case 2. Let x(u®) = x(3b). Applying Proposition 3 to the character
of G, we get the following system

‘IIO(U,X3, *) = %(8(31/33 + V53> + 10) Z O;
py(u, X3, %) = 75 (—2(3v3s + vs55) +5) > 0,

which has no integral solution.
Hence there is no unit in V(ZS;) of order 15.
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Let u be a unit of order 21. By Propositions 1&2, we have
V3s +V3p +v7, = 1.

Since |u| = 3 for any character x of G we need to consider two cases.
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Let u be a unit of order 21. By Propositions 1&2, we have
V3s +V3p +v7, = 1.

Since |u’| = 3 for any character x of G we need to consider two cases.
Case 1. If x(u”) = x(3a). Applying Proposition 3 to the character x5 of
G, we get the system
Ho(u, X3 %) = 57 (12(3v35 — v7,) +6)
pr(u, X3, %) = 55 (—6(3v3a — v72) —3)

0;

>
>0,

which has no integral solution for (v3,, v72).
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Let u be a unit of order 21. By Propositions 1&2, we have
V3s +V3p +v7, = 1.

Since |u’| = 3 for any character x of G we need to consider two cases.
Case 1. If x(u”) = x(3a). Applying Proposition 3 to the character x5 of
G, we get the system
Ho(u, X3, %) = 77 (12(3v32 — v72) +6) > 0;
pr (U X3, %) = 21 (=6(3v3a —v75) — 3) >0,
which has no integral solution for (v3,, v72).

Case 2. If x(u”) = x(3b). Applying Proposition 3 to the character x; of
G, we get the system

(12(31/33 - V7a)) > 0;

Ho(u, x3,%) = 2L
ﬂ7(“v?€3:*) 2L( 6(3v3s —v72)) > 0;
(U5, %) = A ((Bv3s —v72) +7) 20,

which has no integral solution.
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Let u be a unit of order 21. By Propositions 1&2, we have
V3s +V3p +v7, = 1.

Since |u’| = 3 for any character x of G we need to consider two cases.
Case 1. If x(u”) = x(3a). Applying Proposition 3 to the character x5 of
G, we get the system
to(u, X3, %) = 57(12(3v3, — v7,) +6) > 0;
py(u, X3, %) = ﬁ<—6(31/3a —v75) —3) >0,
which has no integral solution for (v3,, v72).
Case 2. If x(u”) = x(3b). Applying Proposition 3 to the character x; of
G, we get the system
*) = 37 (12(3v3a — v75)) > 0;
uy(u X3 %) = 77 (—6(3vsa — v75)) 2 0;
) %((31/35;7_1/73)"‘7) ZO,
on

which has no integral solution
Hence there is no unit in V(ZS7) of order 21.
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Let u be a unit of order 35. By Propositions 1&2, we have vs, + v7, = 1.
Applying Proposition 3 to the character x3 of G, we get

Ho(U, X3, %) = 35 (24(vsa — v75) +4) > 0;
o (U, X3, %) = %(_6(1/55; —v7,) —1) >0,

which leads to a contradiction, and hence there is no unit in V(ZS7) of
order 35.
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Let u be a unit of order 35. By Propositions 1&2, we have vs, + v7, = 1.
Applying Proposition 3 to the character x3 of G, we get

Ho(U, X3, %) = 35 (24(vsa — v75) +4) > 0;
o (U, X3, %) = %(_6(1/55; —v7,) —1) >0,

which leads to a contradiction, and hence there is no unit in V(ZS7) of

order 35.
Therefore the proof is complete []
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