Supersoluble conditions and transfer control

Luigi Serena

Università degli Studi di Firenze

Ischia, march 29th 2012

Luigi Serena Supersoluble conditions and transfer control

Introduction

This work has been done with Anna Luisa Gilotti.

All the groups considered are finite.

I begin remembering some definitions

Introduction

This work has been done with Anna Luisa Gilotti.

All the groups considered are finite.

I begin remembering some definitions

Introduction

This work has been done with Anna Luisa Gilotti.

All the groups considered are finite.

I begin remembering some definitions

Strongly and weakly closed subgroups

Definition

Let T be a subgroup of a finite group G.

- a) A subset W of T is said to be weakly closed in T (with respect to G) if whenever $W^g \subseteq T$ with $g \in G$, we have $W^g = W$.
- b) A subset S of T is said to be strongly closed in T (with respect to G) if for any element $s \in S$ and for any $g \in G$, $s^g \in T$ implies $s^g \in S$ (that is $S^g \cap T \subseteq S$).

Strongly and weakly closed subgroups

Definition

Let T be a subgroup of a finite group G.

- a) A subset W of T is said to be weakly closed in T (with respect to G) if whenever $W^g \subseteq T$ with $g \in G$, we have $W^g = W$.
- b) A subset S of T is said to be strongly closed in T (with respect to G) if for any element $s \in S$ and for any $g \in G$, $s^g \in T$ implies $s^g \in S$ (that is $S^g \cap T \subseteq S$).

a) The interesting case is when W and S in the above definitions are subgroups of a Sylow *p*-subgroup P of a finite group G. In such a case S is strongly closed in P w.r.t. G if and only if

(*)S is strongly closed in $N_G(S)$ w.r.t. G.

In some recent papers the subgroups satisfying (*) are called $\mathcal H\text{-}\mathrm{subgroups}$

- b) Suppose that $P \in Syl_p(G)$. Then typical examples of strongly closed subgroups in P (w.r.t. G) are
 - $P \cap N$ where $N \leq G$.
 - the subgroups of P when P is cyclic
 - the center of P when P is a generalized quaternion group

a) The interesting case is when W and S in the above definitions are subgroups of a Sylow *p*-subgroup P of a finite group G. In such a case S is strongly closed in P w.r.t. G if and only if

(*)S is strongly closed in $N_G(S)$ w.r.t. G.

In some recent papers the subgroups satisfying (*) are called $\mathcal H\text{-}\mathrm{subgroups}$

- b) Suppose that $P \in Syl_p(G)$. Then typical examples of strongly closed subgroups in P (w.r.t. G) are
 - $P \cap N$ where $N \trianglelefteq G$.
 - the subgroups of P when P is cyclic
 - \blacktriangleright the center of P when P is a generalized quaternion group

Definition

Let P be a Sylow p-subgroup of a finite group G and let V be a normal subgroup of P. We say that V controls transfer in G if

$$G/O^p(G) \cong N_G(V)/O^p(N_G(V))$$

Definition

Let G be a finite group and $P \in Syl_p(G)$. Suppose that V is a strongly closed subgroup of P (w.r.t. G) and let

$$(*) \Phi(V) = V_0 \trianglelefteq V_1 \trianglelefteq \cdots \trianglelefteq V_n = V$$

a chain where $\Phi(V)$ is strongly closed in P (w.r.t. G), V_i is weakly closed in P (w.r.t. G) and $[V_i : V_{i-1}] = p$ for i = 1, ..., n. Then we say that (*) is a Φ - chain of V.

Definition

Let P be a Sylow p-subgroup of a finite group G and let V be a normal subgroup of P. We say that V controls transfer in G if

$$G/O^p(G) \cong N_G(V)/O^p(N_G(V))$$

Definition

Let G be a finite group and $P \in Syl_p(G)$. Suppose that V is a strongly closed subgroup of P (w.r.t. G) and let

$$(*) \Phi(V) = V_0 \trianglelefteq V_1 \trianglelefteq \cdots \trianglelefteq V_n = V$$

a chain where $\Phi(V)$ is strongly closed in P (w.r.t. G), V_i is weakly closed in P (w.r.t. G) and $[V_i : V_{i-1}] = p$ for i = 1, ..., n. Then we say that (*) is a Φ - chain of V.

We have the following result

Theorem

[A.L.Gilotti-L.S. 2011] let G be a finite group and $P \in Syl_p(G)$. Let $V \leq P$ and suppose that V and $\Phi(V)$ are strongly closed subgroups in P with respect to G. Then

$$G/O^p(G) \cong N/O^p(N)$$

where $N = N_G(V)$.

Proposition

[A.L.Gilotti-L.S. 2012] Let G a finite group and P a Sylow p-subgroup of G. Suppose that V is a strongly closed subgroup of P (w.r.t. G) such that

a) V possesses a
$$\Phi$$
-chain

b) P/V is cyclic.

Then

$$G/O^p(G) \cong N_G(P)/O^p(N_G(P))$$

If moreover p is the smallest prime which divides |G|, then G has a normal Sylow p-complement

We observe that if we exclude one of the two condition a) or b), then the result is not true.

- Consider for example $G = Sym_4$ and let $P \in Syl_2(G)$. Then $1 \lhd V \lhd P$ is chain in which V (the Klein group) is normal in G and then strongly closed. Moreover P/V is cyclic but V has not a Φ -chain. On the other hand $N_G(P) = P$ but G has not a normal Sylow 2-complement.
- ▶ Let G = SL(2,7) and $P = Q_{16} \in Syl_2(G)$. Let V = Z(P). Then $1 \triangleleft V \triangleleft P$ is a chain in which V has a Φ -chain but P/Z(P) is not cyclic. On the other hand $N_G(P) = P$ but G has not a normal Sylow 2-complement.

We observe that if we exclude one of the two condition a) or b), then the result is not true.

- Consider for example $G = Sym_4$ and let $P \in Syl_2(G)$. Then $1 \lhd V \lhd P$ is chain in which V (the Klein group) is normal in G and then strongly closed. Moreover P/V is cyclic but V has not a Φ -chain. On the other hand $N_G(P) = P$ but G has not a normal Sylow 2-complement.
- ▶ Let G = SL(2,7) and $P = Q_{16} \in Syl_2(G)$. Let V = Z(P). Then $1 \triangleleft V \triangleleft P$ is a chain in which V has a Φ -chain but P/Z(P) is not cyclic. On the other hand $N_G(P) = P$ but G has not a normal Sylow 2-complement.

An other observation is the following. If we substitute the condition $\Phi(V)$ strongly closed with $\Phi(V)$ weakly closed in the definition of a Φ -chain, then the result in the above proposition is not true. For example consider the group G = PSL(2, 17) and let $P \in Syl_2(G)$. Then P is dihedral of order 16. The Frattini subgroup $\Phi(P)$ is cyclic of order 4 and then is weakly closed in P (w.r.t. G). Moreover if V_1 is the subgroup of order 8 then V_1 is weakly closed in P (w.r.t. G) and we have the chain $\Phi(P) = V_o \triangleleft V_1 \triangleleft V_2 = P$ with $|V_i/V_{i-1}| = 2$. However $N_G(P) = P$ but G is not 2-nilpotent.

From the above proposition we can deduce the following characterization of supersoluble groups

Proposition

A finite group G is supersoluble if and only if there is a normal subgroup N such that G/N has cyclic Sylow subgroups and for every Sylow subgroup P of G we have that $P \cap N$ has a Φ -chain.

From the above proposition we can deduce the following characterization of supersoluble groups

Proposition

A finite group G is supersoluble if and only if there is a normal subgroup N such that G/N has cyclic Sylow subgroups and for every Sylow subgroup P of G we have that $P \cap N$ has a Φ -chain.

Strict p - G-chain

Definition

Luigi Serena

Let G be a finite group and $P \in Syl_p(G)$. Let V be a strongly closed subgroup of P (w.r.t. G). We say that

$$1 = V_o \trianglelefteq V_1 \trianglelefteq V_2 \ldots \trianglelefteq V_n = V$$

is a strict p - G-chain of V if $V_i, i = 1, ..., n$ is weakly closed in P(w.r.t. G) and $|V_i : V_{i-1}| = p, i = 1, ..., n$.

We have the following

Proposition

Let G be a finite group, $p \in \pi(G)$ and $P \in Syl_p(G)$. Suppose that V is a strongly closed subgroup of P (w.r.t. G) which possesses a strict p - G- chain and $(|N_G(V) : C_G(V)|, p - 1) = 1$. Then $V \in Syl_p(V^G)$

Luigi Serena

We observe that, considering the chain

$$1 = V_o \trianglelefteq V_1 \trianglelefteq V_2 \ldots \trianglelefteq V_n = V$$

in the above proposition, if we change the condition $|V_i : V_{i-1}| = p$ with $V_i/V_{i-1} \leq Z(V/V_{i-1})$ then the result is not true. For example consider a simple Suzuki group G = Sz(q) and let $P \in Syl_2(G)$. Then $\Omega_1(P) = Z(P)$ and it is strongly closed. However $Z(P)^G = G$