Overgroups of Subsystem Subgroups in Exceptional Groups
Alexander Shchegolev
Saint-Petersburg State University

Ischia Group Theory Conference
Ischia-Napoli, March 2012
Joint work with Prof. Nikolai Vavilov
General notations

Φ – irreducible reduced root system of type E_6, E_7, E_8, G_2, F_4.

Δ – subsystem of Φ (not necessary irreducible)

R – commutative associative ring with unity

$G(\Phi, R)$ – Chevalley group of type Φ

$E(\Delta, R)$ – Elementary Chevalley group of type Δ

$W(\Delta)$ – Weyl group of root system Δ considered as a subgroup of $W(\Phi)$
Main conjecture

Let Φ be an irreducible reduced root system, $\Delta \leq \Phi$, satisfying condition (*), R - commutative ring and H be a subgroup of $G(\Phi, R)$ such that

$$E(\Delta, R) \leq H \leq G(\Phi, R),$$

then there exist a unique k-tuple of ideals $(I_\omega)_{\omega=1}^k$ in R such that

$$E^*(\Delta, R, I_1, \ldots, I_k) \leq H \leq NG(E^*(\Delta, R, I_1, \ldots, I_k))$$

k – number of orbits of $W(\Delta)$ on $\Phi \setminus \Delta$

E^* – some subgroup in $G(\Phi, R)$, defined by ideals I_1, \ldots, I_k and containing $E(\Delta, R)$
Description of ideals

Let $E(\Delta, R) \leq H \leq G(\Phi, R)$ For any root $\alpha \in \Phi$
define $I_\alpha := \{\xi \in R|x_\alpha(\xi) \in H\}$

Proposition

1. for any $\alpha \in \Phi$ \hspace{1em} I_α is an ideal in R
2. for any α, β lying in the same orbit of action of $W(\Delta)$ on $\Phi \setminus \Delta$ \hspace{1em} $I_\beta = I_\alpha = I_{[\alpha]}$

Idea of the proof: use Chvalley comutator formula:

$$[x_\alpha(\xi), x_\beta(\zeta), x_{-\beta}(1)] = x_\alpha(\xi\zeta)$$

(true for any roots α, β, such that $\alpha + \beta$ is a root itself)
Description of subgroup E^*, condition (*)

$k = 1$:

$E^*(\Delta, R, I) = E(\Delta, R)E(\Phi, I)$

$k > 1$:

$E^*(\Delta, R, I_1, \ldots, I_k) = \langle x_\alpha(\xi) | \alpha \in \Phi, \xi \in I_{[\alpha]} \rangle$ - generalization of the notion of the elementary net subgroup.

Remark: difficulty of computations depends on the number of orbits

Condition (*):

weak: $\Delta^\perp = \emptyset$

strong: for each α in $\Phi \setminus \Delta$ there exists β in an irreducible component of Δ of rank at least 2 such that $\alpha + \beta$ is a root in Φ.
Example:
\[\Phi = E_6 \]
\[\Delta = 3A_2 \]
E₆, adjoint
orbits of $W(3A_2)$
Summary for $3A_2 \leq E_6$

Orbits $W(3A_2)$ splits $E_6 \setminus 3A_2$ into:

O_1: 9 positive and 18 negative roots, represented by $**2**$, $-**1**$

O_2: 18 positive and 9 negative roots, represented by $**1**$, $-**2**$

Relations for ideals: $I_1^2 \leq I_2$, $I_2^2 \leq I_1$

Chevalley commutator formula for simply laced root system:

$$[x_\alpha(\xi), x_\beta(\zeta)] = x_{\alpha + \beta}(\xi\zeta)$$
Brief results summary for root systems E_6 and E_7

<table>
<thead>
<tr>
<th>Δ</th>
<th>#</th>
<th>Δ</th>
<th>#</th>
<th>Δ</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3A_3 \leq E_6$</td>
<td>2</td>
<td>$D_5 \leq E_6$</td>
<td>2</td>
<td>$A_5 + A_1 \leq E_6$</td>
<td>1</td>
</tr>
<tr>
<td>$D_4 \leq E_6$</td>
<td>6</td>
<td>$2A_2 + A_1 \leq E_6$</td>
<td>6</td>
<td>$A_3 + 2A_1 \leq E_6$</td>
<td>5</td>
</tr>
<tr>
<td>$A_7 \leq E_7$</td>
<td>1</td>
<td>$A_5 + A_2 \leq E_7$</td>
<td>2</td>
<td>$E_6 \leq E_7$</td>
<td>2</td>
</tr>
<tr>
<td>$A_6 \leq E_7$</td>
<td>4</td>
<td>$A_4 + A_2 \leq E_7$</td>
<td>6</td>
<td>$3A_2 \leq E_7$</td>
<td>8</td>
</tr>
<tr>
<td>$D_6 + A_1 \leq E_7$</td>
<td>1</td>
<td>$D_5 + A_1 \leq E_7$</td>
<td>4</td>
<td>$A_3 + A_2 + A_1 \leq E_7$</td>
<td>8</td>
</tr>
<tr>
<td>$(A_1 + A_5)’ \leq E_7$</td>
<td>5</td>
<td>$(A_1 + A_5)'' \leq E_7$</td>
<td>6</td>
<td>$D_4 + 3A_1 \leq E_7$</td>
<td>3</td>
</tr>
<tr>
<td>$A_4 + A_1 \leq E_7$</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remaining steps

1. Description of normalizer
2. Extraction of unipotents
3. Inclusion in the normalizer
Theorem: Let R be a commutative ring and H be a subgroup in $G(E_6, R)$ containing $E(A_5 + A_1, R)$, then there exists a unique ideal I such that

$$E(A_5 + A_1, R)E(E_6, I) \leq H \leq N_{G(E_6, R)}(E(A_5 + A_1, R)E(E_6, I))$$
Bibliography

[PSV] E. Plotkin, A. Semenov, and N. Vavilov. Visual basic representa-

Thank You!