Let w be a group-word in n variables, and let G be a group.
Let w be a group-word in n variables, and let G be a group. The verbal subgroup $w(G)$ of G determined by w is the subgroup generated by the set G_w consisting of all values $w(g_1, \ldots, g_n)$, where g_1, \ldots, g_n are elements of G.

A word w is said to be concise if whenever G_w is finite for a group G, it always follows that $w(G)$ is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form. On the other hand, many relevant words are known to be concise. For instance, Turner-Smith showed that the lower central words γ_k and the derived words δ_k are concise. Merzlyakov showed that every word is concise in the class of linear groups. There is an open problem, due to Dan Segal, whether every word is concise in the class of residually finite groups.
Let w be a group-word in n variables, and let G be a group. The verbal subgroup $w(G)$ of G determined by w is the subgroup generated by the set G_w consisting of all values $w(g_1, \ldots, g_n)$, where g_1, \ldots, g_n are elements of G. A word w is said to be concise if whenever G_w is finite for a group G, it always follows that $w(G)$ is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form.
Let w be a group-word in n variables, and let G be a group. The verbal subgroup $w(G)$ of G determined by w is the subgroup generated by the set G_w consisting of all values $w(g_1, \ldots, g_n)$, where g_1, \ldots, g_n are elements of G. A word w is said to be concise if whenever G_w is finite for a group G, it always follows that $w(G)$ is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form. On the other hand, many relevant words are known to be concise.

For instance, Turner-Smith showed that the lower central words γ_k and the derived words δ_k are concise. Merzlyakov showed that every word is concise in the class of linear groups. There is an open problem, due to Dan Segal, whether every word is concise in the class of residually finite groups.
Let \(w \) be a group-word in \(n \) variables, and let \(G \) be a group. The verbal subgroup \(w(G) \) of \(G \) determined by \(w \) is the subgroup generated by the set \(G_w \) consisting of all values \(w(g_1, \ldots, g_n) \), where \(g_1, \ldots, g_n \) are elements of \(G \). A word \(w \) is said to be concise if whenever \(G_w \) is finite for a group \(G \), it always follows that \(w(G) \) is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form. On the other hand, many relevant words are known to be concise. For instance, Turner-Smith showed that the lower central words \(\gamma_k \) and the derived words \(\delta_k \) are concise.
Let w be a group-word in n variables, and let G be a group. The verbal subgroup $w(G)$ of G determined by w is the subgroup generated by the set G_w consisting of all values $w(g_1, \ldots, g_n)$, where g_1, \ldots, g_n are elements of G. A word w is said to be concise if whenever G_w is finite for a group G, it always follows that $w(G)$ is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form. On the other hand, many relevant words are known to be concise. For instance, Turner-Smith showed that the lower central words γ_k and the derived words δ_k are concise. Merzlyakov showed that every word is concise in the class of linear groups.
Let \(w \) be a group-word in \(n \) variables, and let \(G \) be a group. The verbal subgroup \(w(G) \) of \(G \) determined by \(w \) is the subgroup generated by the set \(G_w \) consisting of all values \(w(g_1, \ldots, g_n) \), where \(g_1, \ldots, g_n \) are elements of \(G \). A word \(w \) is said to be concise if whenever \(G_w \) is finite for a group \(G \), it always follows that \(w(G) \) is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form. On the other hand, many relevant words are known to be concise. For instance, Turner-Smith showed that the lower central words \(\gamma_k \) and the derived words \(\delta_k \) are concise. Merzlyakov showed that every word is concise in the class of linear groups. There is an open problem, due to Dan Segal, whether every word is concise in the class of residually finite groups.
Let \(w \) be a group-word in \(n \) variables, and let \(G \) be a group. The verbal subgroup \(w(G) \) of \(G \) determined by \(w \) is the subgroup generated by the set \(G_w \) consisting of all values \(w(g_1, \ldots, g_n) \), where \(g_1, \ldots, g_n \) are elements of \(G \). A word \(w \) is said to be concise if whenever \(G_w \) is finite for a group \(G \), it always follows that \(w(G) \) is finite. P. Hall asked whether every word is concise, but later Ivanov proved that this problem has a negative solution in its general form. On the other hand, many relevant words are known to be concise. For instance, Turner-Smith showed that the lower central words \(\gamma_k \) and the derived words \(\delta_k \) are concise. Merzlyakov showed that every word is concise in the class of linear groups. There is an open problem, due to Dan Segal, whether every word is concise in the class of residually finite groups.
There are several natural ways to look at Hall’s question from a different angle. The circle of problems arising in this context can be characterized as follows.
There are several natural ways to look at Hall’s question from a different angle. The circle of problems arising in this context can be characterized as follows.

Given a word w and a group G, assume that certain restrictions are imposed on the set G_w. How does this influence the properties of the verbal subgroup $w(G)$?
There are several natural ways to look at Hall’s question from a different angle. The circle of problems arising in this context can be characterized as follows.

Given a word w and a group G, assume that certain restrictions are imposed on the set G_w. How does this influence the properties of the verbal subgroup $w(G)$?
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*.
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial.
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word

$$[[x_1, x_2], [y_1, y_2, y_5], z]$$
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word

\[
[[x_1, x_2], [y_1, y_2, y_3], z]
\]

is a multilinear commutator
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word

\[
[[x_1, x_2], [y_1, y_2, y_5], z]
\]

is a multilinear commutator while the Engel word

...
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word

\[
[[x_1, x_2], [y_1, y_2, y_5], z]
\]

is a multilinear commutator while the Engel word

\[
[x, y, y, y]
\]
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word

$$[[x_1, x_2], [y_1, y_2, y_5], z]$$

is a multilinear commutator while the Engel word

$$[x, y, y, y]$$

is not.
Most of the words considered in this talk are *multilinear commutators*, also known under the name of *outer commutator words*. These are words that have a form of a multilinear Lie monomial. For example the word

$$[[x_1, x_2], [y_1, y_2, y_5], z]$$

is a multilinear commutator while the Engel word

$$[x, y, y, y]$$

is not.
An important family of multilinear commutators are the lower central words γ_k, given by

$$
\gamma_1 = x_1, \quad \gamma_k = [\gamma_{k-1}, x_k] = [x_1, \ldots, x_k], \quad \text{for } k \geq 2.
$$
An important family of multilinear commutators are the lower central words γ_k, given by

$$\gamma_1 = x_1, \quad \gamma_k = [\gamma_{k-1}, x_k] = [x_1, \ldots, x_k], \quad \text{for } k \geq 2.$$

The corresponding verbal subgroups $\gamma_k(G)$ are the terms of the lower central series of G.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
An important family of multilinear commutators are the lower central words γ_k, given by

$$
\gamma_1 = x_1, \quad \gamma_k = [\gamma_{k-1}, x_k] = [x_1, \ldots, x_k], \quad \text{for } k \geq 2.
$$

The corresponding verbal subgroups $\gamma_k(G)$ are the terms of the lower central series of G. Another distinguished sequence of outer commutator words are the derived words δ_k, on 2^k variables, which are defined recursively by
An important family of multilinear commutators are the lower central words γ_k, given by

\[
\gamma_1 = x_1, \quad \gamma_k = [\gamma_{k-1}, x_k] = [x_1, \ldots, x_k], \quad \text{for } k \geq 2.
\]

The corresponding verbal subgroups $\gamma_k(G)$ are the terms of the lower central series of G. Another distinguished sequence of outer commutator words are the derived words δ_k, on 2^k variables, which are defined recursively by

\[
\delta_0 = x_1, \quad \delta_k = [\delta_{k-1}(x_1, \ldots, x_{2^{k-1}}), \delta_{k-1}(x_{2^{k-1}+1}, \ldots, x_{2^k})],
\]
An important family of multilinear commutators are the lower central words γ_k, given by

$$\gamma_1 = x_1, \quad \gamma_k = [\gamma_{k-1}, x_k] = [x_1, \ldots, x_k], \quad \text{for } k \geq 2.$$

The corresponding verbal subgroups $\gamma_k(G)$ are the terms of the lower central series of G. Another distinguished sequence of outer commutator words are the derived words δ_k, on 2^k variables, which are defined recursively by

$$\delta_0 = x_1, \quad \delta_k = [\delta_{k-1}(x_1, \ldots, x_{2k-1}), \delta_{k-1}(x_{2k-1+1}, \ldots, x_{2k})],$$

The verbal subgroup that corresponds to the word δ_k is the familiar kth derived subgroup of G usually denoted by $G^{(k)}$.
An important family of multilinear commutators are the lower central words γ_k, given by

$$
\gamma_1 = x_1, \quad \gamma_k = [\gamma_{k-1}, x_k] = [x_1, \ldots, x_k], \quad \text{for } k \geq 2.
$$

The corresponding verbal subgroups $\gamma_k(G)$ are the terms of the lower central series of G. Another distinguished sequence of outer commutator words are the derived words δ_k, on 2^k variables, which are defined recursively by

$$
\delta_0 = x_1, \quad \delta_k = \left[\delta_{k-1}(x_1, \ldots, x_{2^{k-1}}), \delta_{k-1}(x_{2^{k-1}+1}, \ldots, x_{2^k}) \right],
$$

The verbal subgroup that corresponds to the word δ_k is the familiar kth derived subgroup of G usually denoted by $G^{(k)}$.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
It was shown in a joint work with J.R. Rogério in 2007 that if \(w \) is either the lower central word \(\gamma_k \) or the derived word \(\delta_k \) and \(G \) is a group in which all \(w \)-values are contained in a union of finitely many Chernikov subgroups, then \(w(G) \) is Chernikov.
It was shown in a joint work with J.R. Rogério in 2007 that if w is either the lower central word γ_k or the derived word δ_k and G is a group in which all w-values are contained in a union of finitely many Chernikov subgroups, then $w(G)$ is Chernikov.

A group is Chernikov iff it is a finite extension of a direct sum of finitely many Prüfer groups C_{p^∞}.
It was shown in a joint work with J.R. Rogério in 2007 that if w is either the lower central word γ_k or the derived word δ_k and G is a group in which all w-values are contained in a union of finitely many Chernikov subgroups, then $w(G)$ is Chernikov.

A group is Chernikov iff it is a finite extension of a direct sum of finitely many Prüfer groups $C_{p^{\infty}}$.

Another result of this nature (with Gustavo Fernández-Alcober, 2008):

They also showed that $\gamma_k(G)$ can be neither cyclic nor finite.
It was shown in a joint work with J.R. Rogério in 2007 that if \(w \) is either the lower central word \(\gamma_k \) or the derived word \(\delta_k \) and \(G \) is a group in which all \(w \)-values are contained in a union of finitely many Chernikov subgroups, then \(w(G) \) is Chernikov.

A group is Chernikov iff it is a finite extension of a direct sum of finitely many Prüfer groups \(C_{p^\infty} \).

Another result of this nature (with Gustavo Fernández-Alcober, 2008): If \(G \) is a group in which all commutators are contained in a union of finitely many cyclic subgroups, then \(G' \) is either cyclic or finite.
It was shown in a joint work with J.R. Rogério in 2007 that if w is either the lower central word γ_k or the derived word δ_k and G is a group in which all w-values are contained in a union of finitely many Chernikov subgroups, then $w(G)$ is Chernikov.

A group is Chernikov iff it is a finite extension of a direct sum of finitely many Prüfer groups C_{p^∞}.

Another result of this nature (with Gustavo Fernández-Alcober, 2008): If G is a group in which all commutators are contained in a union of finitely many cyclic subgroups, then G' is either cyclic or finite.

G. Cutulo and Ch. Nicotera (2010): If G is a group in which all γ_k-values are contained in a union of finitely many cyclic subgroups, then $\gamma_k(G)$ is finite-by-cyclic.
It was shown in a joint work with J.R. Rogério in 2007 that if \(w \) is either the lower central word \(\gamma_k \) or the derived word \(\delta_k \) and \(G \) is a group in which all \(w \)-values are contained in a union of finitely many Chernikov subgroups, then \(w(G) \) is Chernikov.

A group is Chernikov iff it is a finite extension of a direct sum of finitely many Prüfer groups \(C_{p^\infty} \).

Another result of this nature (with Gustavo Fernández-Alcober, 2008): If \(G \) is a group in which all commutators are contained in a union of finitely many cyclic subgroups, then \(G' \) is either cyclic or finite.

G. Cutulo and Ch. Nicotera (2010): If \(G \) is a group in which all \(\gamma_k \)-values are contained in a union of finitely many cyclic subgroups, then \(\gamma_k(G) \) is finite-by-cyclic. They also showed that \(\gamma_k(G) \) can be neither cyclic nor finite.
It was shown in a joint work with J.R. Rogério in 2007 that if \(w \) is either the lower central word \(\gamma_k \) or the derived word \(\delta_k \) and \(G \) is a group in which all \(w \)-values are contained in a union of finitely many Chernikov subgroups, then \(w(G) \) is Chernikov.

A group is Chernikov iff it is a finite extension of a direct sum of finitely many Prüfer groups \(C_{p^\infty} \).

Another result of this nature (with Gustavo Fernández-Alcober, 2008): If \(G \) is a group in which all commutators are contained in a union of finitely many cyclic subgroups, then \(G' \) is either cyclic or finite.

G. Cutulo and Ch. Nicotera (2010): If \(G \) is a group in which all \(\gamma_k \)-values are contained in a union of finitely many cyclic subgroups, then \(\gamma_k(G) \) is finite-by-cyclic. They also showed that \(\gamma_k(G) \) can be neither cyclic nor finite.
These results remind the situation with coverings of groups.

A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$.

If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i.

In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G. In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.

If the set of all w-values in a group G can be covered by finitely many subgroups, one could hope to get some information about the structure of the verbal subgroup $w(G)$.

Pavel Shumyatsky

On Verbal Subgroups in Finite and Profinite Groups
These results remind the situation with coverings of groups. A covering of a group \(G \) is a family \(\{ S_i \}_{i \in I} \) of subsets of \(G \) such that \(G = \bigcup_{i \in I} S_i \).

If \(\{ H_i \}_{i \in I} \) is a covering of \(G \) by subgroups, it is natural to ask what information about \(G \) can be deduced from properties of the subgroups \(H_i \).

In the case where the covering is finite actually quite a lot about the structure of \(G \) can be said. The first result in this direction is due to Baer who proved that \(G \) admits a finite covering by abelian subgroups if and only if it is central-by-finite.

The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if \(\{ S_i \} \) is a finite covering of \(G \) by cosets of subgroups, then \(G \) is also covered by the cosets \(S_i \) corresponding to subgroups of finite index in \(G \).

In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.

If the set of all \(w \)-values in a group \(G \) can be covered by finitely many subgroups, one could hope to get some information about the structure of the verbal subgroup \(w(G) \).
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i.

In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G. In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.

If the set of all w-values in a group G can be covered by finitely many subgroups, one could hope to get some information about the structure of the verbal subgroup $w(G)$.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said.

The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G. In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.

If the set of all w-values in a group G can be covered by finitely many subgroups, one could hope to get some information about the verbal subgroup $w(G)$.
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite.

If the set of all w-values in a group G can be covered by finitely many subgroups, one could hope to get some information about the structure of the verbal subgroup $w(G)$. Pavel Shumyatsky
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954:
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G. In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G. In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.

If the set of all w-values in a group G can be covered by finitely many subgroups, one could hope to get some information about the structure of the verbal subgroup $w(G)$.
These results remind the situation with coverings of groups. A covering of a group G is a family $\{S_i\}_{i \in I}$ of subsets of G such that $G = \bigcup_{i \in I} S_i$. If $\{H_i\}_{i \in I}$ is a covering of G by subgroups, it is natural to ask what information about G can be deduced from properties of the subgroups H_i. In the case where the covering is finite actually quite a lot about the structure of G can be said. The first result in this direction is due to Baer who proved that G admits a finite covering by abelian subgroups if and only if it is central-by-finite. The nontrivial part of this assertion is an immediate consequence of a subsequent result of B.H. Neumann, 1954: if $\{S_i\}$ is a finite covering of G by cosets of subgroups, then G is also covered by the cosets S_i corresponding to subgroups of finite index in G. In other words, we can get rid of the cosets of subgroups of infinite index without losing the covering property.

If the set of all w-values in a group G can be covered by finitely many subgroups, one could hope to get some information about the structure of the verbal subgroup $w(G)$.
In this talk I would like to speak on some new results on the case where the group G is profinite.
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups.
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups. In the context of profinite groups all the usual concepts of group theory are interpreted topologically.
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups. In the context of profinite groups all the usual concepts of group theory are interpreted topologically. In particular, by a subgroup of a profinite group we mean a closed subgroup.
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups. In the context of profinite groups all the usual concepts of group theory are interpreted topologically. In particular, by a subgroup of a profinite group we mean a closed subgroup. A subgroup is said to be generated by a set S if it is topologically generated by S.
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups. In the context of profinite groups all the usual concepts of group theory are interpreted topologically. In particular, by a subgroup of a profinite group we mean a closed subgroup. A subgroup is said to be generated by a set S if it is topologically generated by S. In particular, $w(G)$ is the minimal closed subgroup containing all the values of w.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
In this talk I would like to speak on some new results on the case where the group G is profinite. Most results presented here were obtained in a joint work with Cristina Acciarri.

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups. In the context of profinite groups all the usual concepts of group theory are interpreted topologically. In particular, by a subgroup of a profinite group we mean a closed subgroup. A subgroup is said to be generated by a set S if it is topologically generated by S. In particular, $w(G)$ is the minimal closed subgroup containing all the values of w.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite. Periodic profinite groups have received a good deal of attention in the past.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite. Periodic profinite groups have received a good deal of attention in the past. In particular, using Wilson’s reduction theorem, Zelmanov has been able to prove local finiteness of periodic compact groups.
Theorem

Let \(w \) be an outer commutator word and \(G \) a profinite group that has finitely many periodic subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(w \)-values in \(G \). Then \(w(G) \) is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite. Periodic profinite groups have received a good deal of attention in the past. In particular, using Wilson’s reduction theorem, Zelmanov has been able to prove local finiteness of periodic compact groups. Earlier Herfort showed that there exist only finitely many primes dividing the orders of elements of a periodic profinite group.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite. Periodic profinite groups have received a good deal of attention in the past. In particular, using Wilson’s reduction theorem, Zelmanov has been able to prove local finiteness of periodic compact groups. Earlier Herfort showed that there exist only finitely many primes dividing the orders of elements of a periodic profinite group. It is a long-standing problem whether any periodic profinite group has finite exponent.
Theorem

Let \(w \) be an outer commutator word and \(G \) a profinite group that has finitely many periodic subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(w \)-values in \(G \). Then \(w(G) \) is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite. Periodic profinite groups have received a good deal of attention in the past. In particular, using Wilson’s reduction theorem, Zelmanov has been able to prove local finiteness of periodic compact groups. Earlier Herfort showed that there exist only finitely many primes dividing the orders of elements of a periodic profinite group. It is a long-standing problem whether any periodic profinite group has finite exponent. A group is of exponent \(e \) if \(x^e = 1 \) for all \(x \in G \) and \(e \) is the least positive integer with that property.
Theorem

Let w be an outer commutator word and G a profinite group that has finitely many periodic subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. Then $w(G)$ is locally finite.

Recall that a group is periodic (torsion) if every element of the group has finite order. A group is called locally finite if each of its finitely generated subgroups is finite. Periodic profinite groups have received a good deal of attention in the past. In particular, using Wilson’s reduction theorem, Zelmanov has been able to prove local finiteness of periodic compact groups. Earlier Herfort showed that there exist only finitely many primes dividing the orders of elements of a periodic profinite group. It is a long-standing problem whether any periodic profinite group has finite exponent. A group is of exponent e if $x^e = 1$ for all $x \in G$ and e is the least positive integer with that property.
It follows from the proof that if under the hypothesis of the above theorem the subgroups G_1, G_2, \ldots, G_s have finite exponent, then $\omega(G)$ has finite exponent as well.
It follows from the proof that if under the hypothesis of the above theorem the subgroups G_1, G_2, \ldots, G_s have finite exponent, then $w(G)$ has finite exponent as well. We address the question whether the exponent of $w(G)$ is bounded in terms of the exponents of G_1, G_2, \ldots, G_s and s.

Using the Lie-theoretic techniques that Zelmanov created in his solution of the restricted Burnside problem, we obtained the following related result.

Theorem

Let e, k, s be positive integers and G a profinite group that has subgroups G_1, G_2, \ldots, G_s whose union contains all γ^k-values in G. Suppose that each of the subgroups G_1, G_2, \ldots, G_s has finite exponent dividing e. Then $\gamma^k(G)$ has finite (e, k, s)-bounded exponent.
It follows from the proof that if under the hypothesis of the above theorem the subgroups G_1, G_2, \ldots, G_s have finite exponent, then $w(G)$ has finite exponent as well. We address the question whether the exponent of $w(G)$ is bounded in terms of the exponents of G_1, G_2, \ldots, G_s and s. We answered the question in the affirmative only in the particular case where $w = \gamma_k$.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
It follows from the proof that if under the hypothesis of the above theorem the subgroups G_1, G_2, \ldots, G_s have finite exponent, then $w(G)$ has finite exponent as well. We address the question whether the exponent of $w(G)$ is bounded in terms of the exponents of G_1, G_2, \ldots, G_s and s. We answered the question in the affirmative only in the particular case where $w = \gamma_k$. Using the Lie-theoretic techniques that Zelmanov created in his solution of the restricted Burnside problem, we obtained the following related result.
It follows from the proof that if under the hypothesis of the above theorem the subgroups G_1, G_2, \ldots, G_s have finite exponent, then $w(G)$ has finite exponent as well. We address the question whether the exponent of $w(G)$ is bounded in terms of the exponents of G_1, G_2, \ldots, G_s and s. We answered the question in the affirmative only in the particular case where $w = \gamma_k$. Using the Lie-theoretic techniques that Zelmanov created in his solution of the restricted Burnside problem, we obtained the following related result.

Theorem

Let e, k, s be positive integers and G a profinite group that has subgroups G_1, G_2, \ldots, G_s whose union contains all γ_k-values in G. Suppose that each of the subgroups G_1, G_2, \ldots, G_s has finite exponent dividing e. Then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent.
It follows from the proof that if under the hypothesis of the above theorem the subgroups G_1, G_2, \ldots, G_s have finite exponent, then $w(G)$ has finite exponent as well. We address the question whether the exponent of $w(G)$ is bounded in terms of the exponents of G_1, G_2, \ldots, G_s and s. We answered the question in the affirmative only in the particular case where $w = \gamma_k$. Using the Lie-theoretic techniques that Zelmanov created in his solution of the restricted Burnside problem, we obtained the following related result.

Theorem

Let e, k, s be positive integers and G a profinite group that has subgroups G_1, G_2, \ldots, G_s whose union contains all γ_k-values in G. Suppose that each of the subgroups G_1, G_2, \ldots, G_s has finite exponent dividing e. Then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent.
Next, we study the case where all w-values are contained in a union of finitely many subgroups of finite rank.
Next, we study the case where all \(w \)-values are contained in a union of finitely many subgroups of finite rank. A group \(G \) is of finite rank \(r \) if every finitely generated subgroup of \(G \) can be generated by \(r \) elements.

Theorem

Let \(w \) be an outer commutator word and \(G \) a profinite group that has finitely many subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(w \)-values in \(G \). If each of the subgroups \(G_1, G_2, \ldots, G_s \) is of finite rank, then \(w(G) \) has finite rank as well.

Theorem

Let \(k, r, s \) be positive integers and \(G \) a profinite group that has subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(\gamma_k \)-values in \(G \). Suppose that each of the subgroups \(G_1, G_2, \ldots, G_s \) has finite rank at most \(r \). Then \(\gamma_k(G) \) has finite \((k, r, s)\)-bounded rank.
Next, we study the case where all w-values are contained in a union of finitely many subgroups of finite rank. A group G is of finite rank r if every finitely generated subgroup of G can be generated by r elements.

Theorem

Let w be an outer commutator word and G a profinite group that has finitely many subgroups G_1, G_2, \ldots, G_s whose union contains all w-values in G. If each of the subgroups G_1, G_2, \ldots, G_s is of finite rank, then $w(G)$ has finite rank as well.
Next, we study the case where all \(w \)-values are contained in a union of finitely many subgroups of finite rank. A group \(G \) is of finite rank \(r \) if every finitely generated subgroup of \(G \) can be generated by \(r \) elements.

Theorem

Let \(w \) be an outer commutator word and \(G \) a profinite group that has finitely many subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(w \)-values in \(G \). If each of the subgroups \(G_1, G_2, \ldots, G_s \) is of finite rank, then \(w(G) \) has finite rank as well.

Theorem

Let \(k, r, s \) be positive integers and \(G \) a profinite group that has subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(\gamma_k \)-values in \(G \). Suppose that each of the subgroups \(G_1, G_2, \ldots, G_s \) has finite rank at most \(r \). Then \(\gamma_k(G) \) has finite \((k, r, s) \)-bounded rank.
Next, we study the case where all \(w \)-values are contained in a union of finitely many subgroups of finite rank. A group \(G \) is of finite rank \(r \) if every finitely generated subgroup of \(G \) can be generated by \(r \) elements.

Theorem

Let \(w \) be an outer commutator word and \(G \) a profinite group that has finitely many subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(w \)-values in \(G \). If each of the subgroups \(G_1, G_2, \ldots, G_s \) is of finite rank, then \(w(G) \) has finite rank as well.

Theorem

Let \(k, r, s \) be positive integers and \(G \) a profinite group that has subgroups \(G_1, G_2, \ldots, G_s \) whose union contains all \(\gamma_k \)-values in \(G \). Suppose that each of the subgroups \(G_1, G_2, \ldots, G_s \) has finite rank at most \(r \). Then \(\gamma_k(G) \) has finite \((k, r, s)\)-bounded rank.
Sometimes the assumption that the subgroups are countably many is good enough. For example, we have

1. Let G be a profinite group having countably many soluble subgroups whose union contains all w-values. Then $w(G)$ is soluble by finite.

2. Let G be a profinite group having countably many periodic subgroups whose union contains all commutators $[x, y]$ of G. Then G' is locally finite.

3. Let G be a profinite group having countably many subgroups of finite rank whose union contains all commutators $[x, y]$ of G. Then G' is of finite rank.
Sometimes the assumption that the subgroups are countably many is good enough. For example, we have

1. Let G be a profinite group having countably many soluble subgroups whose union contains all w-values. Then $w(G)$ is soluble by finite.

2. Let G be a profinite group having countably many periodic subgroups whose union contains all commutators $[x, y]$ of G. Then G' is locally finite.

3. Let G be a profinite group having countably many subgroups of finite rank whose union contains all commutators $[x, y]$ of G. Then G' is of finite rank.
Sometimes the assumption that the subgroups are countably many is good enough. For example, we have

1. Let G be a profinite group having countably many soluble subgroups whose union contains all w-values. Then $w(G)$ is soluble by finite.
2. Let G be a profinite group having countably many periodic subgroups whose union contains all commutators $[x, y]$ of G. Then G' is locally finite.
Sometimes the assumption that the subgroups are countably many is good enough. For example, we have

1. Let G be a profinite group having countably many soluble subgroups whose union contains all w-values. Then $w(G)$ is soluble by finite.
2. Let G be a profinite group having countably many periodic subgroups whose union contains all commutators $[x, y]$ of G. Then G' is locally finite.
3. Let G be a profinite group having countably many subgroups of finite rank whose union contains all commutators $[x, y]$ of G. Then G' is of finite rank.
Sometimes the assumption that the subgroups are countably many is good enough. For example, we have

1. Let G be a profinite group having countably many soluble subgroups whose union contains all w-values. Then $w(G)$ is soluble by finite.
2. Let G be a profinite group having countably many periodic subgroups whose union contains all commutators $[x, y]$ of G. Then G' is locally finite.
3. Let G be a profinite group having countably many subgroups of finite rank whose union contains all commutators $[x, y]$ of G. Then G' is of finite rank.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite. The following elementary lemma plays a key role in the proof.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite. The following elementary lemma plays a key role in the proof.

Let G be a nilpotent group generated by a commutator-closed subset X which is contained in a union of finitely many subgroups G_1, G_2, \ldots, G_s. Then G can be written as the product $G = G_1 G_2 \cdots G_s$.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite. The following elementary lemma plays a key role in the proof.

Let G be a nilpotent group generated by a commutator-closed subset X which is contained in a union of finitely many subgroups G_1, G_2, \ldots, G_s. Then G can be written as the product $G = G_1 G_2 \cdots G_s$.

Proof: Let K be the last nontrivial term of the lower central series of G.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite. The following elementary lemma plays a key role in the proof.

Let G be a nilpotent group generated by a commutator-closed subset X which is contained in a union of finitely many subgroups G_1, G_2, \ldots, G_s. Then G can be written as the product $G = G_1 G_2 \cdots G_s$.

Proof: Let K be the last nontrivial term of the lower central series of G. Then K is generated by elements of X and so $K = K_1 K_2 \cdots K_s$.
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite. The following elementary lemma plays a key role in the proof.

Let G be a nilpotent group generated by a commutator-closed subset X which is contained in a union of finitely many subgroups G_1, G_2, \ldots, G_s. Then G can be written as the product $G = G_1 G_2 \cdots G_s$.

Proof: Let K be the last nontrivial term of the lower central series of G. Then K is generated by elements of X and so $K = K_1 K_2 \cdots K_s$. Arguing by induction on the class of G assume

$$G = G_1 G_2 \cdots G_s K_1 K_2 \cdots K_s.$$
We will now discuss the proof of the theorem that if G a profinite group that has s subgroups of exponent e whose union contains all γ_k-values in G, then $\gamma_k(G)$ has finite (e, k, s)-bounded exponent. We note that without loss of generality in this theorem G can be assumed finite. The following elementary lemma plays a key role in the proof.

Let G be a nilpotent group generated by a commutator-closed subset X which is contained in a union of finitely many subgroups G_1, G_2, \ldots, G_s. Then G can be written as the product $G = G_1 G_2 \cdots G_s$.

Proof: Let K be the last nontrivial term of the lower central series of G. Then K is generated by elements of X and so $K = K_1 K_2 \cdots K_s$. Arguing by induction on the class of G assume

$$G = G_1 G_2 \cdots G_s K_1 K_2 \cdots K_s.$$

Since all K_i are central, we can move them and the lemma follows.
We will now discuss the proof of the theorem that if \(G \) a profinite group that has \(s \) subgroups of exponent \(e \) whose union contains all \(\gamma_k \)-values in \(G \), then \(\gamma_k(G) \) has finite \((e, k, s)\)-bounded exponent. We note that without loss of generality in this theorem \(G \) can be assumed finite. The following elementary lemma plays a key role in the proof.

Let \(G \) be a nilpotent group generated by a commutator-closed subset \(X \) which is contained in a union of finitely many subgroups \(G_1, G_2, \ldots, G_s \). Then \(G \) can be written as the product \(G = G_1 G_2 \cdots G_s \).

Proof: Let \(K \) be the last nontrivial term of the lower central series of \(G \). Then \(K \) is generated by elements of \(X \) and so \(K = K_1 K_2 \cdots K_s \). Arguing by induction on the class of \(G \) assume

\[
G = G_1 G_2 \cdots G_s K_1 K_2 \cdots K_s.
\]

Since all \(K_i \) are central, we can move them and the lemma follows.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$.

Can we do this for arbitrary multilinear commutators?

Pavel Shumyatsky

On Verbal Subgroups in Finite and Profinite Groups
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$.

Can we do this for arbitrary multilinear commutators?
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1P_2\cdots P_s$. Now let $x \in P$. Write $x = x_1x_2\cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$.

Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators $x_1, x_2, \cdots x_s$ has order dividing e. Can we do this for arbitrary multilinear commutators?
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \ldots, x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators x_1, x_2, \ldots, x_s has order dividing e. Zelmanov’s techniques now can be used to show that $|T|$ is (e, s)-bounded.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1P_2\cdots P_s$. Now let $x \in P$. Write $x = x_1x_2\cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators $x_1, x_2, \cdots x_s$ has order dividing e. Zelmanov's techniques now can be used to show that $|T|$ is (e, s)-bounded. In particular, the order of x is (e, s)-bounded.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators $x_1, x_2, \cdots x_s$ has order dividing e. Zelmanov’s techniques now can be used to show that $|T|$ is (e, s)-bounded. In particular, the order of x is (e, s)-bounded. Therefore the exponent of G' is (e, s)-bounded.
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators $x_1, x_2, \cdots x_s$ has order dividing e. Zelmanov’s techniques now can be used to show that $|T|$ is (e, s)-bounded. In particular, the order of x is (e, s)-bounded. Therefore the exponent of G' is (e, s)-bounded.

This is the idea of the proof in the case where $w = [x, y]$.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators $x_1, x_2, \cdots x_s$ has order dividing e. Zelmanov's techniques now can be used to show that $|T|$ is (e, s)-bounded. In particular, the order of x is (e, s)-bounded. Therefore the exponent of G' is (e, s)-bounded.

This is the idea of the proof in the case where $w = [x, y]$. Can we do this for arbitrary multilinear commutators?
Let G be a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, such that $[x, y] \in \bigcup_i G_i$. Let P be a Sylow p-subgroup of the derived group G'. We wish to show that the exponent of P is (e, s)-bounded. It is a well-known corollary of the Focal Subgroup Theorem that P is generated by commutators. Hence, $P = P_1 P_2 \cdots P_s$. Now let $x \in P$. Write $x = x_1 x_2 \cdots x_s$, where $x_i \in P_i$. Set $T = \langle x_1, x_2, \cdots x_s \rangle$. The subgroup T is a p-group generated by s elements of order dividing e. Moreover every commutator in the generators $x_1, x_2, \cdots x_s$ has order dividing e. Zelmanov’s techniques now can be used to show that $|T|$ is (e, s)-bounded. In particular, the order of x is (e, s)-bounded. Therefore the exponent of G' is (e, s)-bounded.

This is the idea of the proof in the case where $w = [x, y]$. Can we do this for arbitrary multilinear commutators?
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators.
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators. Thus, the following question arises.

Let w be a multilinear commutator, G a finite group and P a p-Sylow subgroup of $w(G)$. Is P generated by w-values?

The above question was addressed in a joint work with C. Acciarri and G.A. Fernández-Alcober.
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators. Thus, the following question arises.

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. The above question was addressed in a joint work with C. Acciarri and G.A. Fernández-Alcober. The obtained result is as follows.
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators. Thus, the following question arises.

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Is P generated by w-values?
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators. Thus, the following question arises.

Let \(w \) be a multilinear commutator, \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(w(G) \). Is \(P \) generated by \(w \)-values?

The above question was addressed in a joint work with C. Acciarri and G.A. Fernández-Alcober.
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators. Thus, the following question arises.

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Is P generated by w-values?

The above question was addressed in a joint work with C. Acciarri and G.A. Fernández-Alcober. The obtained result is as follows.
One difficulty is that we have no Focal Subgroup Theorem for arbitrary multilinear commutators. Thus, the following question arises.

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Is P generated by w-values?

The above question was addressed in a joint work with C. Acciarri and G.A. Fernández-Alcober. The obtained result is as follows.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e,k,s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1 Q_2 \ldots Q_s$, where $Q_i = G_i \cap Q$. Using Zelmanov's Lie-theoretic techniques one can show that Q has (e,k,s)-bounded exponent. We also know that P is generated by powers of γ_k-values – elements of order dividing e. Hence P has (e,k,s)-bounded exponent. This holds for every Sylow subgroup of $\gamma_k(G)$. The result follows.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.
Theorem

Let \(w \) be a multilinear commutator, \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(w(G) \). Then \(P \) is generated by powers of \(w \)-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if \(G \) is a finite group having subgroups \(G_1, G_2, \ldots, G_s \), each of exponent \(e \), whose union contains all \(\gamma_k \)-values, then the exponent of \(\gamma_k(G) \) is \((e, k, s)\)-bounded.

Indeed, let \(P \) be a Sylow \(p \)-subgroup of \(\gamma_k(G) \) and \(Q = \gamma_k(P) \).
Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1 Q_2 \ldots Q_s$, where $Q_i = G_i \cap Q$.

Using Zelmanov’s Lie-theoretic techniques one can show that Q has (e, k, s)-bounded exponent. We also know that P is generated by powers of γ_k-values – elements of order dividing e. Hence P has (e, k, s)-bounded exponent. This holds for every Sylow subgroup of $\gamma_k(G)$. The result follows.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1 Q_2 \ldots Q_s$, where $Q_i = G_i \cap Q$. Using Zelmanov’s Lie-theoretic techniques one can show that Q has (e, k, s)-bounded exponent.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1Q_2\ldots Q_s$, where $Q_i = G_i \cap Q$. Using Zelmanov’s Lie-theoretic techniques one can show that Q has (e, k, s)-bounded exponent. We also know that P is generated by powers of γ_k-values – elements of order dividing e.
Theorem

Let \(w \) be a multilinear commutator, \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(w(G) \). Then \(P \) is generated by powers of \(w \)-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if \(G \) is a finite group having subgroups \(G_1, G_2, \ldots, G_s \), each of exponent \(e \), whose union contains all \(\gamma_k \)-values, then the exponent of \(\gamma_k(G) \) is \((e, k, s)\)-bounded.

Indeed, let \(P \) be a Sylow \(p \)-subgroup of \(\gamma_k(G) \) and \(Q = \gamma_k(P) \). Then \(Q \) is the product \(Q_1 Q_2 \ldots Q_s \), where \(Q_i = G_i \cap Q \). Using Zelmanov’s Lie-theoretic techniques one can show that \(Q \) has \((e, k, s)\)-bounded exponent. We also know that \(P \) is generated by powers of \(\gamma_k \)-values – elements of order dividing \(e \). Hence \(P \) has \((e, k, s)\)-bounded exponent.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1 Q_2 \ldots Q_s$, where $Q_i = G_i \cap Q$. Using Zelmanov's Lie-theoretic techniques one can show that Q has (e, k, s)-bounded exponent. We also know that P is generated by powers of γ_k-values – elements of order dividing e. Hence P has (e, k, s)-bounded exponent. This holds for every Sylow subgroup of $\gamma_k(G)$.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1 Q_2 \ldots Q_s$, where $Q_i = G_i \cap Q$. Using Zelmanov’s Lie-theoretic techniques one can show that Q has (e, k, s)-bounded exponent. We also know that P is generated by powers of γ_k-values – elements of order dividing e. Hence P has (e, k, s)-bounded exponent. This holds for every Sylow subgroup of $\gamma_k(G)$. The result follows.
Theorem

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Then P is generated by powers of w-values.

This result depends on the classification of finite simple groups. Though this is not as good as we would like to get, the result is sufficient to prove that if G is a finite group having subgroups G_1, G_2, \ldots, G_s, each of exponent e, whose union contains all γ_k-values, then the exponent of $\gamma_k(G)$ is (e, k, s)-bounded.

Indeed, let P be a Sylow p-subgroup of $\gamma_k(G)$ and $Q = \gamma_k(P)$. Then Q is the product $Q_1 Q_2 \ldots Q_s$, where $Q_i = G_i \cap Q$. Using Zelmanov’s Lie-theoretic techniques one can show that Q has (e, k, s)-bounded exponent. We also know that P is generated by powers of γ_k-values – elements of order dividing e. Hence P has (e, k, s)-bounded exponent. This holds for every Sylow subgroup of $\gamma_k(G)$. The result follows.
For δ_k the problem remains open.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective. *What makes the exponent of a verbal subgroup bounded?*
For δ_k the problem remains open. We can look at the problem from somewhat different perspective.

What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective. What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n?
For δ_k the problem remains open. We can look at the problem from somewhat different perspective.

What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n? The answer to this is unknown.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective.
What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n? The answer to this is unknown. There is a result of Kleiman (1974) that shows that G' can have exponent bigger than n.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective.

What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n? The answer to this is unknown. There is a result of Kleiman (1974) that shows that G' can have exponent bigger than n. We note the following corollary of the Focal Subgroup Theorem.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective. What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n? The answer to this is unknown. There is a result of Kleiman (1974) that shows that G' can have exponent bigger than n. We note the following corollary of the Focal Subgroup Theorem.

Let G be a finite group in which every nilpotent subgroup generated by commutators has exponent dividing e.

Pavel Shumyatsky
On Verbal Subgroups in Finite and Profinite Groups
For δ_k the problem remains open. We can look at the problem from somewhat different perspective. What makes the exponent of a verbal subgroup bounded?

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n? The answer to this is unknown. There is a result of Kleiman (1974) that shows that G' can have exponent bigger than n. We note the following corollary of the Focal Subgroup Theorem.

Let G be a finite group in which every nilpotent subgroup generated by commutators has exponent dividing e. Then the exponent of G' divides e as well.
For δ_k the problem remains open. We can look at the problem from somewhat different perspective. *What makes the exponent of a verbal subgroup bounded?*

Suppose G is a finite group in which all commutators have order dividing n. Is the exponent of G' bounded in terms of n? The answer to this is unknown. There is a result of Kleiman (1974) that shows that G' can have exponent bigger than n. We note the following corollary of the Focal Subgroup Theorem.

Let G be a finite group in which every nilpotent subgroup generated by commutators has exponent dividing e. Then the exponent of G' divides e as well.
Our result that a Sylow subgroup of $w(G)$ is generated by powers of w-values implies that if every nilpotent subgroup generated by γ_k-commutators has exponent dividing e, then $\gamma_k(G)$ has (k, e)-bounded exponent.
Our result that a Sylow subgroup of $w(G)$ is generated by powers of w-values implies that if every nilpotent subgroup generated by γ_k-commutators has exponent dividing e, then $\gamma_k(G)$ has (k, e)-bounded exponent.

The latest result in this direction is the following theorem.
Our result that a Sylow subgroup of $w(G)$ is generated by powers of w-values implies that if every nilpotent subgroup generated by γ_k-commutators has exponent dividing e, then $\gamma_k(G)$ has (k, e)-bounded exponent.

The latest result in this direction is the following theorem.

Theorem

Let e be a positive integer and w a multilinear commutator. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Then the exponent of the corresponding verbal subgroup $w(G)$ is bounded in terms of e and w only.
Our result that a Sylow subgroup of $w(G)$ is generated by powers of w-values implies that if every nilpotent subgroup generated by γ_k-commutators has exponent dividing e, then $\gamma_k(G)$ has (k, e)-bounded exponent.

The latest result in this direction is the following theorem.

Theorem

Let e be a positive integer and w a multilinear commutator. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Then the exponent of the corresponding verbal subgroup $w(G)$ is bounded in terms of e and w only.
The proof of this result uses a number of deep tools.
The proof of this result uses a number of deep tools. In particular, it uses the classification of finite simple groups and Zelmanov’s solution of the restricted Burnside problem.
The proof of this result uses a number of deep tools. In particular, it uses the classification of finite simple groups and Zelmanov’s solution of the restricted Burnside problem. It is interesting that the reduction from the general case to the case where G is soluble is somewhat reminiscent of the Hall-Higman’s reduction for the restricted Burnside problem.
The proof of this result uses a number of deep tools. In particular, it uses the classification of finite simple groups and Zelmanov’s solution of the restricted Burnside problem. It is interesting that the reduction from the general case to the case where \(G \) is soluble is somewhat reminiscent of the Hall-Higman’s reduction for the restricted Burnside problem. In the same time in our case the reduction uses the solution of the restricted Burnside problem.
The proof of this result uses a number of deep tools. In particular, it uses the classification of finite simple groups and Zelmanov’s solution of the restricted Burnside problem. It is interesting that the reduction from the general case to the case where G is soluble is somewhat reminiscent of the Hall-Higman’s reduction for the restricted Burnside problem. In the same time in our case the reduction uses the solution of the restricted Burnside problem.

As a by-product, we show that if G is a finite soluble group in which any nilpotent subgroup generated by w-values has exponent dividing e, then the Fitting height of G is bounded in terms of e and w only.
The proof of this result uses a number of deep tools. In particular, it uses the classification of finite simple groups and Zelmanov’s solution of the restricted Burnside problem. It is interesting that the reduction from the general case to the case where G is soluble is somewhat reminiscent of the Hall-Higman’s reduction for the restricted Burnside problem. In the same time in our case the reduction uses the solution of the restricted Burnside problem.

As a by-product, we show that if G is a finite soluble group in which any nilpotent subgroup generated by w-values has exponent dividing e, then the Fitting height of G is bounded in terms of e and w only.
Final comments about problems mentioned in this talk.
Final comments about problems mentioned in this talk. Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. This question would not be interesting for non-commutator words. Indeed, consider the case where G is the non-abelian group of order six, $w = x^3$ and $p = 3$. We quickly see that the answer to the above question would be negative.
Final comments about problems mentioned in this talk.

Let \(w \) be a multilinear commutator, \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(w(G) \). Is \(P \) generated by \(w \)-values?
Final comments about problems mentioned in this talk.

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Is P generated by w-values?

This question would not be interesting for non-commutator words.
Final comments about problems mentioned in this talk.

Let \(w \) be a multilinear commutator, \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(w(G) \). Is \(P \) generated by \(w \)-values?

This question would not be interesting for non-commutator words. Indeed, consider the case where \(G \) is the non-abelian group of order six, \(w = x^3 \) and \(p = 3 \).
Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Is P generated by w-values?

This question would not be interesting for non-commutator words. Indeed, consider the case where G is the non-abelian group of order six, $w = x^3$ and $p = 3$. We quickly see that the answer to the above question would be negative.
Final comments about problems mentioned in this talk.

Let w be a multilinear commutator, G a finite group and P a Sylow p-subgroup of $w(G)$. Is P generated by w-values?

This question would not be interesting for non-commutator words. Indeed, consider the case where G is the non-abelian group of order six, $w = x^3$ and $p = 3$. We quickly see that the answer to the above question would be negative.
Another question addressed in this talk –

Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question. The answer is positive for every non-commutator word (easy to check). Actually I think I know also the proof for Engel words and some other non-multilinear commutator words.

Grazie mille per l’attenzione!
Another question addressed in this talk –

Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question. The answer is positive for every non-commutator word (easy to check). Actually I think I know also the proof for Engel words and some other non-multilinear commutator words.

Grazie mille per l'attenzione!

Pavel Shumyatsky
Another question addressed in this talk – Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question.
Another question addressed in this talk –

Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question. The answer is positive for every non-commutator word (easy to check).
Another question addressed in this talk –

Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question. The answer is positive for every non-commutator word (easy to check). Actually I think I know also the proof for Engel words and some other non-multilinear commutator words.
Another question addressed in this talk –

Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question. The answer is positive for every non-commutator word (easy to check). Actually I think I know also the proof for Engel words and some other non-multilinear commutator words.

Grazie mille per l’attenzione!
Another question addressed in this talk –

Let e be a positive integer and w a word. Suppose that G is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e. Is the exponent of the corresponding verbal subgroup $w(G)$ bounded in terms of e and w only?

There are no easy counter-examples to this question. The answer is positive for every non-commutator word (easy to check). Actually I think I know also the proof for Engel words and some other non-multilinear commutator words.

Grazie mille per l’attenzione!