Definitions FAut G is close to a locally finite group FAut G for special types of groups FAut G is close to finitary linear groups

Finitary automorphisms of groups

Daniil Shved, danshved@gmail.com Vissarion Belyaev, v.v.belyaev@list.ru

March 27, 2012

<ロト < 同ト < ヨト < ヨト

DQ P

Definitions

FAut G is close to a locally finite group FAut G for special types of groups FAut G is close to finitary linear groups

Groups $\operatorname{FAut} G$ and $\operatorname{FGL}(V)$

Definition 1

An automorphism φ of a group G is said to be *finitary* if

$\left|G:\mathcal{C}_{G}\left(\varphi\right)\right|<\infty$

200

Definitions

FAut G is close to a locally finite group FAut G for special types of groups FAut G is close to finitary linear groups

Groups $\operatorname{FAut} G$ and $\operatorname{FGL}(V)$

Definition 1

An automorphism φ of a group G is said to be $\mathit{finitary}$ if

 $\left|G:\mathcal{C}_{G}\left(\varphi\right)\right|<\infty$

Definition 2

The set of all such φ , denoted FAut G, is called the group of all finitary automorphisms of G.

<ロト < 同ト < ヨト < ヨト -

Definitions

FAut G is close to a locally finite group FAut G for special types of groups FAut G is close to finitary linear groups

Groups $\operatorname{FAut} G$ and $\operatorname{FGL}(V)$

Definition 1 An automorphism φ of a group G is said to be *finitary* if

 $|G: \mathcal{C}_G(\varphi)| < \infty$

Definition 2

The set of all such φ , denoted FAut G, is called the group of all finitary automorphisms of G.

<ロト < 同ト < ヨト < ヨト

San

Note

If V is a vector space over GF(p), then FAut V = FGL(V).

Definitions FAut G is close to a locally finite group FAut G for special types of groups FAut G is close to finitary linear groups

$\operatorname{FAut} G$ is locally finite "up to an abelian group"

Theorem 1

For an arbitrary G, $\operatorname{FAut} G$ is an extension of an abelian group by a locally finite group.

イロト イポト イラト イラト

San

Theorem 2 For an arbitrary G, [FAut G, FAut G] is locally finite.

$\operatorname{FOut} G$ is always locally finite

Definition 3 The groups of *inner* and *outer* finitary automorphisms of G: FInn $G = FAut G \cap Inn G$ FOut G = FAut G/FInn G

Daniil Shved, danshved@gmail.com Vissarion Belyaev, v.v. Finitary automorphisms of groups

・ロト ・ 一 ト ・ ヨト ・ 日 ト

DQ P

$\operatorname{FOut} G$ is always locally finite

Definition 3 The groups of *inner* and *outer* finitary automorphisms of G: FInn G = FAut $G \cap \text{Inn } G$ FOut G = FAut G/FInn G

Theorem 3 For an arbitrary G, FOut G is locally finite.

Daniil Shved, danshved@gmail.com Vissarion Belyaev, v.v. Finitary automorphisms of groups

$\operatorname{FOut} G$ is always locally finite

Definition 3 The groups of *inner* and *outer* finitary automorphisms of G: $\operatorname{FInn} G = \operatorname{FAut} G \cap \operatorname{Inn} G$ FOut G = FAut G/FInn GTheorem 3 For an arbitrary G, FOut G is locally finite. Corollary For an arbitrary G, FAut FAut G is locally finite.

イロト イポト イヨト イヨト

DQ P

$\operatorname{FAut} G$ for two special types of groups

Theorem 4

If G is semisimple, then $\operatorname{FAut} G$ has a faithful finitary permutation representation.

・ロト ・同ト ・ヨト ・ヨト

200

 $\mathrm{GF}(p)$.

$\operatorname{FAut} G$ for two special types of groups

Theorem 4 If G is semisimple, then FAut G has a faithful finitary permutation representation.

Theorem 5 If G is an abelian p-group, then FAut G has a normal subgroup N such that: (i) N is a ZA-group; (ii) (FAut G)/N has a faithful finitary linear representation over

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

San

 $\begin{array}{c} {\rm Definitions}\\ {\rm FAut}\,G \text{ is close to a locally finite group}\\ {\rm FAut}\,G \text{ for special types of groups}\\ {\rm FAut}\,G \text{ is close to finitary linear groups} \end{array}$

Structure theorem

Theorem 6

For an arbitrary group G there is a normal series in FAut G:

 $1 \leqslant H_1 \leqslant H_2 \leqslant H_3 \leqslant H_4 = \operatorname{FAut} G$

such that

- (i) H_1 is nilpotent of class ≤ 4 ;
- (ii) H_2/H_1 is abelian;
- (iii) H_3/H_2 is a ZA-group;
- (iv) H_4/H_3 can be embedded into the restricted direct product of groups K_i , such that each K_i is a subgroup of $FGL(V_i)$, where V_i is a vector space over a prime field.

イロト イポト イラト イラト

San

No new infinite simple sections

Corollary

Let G be an arbitrary group, and let A/B be an infinite simple section of FAut G. Then there exist a prime p and a vector space V over GF(p) such that A/B is isomorphic to a section of FGL(V).

イロト イポト イラト イラト

San