On groups of odd order admitting an elementary 2-group of automorphisms

Carmela Sica

Università di Salerno

Joint work with Karise G. Oliveira and Pavel Shumyatsky

Ischia Group Theory 2012

・ 同・ ・ ヨ・

Preliminaries

Let G be a group and A a subgroup of Aut(G).

Definitions $C_G(A) = \{g \mid g^a = g \ \forall a \in A\}.$

Image: A = A

Preliminaries

Let G be a group and A a subgroup of Aut(G).

Definitions

$$C_G(A) = \{g \mid g^a = g \ \forall a \in A\}.$$

A is fixed-point-free if $C_G(A) = 1$.

< 4 ₽ > < Ξ

A is fixed-point-free

Let G be a finite group of odd order and derived length k. Suppose that A a subgroup of automorphisms of G, A elementary abelian of order 2^n .

A is fixed-point-free

Let G be a finite group of odd order and derived length k. Suppose that A a subgroup of automorphisms of G, A elementary abelian of order 2^n .

Shumyatsky (1988)

If $C_G(A) = 1$, then G has a normal series

$$G=N_0\geq N_1\geq \cdots \geq N_n=1$$

where N_{i-1}/N_i is nilpotent of class bounded in terms of k and i.

Image: A image: A

Let G be a finite group of odd order and derived length k. Suppose that A a subgroup of automorphisms of G, A elementary abelian of order 2^n .

Shumyatsky, Sica (2010)

There exists a number s = s(k, n) depending only on k and n with the following property. Let R be a normal A-invariant subgroup of G such that $C_R(A) = 1$. Set $N = \bigcap_{a \in A^{\#}} [G, a]$. Then $[R, \underbrace{N, \dots, N}_{s}] = 1$.

Let G be a finite group of odd order and derived length k. Suppose that A a subgroup of automorphisms of G, A elementary abelian of order 2^n .

Shumyatsky, Sica (2010)

There exists a number s = s(k, n) depending only on k and n with the following property. Let R be a normal A-invariant subgroup of G such that $C_R(A) = 1$. Set $N = \bigcap_{a \in A^{\#}} [G, a]$. Then $[R, N, \dots, N] = 1$.

S

Corollary

If
$$C_G(A) = 1$$
. Then $N = \bigcap_{a \in A^{\#}} [G, a]$ is nilpotent of $\{k, n\}$ -bounded class.

Centralizer of exponent e

Let G be a finite group of odd order and derived length k. Suppose that A is a subgroup of automorphisms of G, A elementary abelian of order 2^n .

Shumyatsky (1988)

If $C_G(A) = 1$, then G has a normal series

$$G=N_0\geq N_1\geq \cdots \geq N_n=1$$

where N_{i-1}/N_i is nilpotent of class bounded in terms of k and i.

Centralizer of exponent e

Let G be a finite group of odd order and derived length k. Suppose that A is a subgroup of automorphisms of G, A elementary abelian of order 2^n .

Shumyatsky (1988)

If $C_G(A) = 1$, then G has a normal series

$$G = N_0 \ge N_1 \ge \cdots \ge N_n = 1$$

where N_{i-1}/N_i is nilpotent of class bounded in terms of k and i.

Question

What we can say when $\exp(C_G(A)) = e$?

Centralizer of exponent e

Theorem 1

Let G be a finite group of odd order and of derived length k. Suppose that G admits an elementary abelian group A of automorphisms of order 2^n such that $C_G(A)$ has exponent e. Then G has a normal series

$$G = G_0 \ge T_0 \ge G_1 \ge T_1 \ge \cdots \ge G_n \ge T_n = 1$$

such that the quotients G_i/T_i have $\{k, e, n\}$ -bounded exponent and the quotients T_i/G_{i+1} are nilpotent of $\{k, e, n\}$ -bounded class.

Lemma 1

Let G be a finite group admitting a coprime group of automorphisms A. Then $G = C_G(A)[G, A]$.

< □ > < 同 > < 三 >

Lemma 1

Let G be a finite group admitting a coprime group of automorphisms A. Then $G = C_G(A)[G, A]$.

Lemma 2

Let G be a finite group of odd order and of derived length k. Suppose that G admits an automorphism a of order 2 such that $C_G(a)$ has exponent e. Then [G, a]' has $\{e, k\}$ -bounded exponent.

Let G be a finite group of odd order and derived length k. Suppose that A is a subgroup of automorphisms of G, A elementary abelian of order 2^n .

Proposition 1

If $C_G(A)$ has exponent e, then $N = \bigcap_{a \in A^{\#}} [G, a]$ is an extension of a group of $\{k, e, n\}$ -bounded exponent by a nilpotent group of $\{k, e, n\}$ -bounded class.

Let n = 1. By Lemma 1 it follows that G/[G, a] is of exponent e.

(日) (同) (三) (三)

э

Let n = 1. By Lemma 1 it follows that G/[G, a] is of exponent e. Lemma 2 guarantees that [G, a]' has $\{e, k\}$ -bounded exponent

Image: A image: A

Let n = 1.

By Lemma 1 it follows that G/[G, a] is of exponent e. Lemma 2 guarantees that [G, a]' has $\{e, k\}$ -bounded exponent then

$$G = G_0 \ge [G, a] = T_0 \ge [G, a]' = G_1 \ge T_1 = 1$$

is the required series.

Image: A image: A

Let n = 1.

By Lemma 1 it follows that G/[G, a] is of exponent e.

Lemma 2 guarantees that [G, a]' has $\{e, k\}$ -bounded exponent then

$$G = G_0 \ge [G, a] = T_0 \ge [G, a]' = G_1 \ge T_1 = 1$$

is the required series. Then we argue by induction on n. Since a acts trivially on G/[G, a], for any $a \in A \setminus \{1\}$, A induces on G/[G, a] a group of automorphisms B of order 2^{n-1} with $C_{G/[G,a]}$ of exponent e.

- 4 同 2 4 回 2 4 U

Put $K = \prod_{a \in A^{\#}} G/[G, a]$. We can extend the action of B on K in natural way and $C_K(B)$ has exponent e.

Put $K = \prod_{a \in A^{\#}} G/[G, a]$. We can extend the action of B on K in natural way and $C_K(B)$ has exponent e. Put $N = \bigcap_{a \in A^{\#}} [G, a]$, since G/N embeds in K, by induction G/N has the required series.

Put $K = \prod_{a \in A^{\#}} G/[G, a]$. We can extend the action of B on K in natural way and $C_K(B)$ has exponent e. Put $N = \bigcap_{a \in A^{\#}} [G, a]$, since G/N embeds in K, by induction G/N has the required series. By Proposition 1 the subgroup N is an extension of a group of $\{k, e, n\}$ -bounded exponent by a nilpotent group of $\{k, e, n\}$ -bounded class, and the proof is complete.

Khukhro, Shumyatsky (1999)

Let q a prime number and let G be a finite group of order coprime with q. Suppose that G admits an elementary abelian group A of automorphisms of order q^2 such that $C_G(a)$ has exponent dividing e for any $a \in A^{\#}$. Then G has $\{e, q\}$ -bounded exponent.

Khukhro, Shumyatsky (1999)

Let q a prime number and let G be a finite group of order coprime with q. Suppose that G admits an elementary abelian group A of automorphisms of order q^2 such that $C_G(a)$ has exponent dividing e for any $a \in A^{\#}$. Then G has $\{e, q\}$ -bounded exponent.

Let G be a finite group of odd order and derived length k. Suppose that V is a subgroup of automorphisms of G, V elementary abelian of order 4.

Khukhro, Shumyatsky (1999)

Let q a prime number and let G be a finite group of order coprime with q. Suppose that G admits an elementary abelian group A of automorphisms of order q^2 such that $C_G(a)$ has exponent dividing e for any $a \in A^{\#}$. Then G has $\{e, q\}$ -bounded exponent.

Let G be a finite group of odd order and derived length k. Suppose that V is a subgroup of automorphisms of G, V elementary abelian of order 4.

Question

What we can say when $\gamma_c(C_G(v))$ has exponent dividing e for all automorphisms $v \in V^{\#}$?

< ロ > < 同 > < 回 > < 回 >

Let G be a finite group of odd order and derived length k. Suppose that V is a subgroup of automorphisms of G, V elementary abelian of order 4.

Proposition 2

If $\gamma_c(C_G(v))$ has exponent dividing e for all $v \in V^{\#}$. Then $N = \bigcap_{v \in V^{\#}} [G, v]$ is an extension of a group of $\{e, c, k\}$ -bounded exponent by a nilpotent group of $\{e, c, k\}$ -bounded class.

A (1) < (1) < (1) </p>

Theorem 2

Let G be a finite group of odd order and of derived length k. Suppose that a four-group V acts on G in such way that $\gamma_c(C_G(v))$ has exponent dividing e for all $v \in V^{\#}$. Then G has a normal series

$$G=T_4 \ge T_3 \ge T_2 \ge T_1 \ge T_0 = 1$$

such that the quotients T_4/T_3 and T_2/T_1 are nilpotent of $\{e, c, k\}$ -bounded class and the quotients T_3/T_2 and T_1 have $\{e, c, k\}$ -bounded exponent.

▲□ ► ▲ □ ►

Thanks!

Carmela Sica Elementary 2-group of automorphisms

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ