Unitriangular factorisations of Chevalley groups

Andrei Smolensky

Joint work with Nikolai Vavilov and B. Sury

Ischia Group Theory 2012

Problem:

For given Chevalley group $G = G(\Phi, R)$ find the shortest representation of the form

$$G = UU^{-} \dots U^{\pm},$$

where $U^{\pm} = U^{\pm}(\Phi, R)$ are the unipotent radicals of standard Borel subgroup B or its opposite B^{-} . Chevalley group $G(\Phi, R)$ admits unitriangular factorisation if an only if

- 1. $G(\Phi, R) = E(\Phi, R)$,
- 2. $E(\Phi, R)$ has bounded width with respect to root elements.

Why?

- Over a finite field K of char K = p the subgroup $U(\Phi, K)$ is a Sylow *p*-subgroup.
- Any element of U(n, R), $n \ge 3$ is the product of 2 commutators in E(n, R).

Known results:

- $SL(n, R) = UU^-UU^-$ over rings of stable rank 1 [Hyman Bass, 1964].
- $G = \underbrace{UU^- \dots U^-}_{8}$ over semi-local rings for all Chevalley groups [Andrei Rapinchuk, Igor Rapinchuk, 2010].
- $G = UU^-UU^-U$ over finite fields for all Chevalley group of normal and twisted types, including Suzuki and small Ree groups [Laslo Babai, Nikolai Nikolov, Laslo Pyber, 2008].

New result:

$$G(\Phi, R) = UU^{-}UU^{-}$$

over rings of stable rank 1 for Chevalley groups of normal and twisted types, except for groups of type ${}^{2}\!A_{2n}$.

Definition (terminal root subsystems):

Let Φ be a root system and Π a set of fundamental roots. Then a root system, spanned by all fundamental roots except one of the terminals, is called a terminal subsystem.

Rank reduction theorem (after Oleg Tavgen):

If unitriangular factorisation of length N holds for Chevalley groups, corresponding to terminal subsystems of root system ${}^{\sigma}\Phi$, then it holds for group $G({}^{\sigma}\Phi, R)$ and has the same length N.

Factorisation for SL(2, R) follows immediately from the condition sr(R) = 1.

Thus the following groups have factorisation of length 4:

- all Chevalley groups of normal type
- twisted groups of types ${}^2\!A_{2n+1}$, ${}^2\!D_n$, ${}^3\!D_4$, ${}^2\!E_6$.

Groups of type ${}^{2}\!A_{2n}$:

$$G\left({}^{2}\!A_{2n},R\right) = UU^{-}UU^{-}$$

- \bullet for $R=\mathbb{F}_{q^2}$ a finite involutary field
- for $R = \mathbb{C}$ with complex conjugation as an involution.

Theorem (Sury):

Let $p \in \mathbb{Z}$ be a prime. Then under assumption of Generalised Riemann's Hypothesis simply connected Chevalley group $G\left(\Phi, \mathbb{Z}\left[\frac{1}{p}\right]\right)$ admits unitriangular factorisation

$$G\left(\Phi, \mathbb{Z}\left[\frac{1}{p}\right]\right) = \left(U\left(\Phi, \mathbb{Z}\left[\frac{1}{p}\right]\right) \cdot U^{-}\left(\Phi, \mathbb{Z}\left[\frac{1}{p}\right]\right)\right)^{3}$$

of length 6.

More details can be found in

N. A. Vavilov, A. V. Smolensky, B. Sury, *Unitriangular factori*sations of Chevalley groups, arXiv:1107.5414v1 [math.GR]

Thank you!