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Coxeter groups

A Coxeter system (W ,S) consists of a group W generated by a finite set S of

involutions subject to relations of the form (st)ms,t , for s 6= t ∈ S and suitable

ms,t ∈ Z≥2 ∪ {∞}.

For I ⊆ S the parabolic subsystem is (WI , I ), where WI = 〈I 〉.
Let ` : W −→ N0 be the length function w.r.t. the generating system S.

Define the Poincaré series of (W ,S) as

p(W ,S)(t) =
∑
w∈W

t`(w) ∈ ZJtK.

It is well-known that p(W ,S)(t) is a rational function and, for |W | =∞,

1

p(W ,S)(t)
=

∑
I(S

(−1)|S\I |−1 1

p(WI ,I )(t)
. (?)
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Euler characteristic of Coxeter groups

Theorem (Serre 71)

If (W ,S) is a Coxeter group then W is of type WFL (hence VFP): thus, it admits an

Euler characteristic χW . Moreover,

χW =
1

p(W ,S)(1)
.

A recursive, alternating-sum formula (like (?)) is often associated to the Euler

characteristic of a suitably defined algebraic object. Thus, the following question is

natural:

Main problem

Does there exist an object (associated with (W ,S)) such that its Euler

characteristics coincides with the inverse of the Poincaré series p(W ,S)(t)?

What is a sensible definition of Euler characteristic for such objects?
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Hecke algebras

Datum: a Coxeter system (W ,S), a commutative ring R and a parameter q ∈ R.

R-Hecke algebra Hq(W ,S)
Let H be the free R-module with basis {Tw | w ∈W } and associative R-linear

multiplication defined by

TsTw =

{
Tsw if `(sw) > `(w)

qTsw + (q − 1)Tw if `(sw) < `(w),

for s ∈ S and w ∈W . The function ` is the length function of (W ,S).

For q = 1 ∈ R, one has H1(W ,S) ' R[W ]. Thus, a Hecke algebra can be considered

as a “generic form” or a “deformation” of the group algebra of the Coxeter group.

Hecke algebras (and their parabolic subalgebras) are canonically equipped with

A free R-basis {Tw | w ∈W },
a linear character εq : H −→ R, εq(Tw ) = q`(w) (trivial module Rq),

an antipodal map \ : Hop −→ H, (Tw )\ = Tw−1 ,

a poset of parabolic subalgebras HI .
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Euler algebras, 1

We propose the definition of Euler algebras to single out the sufficient conditions for

an (associative) algebra to admit a notion of Euler characteristic.

This mimicks the behaviour of group algebras.

Definition

Euler R-algebra Let A be an associative R-algebra, together with

be a free R-basis B 3 1,

an antipodal map \ : Hop −→ H such that B\ = B,

an augmentation ε : A −→ R onto a one-dimensional left A-module Rε, such that

ε ◦ \ = ε,

a canonical trace function µ : A/[A,A] −→ R defined by µ(a) = δ1,aε(a) for a ∈ B.

Suppose further that Rq is a left A-module of type FP, i.e., it admits a finite, projective

A-resolution.

Then, the 5-tuple A = (A,B, \, ε, µ) is an Euler algebra.
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Euler algebras, 2

Let M be a left A-module of type FP (with a finite, projective resolution P•). The

Hattori–Stallings rank of M is defined as the element

rM =
∑
k≥0

(−1)kp∗k(pk) + [A,A] ∈ A/[A,A],

where γ(p∗k ⊗ pk) = idPk for the natural isomorphism γ : P∗k ⊗ Pk −→ EndA(Pk). This

only depends on the module M, and not on P•.

If B ≤ A is an inclusion of Euler algebras and if A is B-flat, then, for B-module M

rindA
B
M = rM + [A,A].

A trace function is a map of R-modules µ : A/[A,A] −→ R.

Definition (Euler characteristic)

For an R-Euler algebra A = (A,B, \, ε, µ), define

χA = µ(rRε).

T. Terragni (UniMiB) Euler characteristic of Hecke algebras IGT 2012 6 / 10



Euler algebras, 2

Let M be a left A-module of type FP (with a finite, projective resolution P•). The

Hattori–Stallings rank of M is defined as the element

rM =
∑
k≥0

(−1)kp∗k(pk) + [A,A] ∈ A/[A,A],

where γ(p∗k ⊗ pk) = idPk for the natural isomorphism γ : P∗k ⊗ Pk −→ EndA(Pk). This

only depends on the module M, and not on P•.

If B ≤ A is an inclusion of Euler algebras and if A is B-flat, then, for B-module M

rindA
B
M = rM + [A,A].

A trace function is a map of R-modules µ : A/[A,A] −→ R.

Definition (Euler characteristic)

For an R-Euler algebra A = (A,B, \, ε, µ), define

χA = µ(rRε).

T. Terragni (UniMiB) Euler characteristic of Hecke algebras IGT 2012 6 / 10



Hecke algebras are Euler, 1

We already know that Hecke algebras admit a free basis {Tw | w ∈W }, an antipode

Tw 7→ Tw−1 , an augmentation εq and a canonical trace function µ defined by

µ(Tw ) = δ1,w .

Last step: proving that the trivial module Rq is of type FP.

Coxeter groups have a very rich geometry, and from the Coxeter complex one can

produce resolutions of the trivial module.

Unfortunately, there is no obvious

geometry for Hecke algebras, but we constructed a “module-theoretic” analogue C• of

the Coxeter complex Σ (canonical up to the choice of a total order < on S).
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Let I ⊆ S and denote indSI the induction from left HI - to left H-modules. If WI is finite

and p(W ,S)(q) ∈ R is invertible, then let eI = 1
p(W ,S)(q)

∑
w∈WI Tw . Then

e2
I = eI and indSI Rq ' HeI .

Moreover the Hattori–Stallings rank of indSI Rq is eI + [HI ,HI ].
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Hecke algebras are Euler, 2

For I ⊆ S and s ∈ S, define deg(I ) = |S | − |I | − 1 and the sign map

sgn(s, I ) = (−1)|{ t∈S\I | t<s }|.

The Hecke–Coxeter complex (C•, ∂•).

(C•, ∂•) = 0 //C|S|−1

∂|S|−1 //C|S|−2
// . . . //C1

∂1 //C0
//0 ,

where Ck =
∐

deg(I )=k indSI Rq and

∂k(TwηI ) =
∑
s∈S\I
J=It{s}

sgn(s, I )εq(TwJ )TwJηJ .

Theorem A

Let (W ,S) be a Coxeter group with 2 ≤ |S | <∞ and let C be the Hecke–Coxeter

complex of the R-Hecke algebra H = Hq(W ,S).

If (W ,S) is spherical, then Hk(C) = 0 unless k = 0 or k = |S | − 1. Moreover,

H0(C) ' Rq and H|S|−1(C) ' R−1.

If (W ,S) is non-spherical then C is acyclic with H0(C) ' Rq.

T. Terragni (UniMiB) Euler characteristic of Hecke algebras IGT 2012 8 / 10



Hecke algebras are Euler, 2

For I ⊆ S and s ∈ S, define deg(I ) = |S | − |I | − 1 and the sign map

sgn(s, I ) = (−1)|{ t∈S\I | t<s }|.

The Hecke–Coxeter complex (C•, ∂•).

(C•, ∂•) = 0 //C|S|−1

∂|S|−1 //C|S|−2
// . . . //C1

∂1 //C0
//0 ,

where Ck =
∐

deg(I )=k indSI Rq and

∂k(TwηI ) =
∑
s∈S\I
J=It{s}

sgn(s, I )εq(TwJ )TwJηJ .

Theorem A

Let (W ,S) be a Coxeter group with 2 ≤ |S | <∞ and let C be the Hecke–Coxeter

complex of the R-Hecke algebra H = Hq(W ,S).

If (W ,S) is spherical, then Hk(C) = 0 unless k = 0 or k = |S | − 1. Moreover,

H0(C) ' Rq and H|S|−1(C) ' R−1.

If (W ,S) is non-spherical then C is acyclic with H0(C) ' Rq.

T. Terragni (UniMiB) Euler characteristic of Hecke algebras IGT 2012 8 / 10



Euler characteristic of Hecke algebras

Suppose

p(WI ,I )(q) is invertible for all I such that WI is finite. (∗∗)

Then, by a standard argument, the trivial module Rq is of type FP.

Proposition B

Any Hecke algebra Hq(W ,S) is of type FP if the condition (∗∗) on q holds true. With

the canonical structure H = (H, \, εq,B, µ) described before, any Hecke algebra

satisfying (∗∗) is an Euler algebra.

When R = ZJqK and |W | =∞ one thus has

χH =
∑
I(S

(−1)|S\I |−1 1

p(WI ,I )(q)
=

1

p(W ,S)(q)
.

Dealing separately also the (elementary) case |W | <∞ one has

Corollary

If R = ZJqK and H is the R-Hecke algebra with Coxeter system (W ,S), then

χH p(W ,S)(q) = 1
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