The Coxeter complex and the Euler characteristics of a Hecke algebra

Tommaso Terragni

A joint work with Thomas Weigel

Università di Milano-Bicocca

Ischia Group Theory 2012

Coxeter groups

A **Coxeter system** (W, S) consists of a group W generated by a finite set S of involutions subject to relations of the form $(st)^{m_{s,t}}$, for $s \neq t \in S$ and suitable $m_{s,t} \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$.

For $I \subseteq S$ the **parabolic subsystem** is (W_I, I) , where $W_I = \langle I \rangle$. Let $\ell \colon W \longrightarrow \mathbb{N}_0$ be the **length function** w.r.t. the generating system *S*. Define the **Poincaré series** of (W, S) as

$$p_{(W,S)}(t) = \sum_{w \in W} t^{\ell(w)} \in \mathbb{Z}\llbracket t
rbracket.$$

It is well-known that $p_{(W,S)}(t)$ is a rational function and, for $|W| = \infty$,

$$\frac{1}{p_{(W,S)}(t)} = \sum_{I \subsetneq S} (-1)^{|S \setminus I| - 1} \frac{1}{p_{(W_I,I)}(t)}.$$
 (*)

Euler characteristic of Coxeter groups

Theorem (Serre 71)

If (W, S) is a Coxeter group then W is of type WFL (hence VFP): thus, it admits an Euler characteristic χ_W . Moreover,

$$\chi_W = \frac{1}{p_{(W,S)}(1)}.$$

Euler characteristic of Coxeter groups

Theorem (Serre 71)

If (W, S) is a Coxeter group then W is of type WFL (hence VFP): thus, it admits an Euler characteristic χ_W . Moreover,

$$\chi_W=\frac{1}{p_{(W,S)}(1)}.$$

A recursive, alternating-sum formula (like (\star)) is often associated to the **Euler characteristic** of a suitably defined **algebraic object**. Thus, the following question is natural:

Main problem

- Does there exist an object (associated with (W, S)) such that its Euler characteristics coincides with the inverse of the Poincaré series p_(W,S)(t)?
- What is a sensible **definition of Euler characteristic** for such objects?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Hecke algebras

Datum: a Coxeter system (W, S), a commutative ring R and a parameter $q \in R$.

R-Hecke algebra $\mathcal{H}_q(W, S)$

Let \mathcal{H} be the free *R*-module with basis { $T_w \mid w \in W$ } and associative *R*-linear multiplication defined by

$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w) \\ q T_{sw} + (q-1) T_w & \text{if } \ell(sw) < \ell(w), \end{cases}$$

for $s \in S$ and $w \in W$. The function ℓ is the length function of (W, S).

・ロト ・回ト ・ヨト ・ヨト

Hecke algebras

Datum: a Coxeter system (W, S), a commutative ring R and a parameter $q \in R$.

R-Hecke algebra $\mathcal{H}_q(W, S)$

Let \mathcal{H} be the free *R*-module with basis { $T_w \mid w \in W$ } and associative *R*-linear multiplication defined by

$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w) \\ q T_{sw} + (q-1) T_w & \text{if } \ell(sw) < \ell(w), \end{cases}$$

for $s \in S$ and $w \in W$. The function ℓ is the length function of (W, S).

For $q = 1 \in R$, one has $\mathcal{H}_1(W, S) \simeq R[W]$. Thus, a Hecke algebra can be considered as a **"generic form"** or a **"deformation"** of the group algebra of the Coxeter group.

< □ > < □ > < □ > < □ > < □ > < □ > = □

Hecke algebras

Datum: a Coxeter system (W, S), a commutative ring R and a parameter $q \in R$.

R-Hecke algebra $\mathcal{H}_q(W, S)$

Let \mathcal{H} be the free *R*-module with basis { $T_w \mid w \in W$ } and associative *R*-linear multiplication defined by

$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w) \\ q T_{sw} + (q-1) T_w & \text{if } \ell(sw) < \ell(w), \end{cases}$$

for $s \in S$ and $w \in W$. The function ℓ is the length function of (W, S).

For $q = 1 \in R$, one has $\mathcal{H}_1(W, S) \simeq R[W]$. Thus, a Hecke algebra can be considered as a **"generic form"** or a **"deformation"** of the group algebra of the Coxeter group. Hecke algebras (and their parabolic subalgebras) are canonically equipped with

- A free *R*-basis $\{T_w \mid w \in W\}$,
- a linear character $\varepsilon_q \colon \mathcal{H} \longrightarrow R$, $\varepsilon_q(\mathcal{T}_w) = q^{\ell(w)}$ (trivial module R_q),
- an antipodal map $_{}^{\natural} \colon \mathcal{H}^{\mathsf{op}} \longrightarrow \mathcal{H}$, $(\mathcal{T}_w)^{\natural} = \mathcal{T}_{w^{-1}}$,
- a poset of parabolic subalgebras H₁.

We propose the definition of **Euler algebras** to single out the sufficient conditions for an (associative) algebra to **admit a notion of Euler characteristic**. This mimicks the behaviour of group algebras.

We propose the definition of **Euler algebras** to single out the sufficient conditions for an (associative) algebra to **admit a notion of Euler characteristic**. This mimicks the behaviour of group algebras.

Definition

Euler R-algebra Let A be an associative R-algebra, together with

- be a free *R*-basis $\mathcal{B} \ni 1$,
- an antipodal map $_{}^{\natural}: \mathcal{H}^{op} \longrightarrow \mathcal{H}$ such that $\mathcal{B}^{\natural} = \mathcal{B}$,
- an augmentation $\varepsilon \colon \mathbf{A} \longrightarrow R$ onto a one-dimensional left \mathbf{A} -module R_{ε} , such that $\varepsilon \circ _^{\natural} = \varepsilon$,
- a canonical trace function $\mu: \mathbf{A}/[\mathbf{A}, \mathbf{A}] \longrightarrow R$ defined by $\mu(a) = \delta_{1,a}\varepsilon(a)$ for $a \in \mathcal{B}$.

Suppose further that R_q is a left **A**-module of type FP, i.e., it admits a finite, projective **A**-resolution.

Then, the 5-tuple $\mathbf{A} = (\mathbf{A}, \mathcal{B}, \underline{\ }^{\natural}, \varepsilon, \mu)$ is an **Euler algebra**.

Let *M* be a left **A**-module of type FP (with a finite, projective resolution P_{\bullet}). The **Hattori–Stallings rank** of *M* is defined as the element

$$r_M = \sum_{k\geq 0} (-1)^k p_k^*(p_k) + [\mathbf{A}, \mathbf{A}] \in \mathbf{A}/[\mathbf{A}, \mathbf{A}],$$

where $\gamma(p_k^* \otimes p_k) = id_{P_k}$ for the natural isomorphism $\gamma \colon P_k^* \otimes P_k \longrightarrow End_A(P_k)$. This only depends on the module M, and not on P_{\bullet} .

If $\mathbf{B} \leq \mathbf{A}$ is an inclusion of Euler algebras and if \mathbf{A} is \mathbf{B} -flat, then, for \mathbf{B} -module M

$$r_{\mathrm{ind}_{\mathsf{B}}^{\mathsf{A}}M} = r_{\mathsf{M}} + [\mathbf{A}, \mathbf{A}].$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

Let *M* be a left **A**-module of type FP (with a finite, projective resolution P_{\bullet}). The **Hattori–Stallings rank** of *M* is defined as the element

$$r_M = \sum_{k\geq 0} (-1)^k p_k^*(p_k) + [\mathbf{A}, \mathbf{A}] \in \mathbf{A}/[\mathbf{A}, \mathbf{A}],$$

where $\gamma(p_k^* \otimes p_k) = id_{P_k}$ for the natural isomorphism $\gamma \colon P_k^* \otimes P_k \longrightarrow End_A(P_k)$. This only depends on the module M, and not on P_{\bullet} .

If $\mathbf{B} \leq \mathbf{A}$ is an inclusion of Euler algebras and if \mathbf{A} is \mathbf{B} -flat, then, for \mathbf{B} -module M

$$r_{\mathrm{ind}_{\mathrm{B}}^{\mathrm{A}}M}=r_{M}+[\mathbf{A},\mathbf{A}].$$

A trace function is a map of *R*-modules $\mu : \mathbf{A}/[\mathbf{A}, \mathbf{A}] \longrightarrow R$.

Definition (Euler characteristic)

For an *R*-Euler algebra $\mathbf{A} = (\mathbf{A}, \mathcal{B}, \underline{\,}^{\natural}, \varepsilon, \mu)$, define

$$\chi_{\mathsf{A}} = \mu(r_{\mathsf{R}_{\varepsilon}}).$$

We already know that Hecke algebras admit a free basis $\{T_w \mid w \in W\}$, an antipode $T_w \mapsto T_{w^{-1}}$, an augmentation ε_q and a canonical trace function μ defined by $\mu(T_w) = \delta_{1,w}$.

Last step: proving that the trivial module R_q is of type FP.

Coxeter groups have a very rich geometry, and from the Coxeter complex one can produce resolutions of the trivial module.

イロン 不同と 不同と 不同と

We already know that Hecke algebras admit a free basis $\{T_w \mid w \in W\}$, an antipode $T_w \mapsto T_{w^{-1}}$, an augmentation ε_q and a canonical trace function μ defined by $\mu(T_w) = \delta_{1,w}$.

Last step: proving that the trivial module R_q is of type FP.

Coxeter groups have a very rich geometry, and from the Coxeter complex one can produce resolutions of the trivial module. Unfortunately, **there is no obvious geometry** for Hecke algebras,

<ロ> (四) (四) (三) (三) (三) 三

We already know that Hecke algebras admit a free basis $\{T_w \mid w \in W\}$, an antipode $T_w \mapsto T_{w^{-1}}$, an augmentation ε_q and a canonical trace function μ defined by $\mu(T_w) = \delta_{1,w}$.

Last step: proving that the trivial module R_q is of type FP.

Coxeter groups have a very rich geometry, and from the Coxeter complex one can produce resolutions of the trivial module. Unfortunately, **there is no obvious geometry** for Hecke algebras, but we constructed a "module-theoretic" analogue C_{\bullet} of the Coxeter complex Σ (canonical up to the choice of a total order < on S).

Let $I \subseteq S$ and denote ind_I^S the induction from left \mathcal{H}_I - to left \mathcal{H} -modules. If W_I is finite and $p_{(W,S)}(q) \in R$ is invertible, then let $e_I = \frac{1}{p_{(W,S)}(q)} \sum_{w \in W_I} T_w$. Then

$$e_l^2 = e_l$$
 and $\operatorname{ind}_l^S R_q \simeq \mathcal{H} e_l$

Moreover the Hattori–Stallings rank of $\operatorname{ind}_{I}^{S} R_{q}$ is $e_{I} + [\mathcal{H}_{I}, \mathcal{H}_{I}]$.

For $I \subseteq S$ and $s \in S$, define deg(I) = |S| - |I| - 1 and the sign map sgn $(s, I) = (-1)^{|\{t \in S \setminus I \mid t < s\}|}$.

The Hecke–Coxeter complex $(C_{\bullet}, \partial_{\bullet})$.

$$(C_{\bullet},\partial_{\bullet}) = 0 \longrightarrow C_{|S|-1} \xrightarrow{\partial_{|S|-1}} C_{|S|-2} \longrightarrow \dots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0,$$

where $C_k = \coprod_{\deg(I)=k} \operatorname{ind}_I^S R_q$ and

$$\partial_k(T_w\eta_l) = \sum_{\substack{s \in S \setminus l \\ J = l \sqcup \{s\}}} \operatorname{sgn}(s, l) \varepsilon_q(T_{w_J}) T_{w^J} \eta_J.$$

・ロト ・四ト ・ヨト ・ヨト

For $I \subseteq S$ and $s \in S$, define deg(I) = |S| - |I| - 1 and the sign map sgn $(s, I) = (-1)^{|\{t \in S \setminus I \mid t < s\}|}$.

The Hecke–Coxeter complex $(C_{\bullet}, \partial_{\bullet})$.

$$(C_{\bullet}, \partial_{\bullet}) = 0 \longrightarrow C_{|S|-1} \xrightarrow{\partial_{|S|-1}} C_{|S|-2} \longrightarrow \dots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0,$$

where $C_k = \coprod_{\deg(I)=k} \operatorname{ind}_I^S R_q$ and

$$\partial_k(T_w\eta_I) = \sum_{\substack{s \in S \setminus I \\ J = I \sqcup \{s\}}} \operatorname{sgn}(s, I) \varepsilon_q(T_{w_J}) T_{w^J} \eta_J.$$

Theorem A

Let (W, S) be a Coxeter group with $2 \le |S| < \infty$ and let C be the Hecke–Coxeter complex of the R-Hecke algebra $\mathcal{H} = \mathcal{H}_q(W, S)$.

- If (W, S) is spherical, then $H_k(C) = 0$ unless k = 0 or k = |S| 1. Moreover, $H_0(C) \simeq R_q$ and $H_{|S|-1}(C) \simeq R_{-1}$.
- If (W, S) is non-spherical then C is acyclic with $H_0(C) \simeq R_q$.

Euler characteristic of Hecke algebras

Suppose

 $p_{(W_l,l)}(q)$ is invertible for all l such that W_l is finite.

Then, by a standard argument, the trivial module R_q is of type FP.

<ロ> (四) (四) (日) (日) (日)

(**)

Euler characteristic of Hecke algebras

Suppose

 $p_{(W_l,l)}(q)$ is invertible for all *l* such that W_l is finite.

Then, by a standard argument, the trivial module R_q is of type FP.

Proposition B

Any Hecke algebra $\mathcal{H}_q(W, S)$ is of type FP if the condition (**) on q holds true. With the canonical structure $\mathcal{H} = (\mathcal{H}, _^{\natural}, \varepsilon_q, \mathcal{B}, \mu)$ described before, any Hecke algebra satisfying (**) is an Euler algebra.

When $R = \mathbb{Z}\llbracket q \rrbracket$ and $|W| = \infty$ one thus has

$$\chi_{\mathcal{H}} = \sum_{l \subsetneq S} (-1)^{|S \setminus l| - 1} \frac{1}{p_{(W_l, l)}(q)} = \frac{1}{p_{(W, S)}(q)}.$$

イロト イヨト イヨト イヨト

(**)

Euler characteristic of Hecke algebras

Suppose

 $p_{(W_l,l)}(q)$ is invertible for all *l* such that W_l is finite.

Then, by a standard argument, the trivial module R_q is of type FP.

Proposition B

Any Hecke algebra $\mathcal{H}_q(W, S)$ is of type FP if the condition (**) on q holds true. With the canonical structure $\mathcal{H} = (\mathcal{H}, _^{\natural}, \varepsilon_q, \mathcal{B}, \mu)$ described before, any Hecke algebra satisfying (**) is an Euler algebra.

When $R = \mathbb{Z}\llbracket q \rrbracket$ and $|W| = \infty$ one thus has

$$\chi_{\mathcal{H}} = \sum_{l \subsetneq S} (-1)^{|S \setminus l| - 1} rac{1}{p_{(W_l, l)}(q)} = rac{1}{p_{(W, S)}(q)}.$$

Dealing separately also the (elementary) case $|W| < \infty$ one has

Corollary

If $R = \mathbb{Z}[\![q]\!]$ and \mathcal{H} is the R-Hecke algebra with Coxeter system (W, S), then

 $\chi_{\mathcal{H}}\,p_{(W,S)}(q)=1$

(**)

References

H. Bass, Euler characteristics and characters of discrete groups

K.S. Brown, Cohomology of groups.

M. Geck & G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras.

- J.-P. Serre, Cohomologie des groupes discrets.
- T. Terragni & T.S. Weigel, *The Coxeter complex and the Euler characteristic of a Hecke algebra*, ArXiv:math/1110.4981.

Picture of (2,3,7) hyperbolic tiling by C. Rocchini, under CC-BY 2.5, http://en.wikipedia.org/wiki/File:Order-3_heptakis_heptagonal_tiling.png