Symplectic alternating algebras

Gunnar Traustason
Department of Mathematical Sciences University of Bath
Ischia Group Theory 2012

Symplectic alternating algebras

1. Powerful 2-Engel 3-groups.
2. Symplectic alternating algebras.
3. Some general structure theory.
4. Nilpotence, solvability and nil-conditions.

1. Powerful 2-Engel 3-groups

1. Powerful 2-Engel 3-groups

A group G is 2 -Engel if it satisfies the law $[[y, x], x]=1$ or equivalently $\left[x, x^{y}\right]=1$.

1. Powerful 2-Engel 3-groups

A group G is 2 -Engel if it satisfies the law $[[y, x], x]=1$ or equivalently $\left[x, x^{y}\right]=1$. A more transparent set of laws is

$$
\begin{aligned}
{[x, y, z] } & =[y, z, x] \\
{[x, y, z]^{3} } & =1 \\
{[x, y, z, t] } & =1
\end{aligned}
$$

1. Powerful 2-Engel 3-groups

A group G is 2-Engel if it satisfies the law $[[y, x], x]=1$ or equivalently $\left[x, x^{y}\right]=1$. A more transparent set of laws is

$$
\begin{aligned}
{[x, y, z] } & =[y, z, x] \\
{[x, y, z]^{3} } & =1 \\
{[x, y, z, t] } & =1
\end{aligned}
$$

Questions(Caranti).
(a) Does there exist a finite 2-Engel 3-group of class 3 where Aut $G=\operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$? (Yes. Abdollahi, Linton and O'Brien (2010))
(b) Let G be a group for which every element commutes with all its endomorpic images. Is G nilpotent of class at most 2?

A finite 3-group G is powerful if $[G, G] \leq G^{3}$.

A finite 3-group G is powerful if $[G, G] \leq G^{3}$.
Proposition (Moravec, T) Every 3-generator 2-Engel group, that is powerful, is nilpotent of class at most 2

A finite 3-group G is powerful if $[G, G] \leq G^{3}$.
Proposition (Moravec, T) Every 3-generator 2-Engel group, that is powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is minimal if every powerful section is of class 2 .

A finite 3-group G is powerful if $[G, G] \leq G^{3}$.
Proposition (Moravec, T) Every 3-generator 2-Engel group, that is powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is minimal if every powerful section is of class 2 .

Classification (Moravec, T). Infinitely many examples exist of rank 5 and of any even rank $r \geq 4$.

A finite 3-group G is powerful if $[G, G] \leq G^{3}$.
Proposition (Moravec, T) Every 3-generator 2-Engel group, that is powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is minimal if every powerful section is of class 2 .

Classification (Moravec, T). Infinitely many examples exist of rank 5 and of any even rank $r \geq 4$.

Symplectic vector spaces play a role in the classification. For one isolated example of rank 5 the associated symplectic vector space turns out to have a richer structure. This leads us to Symplectic Alternating Algebras.

2. Symplectic alternating algebras

2. Symplectic alternating algebras

Definition. Let F be a field. A symplectic alternating algebra over F is a triple $(V,(),, \cdot)$ where V is a symplectic vector space over F with respect to a non-degenerate aternating form (,) and - is a bilinear and alternating binary operation on V such that

$$
(u \cdot v, w)=(v \cdot w, u)
$$

for all $u, v, w \in V$.

2. Symplectic alternating algebras

Definition. Let F be a field. A symplectic alternating algebra over F is a triple $(V,(),, \cdot)$ where V is a symplectic vector space over F with respect to a non-degenerate aternating form (,) and - is a bilinear and alternating binary operation on V such that

$$
(u \cdot v, w)=(v \cdot w, u)
$$

for all $u, v, w \in V$.
Remark. The condition above is equivalent to $(u \cdot x, v)=(u, v \cdot x)$

A special class \mathcal{C} of powerful 2-Engel 3-groups.

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$.

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then
$(\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})$

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then
$(\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})=[d, c]^{3}=\left[d^{3}, c\right]$

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then
$(\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})=[d, c]^{3}=\left[d^{3}, c\right]=[a, b, c]=[b, c, a]$

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then
$(\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})=[d, c]^{3}=\left[d^{3}, c\right]=[a, b, c]=[b, c, a]=\left[e^{3}, a\right]=[e, a]^{3}=(\bar{b} \cdot \bar{c}, \bar{a})$.

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then

$$
\begin{aligned}
& (\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})=[d, c]^{3}=\left[d^{3}, c\right]=[a, b, c]=[b, c, a]=\left[e^{3}, a\right]=[e, a]^{3}=(\bar{b} \cdot \bar{c}, \bar{a}) . \\
& F \cong G \Leftrightarrow L(F) \cong L(G) . \text { Suppose } G=\left\langle x, h_{1}, \ldots, h_{2 r}\right\rangle, L(G)=\left\langle u_{1}, \ldots, u_{2 r}\right\rangle
\end{aligned}
$$

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then

$$
\begin{gathered}
(\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})=[d, c]^{3}=\left[d^{3}, c\right]=[a, b, c]=[b, c, a]=\left[e^{3}, a\right]=[e, a]^{3}=(\bar{b} \cdot \bar{c}, \bar{a}) . \\
F \cong G \Leftrightarrow L(F) \cong L(G) . \text { Suppose } G=\left\langle x, h_{1}, \ldots, h_{2 r}\right\rangle, L(G)=\left\langle u_{1}, \ldots, u_{2 r}\right\rangle \\
u_{i} \cdot u_{j}=\alpha_{i j}(1) u_{1}+\cdots+\alpha_{i j}(2 r) u_{2 r} \\
\left(u_{i}, u_{j}\right)=\beta_{i j}
\end{gathered}
$$

A special class \mathcal{C} of powerful 2-Engel 3-groups. For each $G \in \mathcal{C}$ we have $G=\langle x, H\rangle$ where $H=\left\{g \in G: g^{9}=1\right\}$ and $Z(G)=\langle x\rangle$ where $o(x)=27$.

The associated symplectic alternating algebra $L(G)$. Let $L(G)=H / G^{3}$ where

$$
\begin{gathered}
{[a, b]^{3}=x^{9(\bar{a}, \bar{b})}} \\
\bar{a} \cdot \bar{b}=\bar{c} \text { where }[a, b]=c^{3} .
\end{gathered}
$$

Suppose that $\bar{a} \cdot \bar{b}=\bar{d}$ and $\bar{b} \cdot \bar{c}=\bar{e}$. Then

$$
\left.\begin{array}{c}
(\bar{a} \cdot \bar{b}, \bar{c})=(\bar{d}, \bar{c})=[d, c]^{3}=\left[d^{3}, c\right]=[a, b, c]=[b, c, a]=\left[e^{3}, a\right]=[e, a]^{3}=(\bar{b} \cdot \bar{c}, \bar{a}) . \\
F \cong G \Leftrightarrow L(F) \cong L(G) . \text { Suppose } G=\left\langle x, h_{1}, \ldots, h_{2 r}\right\rangle, L(G)=\left\langle u_{1}, \ldots, u_{2 r}\right\rangle \\
u_{i} \cdot u_{j}
\end{array}\right)=\alpha_{i j}(1) u_{1}+\cdots+\alpha_{i j}(2 r) u_{2 r} .
$$

3. Some structure theory

3. Some structure theory

Let L be a SAA. A standard basis for L is a basis $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ where $\left(x_{i}, y_{i}\right)=1$ and $L=\left(F x_{1}+F y_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F x_{r}+F y_{r}\right)$

3. Some structure theory

Let L be a SAA. A standard basis for L is a basis $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ where $\left(x_{i}, y_{i}\right)=1$ and $L=\left(F x_{1}+F y_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F x_{r}+F y_{r}\right)$

The map $L^{3} \rightarrow F,(u, v, w) \mapsto(u \cdot v, w)$ is an alternating ternary form and that each alternating ternary form defines a unique symplectic alternating algebra. Classifying symplectic alternating algebras of dimension $2 r$ over F is then equivalent to finding all the $\operatorname{Sp}(V)$ orbits of $\wedge^{3} V$, under the natural action, where V is the symplectic vectorspace of dimension $2 r$ with non-degenerate alternating form.

3. Some structure theory

Let L be a SAA. A standard basis for L is a basis $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ where $\left(x_{i}, y_{i}\right)=1$ and $L=\left(F x_{1}+F y_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F x_{r}+F y_{r}\right)$

The map $L^{3} \rightarrow F,(u, v, w) \mapsto(u \cdot v, w)$ is an alternating ternary form and that each alternating ternary form defines a unique symplectic alternating algebra. Classifying symplectic alternating algebras of dimension $2 r$ over F is then equivalent to finding all the $\operatorname{Sp}(V)$ orbits of $\wedge^{3} V$, under the natural action, where V is the symplectic vectorspace of dimension $2 r$ with non-degenerate alternating form.

The structure is determined by the values of $x_{i} x_{j}$ and $y_{i} y_{j}$ for $1 \leq i<j \leq r$

3. Some structure theory

Let L be a SAA. A standard basis for L is a basis $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ where $\left(x_{i}, y_{i}\right)=1$ and $L=\left(F x_{1}+F y_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F x_{r}+F y_{r}\right)$

The map $L^{3} \rightarrow F,(u, v, w) \mapsto(u \cdot v, w)$ is an alternating ternary form and that each alternating ternary form defines a unique symplectic alternating algebra. Classifying symplectic alternating algebras of dimension $2 r$ over F is then equivalent to finding all the $\operatorname{Sp}(V)$ orbits of $\wedge^{3} V$, under the natural action, where V is the symplectic vectorspace of dimension $2 r$ with non-degenerate alternating form.

The structure is determined by the values of $x_{i} x_{j}$ and $y_{i} y_{j}$ for $1 \leq i<j \leq r$
There is only one (abelian) SAA of dimension 2 and apart from the abelian SAA there is one other SAA of dimension 4:

3. Some structure theory

Let L be a SAA. A standard basis for L is a basis $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ where $\left(x_{i}, y_{i}\right)=1$ and $L=\left(F x_{1}+F y_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F x_{r}+F y_{r}\right)$

The map $L^{3} \rightarrow F,(u, v, w) \mapsto(u \cdot v, w)$ is an alternating ternary form and that each alternating ternary form defines a unique symplectic alternating algebra. Classifying symplectic alternating algebras of dimension $2 r$ over F is then equivalent to finding all the $\operatorname{Sp}(V)$ orbits of $\wedge^{3} V$, under the natural action, where V is the symplectic vectorspace of dimension $2 r$ with non-degenerate alternating form.

The structure is determined by the values of $x_{i} x_{j}$ and $y_{i} y_{j}$ for $1 \leq i<j \leq r$
There is only one (abelian) SAA of dimension 2 and apart from the abelian SAA there is one other SAA of dimension 4:

$$
L: \quad x_{1} x_{2}=0 \quad y_{1} y_{2}=-y_{1}
$$

3. Some structure theory

Let L be a SAA. A standard basis for L is a basis $\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)$ where $\left(x_{i}, y_{i}\right)=1$ and $L=\left(F x_{1}+F y_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F x_{r}+F y_{r}\right)$

The map $L^{3} \rightarrow F,(u, v, w) \mapsto(u \cdot v, w)$ is an alternating ternary form and that each alternating ternary form defines a unique symplectic alternating algebra. Classifying symplectic alternating algebras of dimension $2 r$ over F is then equivalent to finding all the $\operatorname{Sp}(V)$ orbits of $\wedge^{3} V$, under the natural action, where V is the symplectic vectorspace of dimension $2 r$ with non-degenerate alternating form.

The structure is determined by the values of $x_{i} x_{j}$ and $y_{i} y_{j}$ for $1 \leq i<j \leq r$
There is only one (abelian) SAA of dimension 2 and apart from the abelian SAA there is one other SAA of dimension 4:

$$
L: \quad x_{1} x_{2}=0 \quad y_{1} y_{2}=-y_{1}
$$

Over the field \mathbb{Z}_{3} there are 31 algebras of dimension 6 (T, 2008).

Let L be a symplectic alternating algebra of dimension $2 r$.

Let L be a symplectic alternating algebra of dimension $2 r$.
Proposition 1. Let $x, y \in L$ then the subspace generated by

$$
y, y x, y x x, \cdots
$$

is isotropic.

Let L be a symplectic alternating algebra of dimension $2 r$.
Proposition 1. Let $x, y \in L$ then the subspace generated by

$$
y, y x, y x x, \cdots
$$

is isotropic.

Proposition 2. If I is an ideal of L then I^{\perp} is also an ideal of L.
Furthermore $I \cdot I^{\perp}=\{0\}$.

Let L be a symplectic alternating algebra of dimension $2 r$.
Proposition 1. Let $x, y \in L$ then the subspace generated by

$$
y, y x, y x x, \cdots
$$

is isotropic.

Proposition 2. If I is an ideal of L then I^{\perp} is also an ideal of L.
Furthermore $I \cdot I^{\perp}=\{0\}$.
Proposition 3. If M is an isotropic abelian subalgebra of dimension r then M must be an ideal.

Let L be a symplectic alternating algebra of dimension $2 r$.
Proposition 1. Let $x, y \in L$ then the subspace generated by

$$
y, y x, y x x, \cdots
$$

is isotropic.

Proposition 2. If I is an ideal of L then I^{\perp} is also an ideal of L.
Furthermore $I \cdot I^{\perp}=\{0\}$.
Proposition 3. If M is an isotropic abelian subalgebra of dimension r then M must be an ideal.

Theorem 4. Either L contains an abelian ideal or L is semisimple. In the latter case the direct summands are uniquely determined as the minimal ideals of L

4. Nilpotence, solvability and nil-conditions

4. Nilpotence, solvability and nil-conditions

Proposition 1. $Z_{i}(L)=\left(L^{i+1}\right)^{\perp}$.

4. Nilpotence, solvability and nil-conditions

Proposition 1. $Z_{i}(L)=\left(L^{i+1}\right)^{\perp}$.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

$$
\operatorname{rank}(L)=\operatorname{dim} Z(L)
$$

4. Nilpotence, solvability and nil-conditions

Proposition 1. $Z_{i}(L)=\left(L^{i+1}\right)^{\perp}$.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

$$
\operatorname{rank}(L)=\operatorname{dim} Z(L)
$$

Proof. We have $\operatorname{rank}(L)=\operatorname{dim} L-\operatorname{dim} L^{2}=\operatorname{dim}\left(L^{2}\right)^{\perp}=\operatorname{dim} Z(L)$.

4. Nilpotence, solvability and nil-conditions

Proposition 1. $Z_{i}(L)=\left(L^{i+1}\right)^{\perp}$.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

$$
\operatorname{rank}(L)=\operatorname{dim} Z(L)
$$

Proof. We have $\operatorname{rank}(L)=\operatorname{dim} L-\operatorname{dim} L^{2}=\operatorname{dim}\left(L^{2}\right)^{\perp}=\operatorname{dim} Z(L)$.

In particular there is no nilpotent SAA where $Z(L)$ is one dimensional.

4. Nilpotence, solvability and nil-conditions

Proposition 1. $Z_{i}(L)=\left(L^{i+1}\right)^{\perp}$.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

$$
\operatorname{rank}(L)=\operatorname{dim} Z(L)
$$

Proof. We have $\operatorname{rank}(L)=\operatorname{dim} L-\operatorname{dim} L^{2}=\operatorname{dim}\left(L^{2}\right)^{\perp}=\operatorname{dim} Z(L)$.

In particular there is no nilpotent SAA where $Z(L)$ is one dimensional.
Proposition 3.(Tota, Tortora, T) Let L be a symplectic alternating algebra that is abelian-by-(class c). We then have that L is nilpotent of class at most $2 c+1$.

Definition.

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$.

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$.

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$. A symplectic alternating algebra is a nil- k algebra if every element in L is a left nil-element of nil-degree at most k.

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$. A symplectic alternating algebra is a nil- k algebra if every element in L is a left nil-element of nil-degree at most k.

Question. Is every symplectic alternating nil-algebra nilpotent?

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$. A symplectic alternating algebra is a nil- k algebra if every element in L is a left nil-element of nil-degree at most k.

Question. Is every symplectic alternating nil-algebra nilpotent?
Notation. Suppose there are $a, b, x \in L$ such that $a x^{k}=b x^{k}=0$ and such that the subspace $W(a, b)$ spanned by $a, a x, \cdots, a x^{k-1}, b, b x, \cdots$, $b x^{k-1}$ satisfies

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$. A symplectic alternating algebra is a nil- k algebra if every element in L is a left nil-element of nil-degree at most k.

Question. Is every symplectic alternating nil-algebra nilpotent?
Notation. Suppose there are $a, b, x \in L$ such that $a x^{k}=b x^{k}=0$ and such that the subspace $W(a, b)$ spanned by $a, a x, \cdots, a x^{k-1}, b, b x, \cdots$, $b x^{k-1}$ satisfies

$$
W(a, b)=\left(F a+F b x^{k-1}\right) \oplus_{\perp}\left(F a x+F b x^{k-2}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F a x^{k-1}+F b\right)
$$

where $\left(a x^{r}, b x^{k-1-r}\right)=1$.

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$. A symplectic alternating algebra is a nil- k algebra if every element in L is a left nil-element of nil-degree at most k.

Question. Is every symplectic alternating nil-algebra nilpotent?
Notation. Suppose there are $a, b, x \in L$ such that $a x^{k}=b x^{k}=0$ and such that the subspace $W(a, b)$ spanned by $a, a x, \cdots, a x^{k-1}, b, b x, \cdots$, $b x^{k-1}$ satisfies

$$
W(a, b)=\left(F a+F b x^{k-1}\right) \oplus_{\perp}\left(F a x+F b x^{k-2}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F a x^{k-1}+F b\right)
$$

where $\left(a x^{r}, b x^{k-1-r}\right)=1$. We call such a subspace of L a standard x-invariant subspace.

Definition. We say that $x \in L$ is a left nil-element of nil-degree k if $a x^{k}=0$ for all $a \in L$. We say that x is a right nil-element of nil-degree k if $x a^{k}=0$ for all $a \in L$. A symplectic alternating algebra is a nil- k algebra if every element in L is a left nil-element of nil-degree at most k.

Question. Is every symplectic alternating nil-algebra nilpotent?
Notation. Suppose there are $a, b, x \in L$ such that $a x^{k}=b x^{k}=0$ and such that the subspace $W(a, b)$ spanned by $a, a x, \cdots, a x^{k-1}, b, b x, \cdots$, $b x^{k-1}$ satisfies

$$
W(a, b)=\left(F a+F b x^{k-1}\right) \oplus_{\perp}\left(F a x+F b x^{k-2}\right) \oplus_{\perp} \cdots \oplus_{\perp}\left(F a x^{k-1}+F b\right)
$$

where $\left(a x^{r}, b x^{k-1-r}\right)=1$. We call such a subspace of L a standard x-invariant subspace.

Proposition 4. (T^{3}) Suppose x is a left nil-element in L. Then we get a decompostion into a isotropic direct sum of standard x-invariant subspaces

$$
L=W\left(a_{1}, b_{1}\right) \oplus_{\perp} \cdots \oplus_{\perp} W\left(a_{n}, b_{n}\right) .
$$

Lemma 5. $\left(\mathrm{T}^{3}\right)$ If x is a left nil-element then $C_{L}(x)$ is even dimensional.

Lemma 5. $\left(\mathrm{T}^{3}\right)$ If x is a left nil-element then $C_{L}(x)$ is even dimensional.

Theorem 6. $\left(\mathrm{T}^{3}\right)$ Let L be a symplectic alternating nil- 2 algebra of dimension $2 r$.
(a) If char $L \neq 2$ then L is nilpotent of class at most 3 .
(b) If char $L=2$ then L is nilpotent of class at most $\left[\log _{2}(r+1)\right]$.

The bounds in Theorem 6 are sharp.

Lemma 5. $\left(\mathrm{T}^{3}\right)$ If x is a left nil-element then $C_{L}(x)$ is even dimensional.

Theorem 6. $\left(\mathrm{T}^{3}\right)$ Let L be a symplectic alternating nil- 2 algebra of dimension $2 r$.
(a) If char $L \neq 2$ then L is nilpotent of class at most 3 .
(b) If char $L=2$ then L is nilpotent of class at most $\left[\log _{2}(r+1)\right]$.

The bounds in Theorem 6 are sharp.

Classification. $\left(T^{3}\right)$ Symplectic alternating nil-algebras of dimension up to 8. (All nilpotent).

