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1. Powerful 2-Engel 3-groups

A group G is 2-Engel if it satisfies the law [[y, x], x] = 1 or equivalently
[x, xy] = 1

.

A more transparent set of laws is

[x, y, z] = [y, z, x]
[x, y, z]3 = 1

[x, y, z, t] = 1

Questions(Caranti).

(a) Does there exist a finite 2-Engel 3-group of class 3 where
Aut G = AutcG · Inn G? (Yes. Abdollahi, Linton and O’Brien (2010))

(b) Let G be a group for which every element commutes with all its
endomorpic images. Is G nilpotent of class at most 2?
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A finite 3-group G is powerful if [G, G] ≤ G3.

Proposition (Moravec, T) Every 3-generator 2-Engel group, that is
powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is minimal if every
powerful section is of class 2.

Classification (Moravec, T). Infinitely many examples exist of rank 5
and of any even rank r ≥ 4.

Symplectic vector spaces play a role in the classification. For one
isolated example of rank 5 the associated symplectic vector space
turns out to have a richer structure. This leads us to Symplectic
Alternating Algebras.
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2. Symplectic alternating algebras

Definition. Let F be a field. A symplectic alternating algebra over F is
a triple (V, ( , ), · ) where V is a symplectic vector space over F with
respect to a non-degenerate aternating form ( , ) and · is a bilinear
and alternating binary operation on V such that

(u · v, w) = (v · w, u)

for all u, v, w ∈ V.

Remark. The condition above is equivalent to (u · x, v) = (u, v · x)
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A special class C of powerful 2-Engel 3-groups.

For each G ∈ C we
have G = 〈x, H〉 where H = {g ∈ G : g9 = 1} and Z(G) = 〈x〉 where
o(x) = 27.

The associated symplectic alternating algebra L(G). Let L(G) = H/G3

where
[a, b]3 = x9(ā,b̄)

ā · b̄ = c̄ where [a, b] = c3.

Suppose that ā · b̄ = d̄ and b̄ · c̄ = ē. Then

(ā · b̄, c̄) = (d̄, c̄)= [d, c]3 = [d3, c]= [a, b, c] = [b, c, a]= [e3, a] = [e, a]3 = (b̄ · c̄, ā).

F ∼= G⇔ L(F) ∼= L(G). Suppose G = 〈x, h1, . . . , h2r〉, L(G) = 〈u1, . . . , u2r〉

ui · uj = αij(1)u1 + · · ·+ αij(2r)u2r

(ui, uj) = βij

m

[hi, hj] = h3αij(1)
1 · · · h3αij(2r)

2r x3βij
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F ∼= G⇔ L(F) ∼= L(G). Suppose G = 〈x, h1, . . . , h2r〉, L(G) = 〈u1, . . . , u2r〉

ui · uj = αij(1)u1 + · · ·+ αij(2r)u2r

(ui, uj) = βij

m

[hi, hj] = h3αij(1)
1 · · · h3αij(2r)

2r x3βij

Gunnar Traustason Symplectic alternating algebras



A special class C of powerful 2-Engel 3-groups. For each G ∈ C we
have G = 〈x, H〉 where H = {g ∈ G : g9 = 1} and Z(G) = 〈x〉 where
o(x) = 27.

The associated symplectic alternating algebra L(G). Let L(G) = H/G3

where
[a, b]3 = x9(ā,b̄)
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F ∼= G⇔ L(F) ∼= L(G). Suppose G = 〈x, h1, . . . , h2r〉, L(G) = 〈u1, . . . , u2r〉

ui · uj = αij(1)u1 + · · ·+ αij(2r)u2r

(ui, uj) = βij

m

[hi, hj] = h3αij(1)
1 · · · h3αij(2r)

2r x3βij

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).

Gunnar Traustason Symplectic alternating algebras



3. Some structure theory

Let L be a SAA. A standard basis for L is a basis (x1, y1, . . . , xr, yr)
where (xi, yi) = 1 and L = (Fx1 + Fy1)⊕⊥ · · · ⊕⊥ (Fxr + Fyr)

The map L3 → F, (u, v,w) 7→ (u · v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of ∧3V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of xixj and yiyj for 1 ≤ i < j ≤ r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L : x1x2 = 0 y1y2 = −y1

Over the field Z3 there are 31 algebras of dimension 6 (T, 2008).
Gunnar Traustason Symplectic alternating algebras



Let L be a symplectic alternating algebra of dimension 2r.

Proposition 1. Let x, y ∈ L then the subspace generated by

y, yx, yxx, · · ·

is isotropic.

Proposition 2. If I is an ideal of L then I⊥ is also an ideal of L.
Furthermore I · I⊥ = {0}.

Proposition 3. If M is an isotropic abelian subalgebra of dimension r
then M must be an ideal.

Theorem 4. Either L contains an abelian ideal or L is semisimple. In
the latter case the direct summands are uniquely determined as the
minimal ideals of L
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4. Nilpotence, solvability and nil-conditions

Proposition 1. Zi(L) = (Li+1)⊥.

Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

rank(L) = dim Z(L).

Proof. We have rank(L) = dim L− dim L2 = dim (L2)⊥ = dim Z(L).

In particular there is no nilpotent SAA where Z(L) is one dimensional.

Proposition 3.(Tota, Tortora, T) Let L be a symplectic alternating
algebra that is abelian-by-(class c). We then have that L is nilpotent of
class at most 2c + 1.
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Definition.

We say that x ∈ L is a left nil-element of nil-degree k if
axk = 0 for all a ∈ L. We say that x is a right nil-element of nil-degree k
if xak = 0 for all a ∈ L. A symplectic alternating algebra is a nil-k
algebra if every element in L is a left nil-element of nil-degree at most
k.

Question. Is every symplectic alternating nil-algebra nilpotent?

Notation. Suppose there are a, b, x ∈ L such that axk = bxk = 0 and
such that the subspace W(a, b) spanned by a,ax,· · · ,axk−1,b,bx,· · · ,
bxk−1 satisfies

W(a, b) = (Fa + Fbxk−1)⊕⊥ (Fax + Fbxk−2)⊕⊥ · · · ⊕⊥ (Faxk−1 + Fb)

where (axr, bxk−1−r) = 1. We call such a subspace of L a standard
x-invariant subspace.

Proposition 4. (T3) Suppose x is a left nil-element in L. Then we get a
decompostion into a isotropic direct sum of standard x-invariant
subspaces

L = W(a1, b1)⊕⊥ · · · ⊕⊥ W(an, bn).
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Lemma 5.(T3) If x is a left nil-element then CL(x) is even dimensional.

Theorem 6.(T3) Let L be a symplectic alternating nil-2 algebra of
dimension 2r.

(a) If char L 6= 2 then L is nilpotent of class at most 3.

(b) If char L = 2 then L is nilpotent of class at most [log2(r + 1)].

The bounds in Theorem 6 are sharp.

Classification.(T3) Symplectic alternating nil-algebras of dimension up
to 8. (All nilpotent).
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