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1. Powerful 2-Engel 3-groups

Agroup G is if it satisfies the law [[y, x|, x| = 1 or equivalently
[x,x] = 1.
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1. Powerful 2-Engel 3-groups

Agroup G is if it satisfies the law [[y, x|, x| = 1 or equivalently
[x,2] = 1. A more transparent set of laws is
feoy,2 = [zA]
ey, =1
oyt =1
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1. Powerful 2-Engel 3-groups

Agroup G is if it satisfies the law [[y, x|, x| = 1 or equivalently
[x,] = 1. A more transparent set of laws is
feoy,2 = [zA]
oy, =1
[—X:« ya e t] - 1

Questions(Caranti).

(a) Does there exist a finite 2-Engel 3-group of class 3 where
AutG = Aut.G - InnG? ( )

(b) Let G be a group for which every element commutes with all its
endomorpic images. Is G nilpotent of class at most 27
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A finite 3-group G is if [G,G] < G°.
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A finite 3-group G is if [G,G] < G°.

Proposition (Moravec, T) Every 3-generator 2-Engel group, that is
powerful, is nilpotent of class at most 2
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powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is if every
powerful section is of class 2.
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A finite 3-group G is if [G,G] < G°.

Proposition (Moravec, T) Every 3-generator 2-Engel group, that is
powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is if every

powerful section is of class 2.

Classification (Moravec, T). Infinitely many examples exist of rank 5
and of any even rank r > 4.
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A finite 3-group G is if [G,G] < G°.

Proposition (Moravec, T) Every 3-generator 2-Engel group, that is
powerful, is nilpotent of class at most 2

Definition. A powerful 2-Engel 3-group of class 3 is if every

powerful section is of class 2.

Classification (Moravec, T). Infinitely many examples exist of rank 5
and of any even rank r > 4.

Symplectic vector spaces play a role in the classification. For one

isolated example of rank 5 the associated symplectic vector space
turns out to have a richer structure. This leads us to
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2. Symplectic alternating algebras
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2. Symplectic alternating algebras
Definition. Let F be a field. A over F is
atriple (V, (, ), -) where V is a symplectic vector space over F with

respect to a non-degenerate aternating form (, ) and - is a bilinear
and alternating binary operation on V such that

(w-v,w)=(v-w,u)

for all u,v,w e V.
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2. Symplectic alternating algebras
Definition. Let F be a field. A over F is
atriple (V, (, ), -) where V is a symplectic vector space over F with

respect to a non-degenerate aternating form (, ) and - is a bilinear
and alternating binary operation on V such that

(w-v,w)=(v-w,u)
for all u,v,w e V.

Remark. The condition above is equivalent to (u - x,v) = (u,v - x)
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A special class C of powerful 2-Engel 3-groups.

nar Traustason Symplectic alternating algebras



A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®
where

a-b=c where [a,b] = c’.
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®

where _
[a,b]3 — x9(a,b)
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®

where _
[a,b]3 — x9(a,b)

(@-b,c) = (d,c)
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®

where _
[a,b]3 — x9(a,b)

¢
Suppose thata-b =d and b-¢ = e. Then

(@-b,c) = (d,0)=[d,c]’ = [, ]
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®

where _
(a,b)

[a,b]® = X°
a-b=c where [a,b] = c’.
Suppose thata-b =d and b-¢ = e. Then

(@-b,¢) = (d,0)=[d,c]’ = [&,c]= [a,b,c] = [b,c,d]
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®

where _
(a,b)

[a,b]® = X°
a-b=c where [a,b] = c’.
Suppose thata-b =d and b-¢ = e. Then
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®

where _
(a,b)

[a,b]® = X°
a-b=c where [a,b] = c’.
Suppose thata-b =d and b-¢ = e. Then
@-b,¢) = (@,0)=[d,c* = [, = [a,b,] = [b,c,d]= [,a] = [e,a]’ = (b-&,a).

F=G & L(F) 2 L(G). Suppose G = {x,hi,...,hy), L(G) = (u1,. .., uy)
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®
where _
[a’ b]S — x9(a,b)

c
Suppose thata-b =d and b-¢ = e. Then
(El : ]j)aa) = (;l’ E): [d~ CP = [(]}?C]: [Ll,b, C] = [bv ¢, a}: [637(1] = [37 a]3 = ([; ’ E,El).
F=G & L(F) 2 L(G). Suppose G = {x,hi,...,hy), L(G) = (u1,. .., uy)

ui-up = oy(Dur + - + o (2r)uor
(i) = By
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A special class C of powerful 2-Engel 3-groups. For each G € C we
have G = (x,H) where H = {g € G: g’ = 1} and Z(G) = (x) where
o(x) =27.

The associated symplectic alternating algebra L(G).Let L(G) = H/G®
where _
[a’ b]S — x9(a,b)

¢
Suppose thata-b =d and b-¢ = e. Then

(@-b,¢) = (d,0)=[d,c]’ = [&’, )= |a,b,c] = [b,c,d)=[¢’,a] = |e,a]’ = (b-¢,a).

F=G & L(F) 2 L(G). Suppose G = {x,hi,...,hy), L(G) = (u1,. .., uy)

ui-up = oy(Dur + - + o (2r)uor
(i) = By
T
[hi,hj] = h’:a”(l) e h;?“(zr)xw”
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3. Some structure theory
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3. Some structure theory

Let L be a SAA. A for Lis a basis (x1,y1,...,%,yr)
where (x;,y;) =1and L = (Fx; + Fy;) ®1 --- @1 (Fx, + Fy,)
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3. Some structure theory

Let L be a SAA. A for Lis a basis (x1,y1,...,%,yr)
where (xi,yi) =land L= (Fxl + FM) Dy - DL (Fx, + Fyr)

The map L* — F, (u,v,w) — (u-v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of A*V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.
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3. Some structure theory

Let L be a SAA. A for Lis a basis (x1,y1,...,%,yr)
where (xi,yi) =land L= (Fxl + FM) Dy - DL (Fx, + Fyr)

The map L* — F, (u,v,w) — (u-v,w) is an alternating ternary form and that
each alternating ternary form defines a unique symplectic alternating
algebra. Classifying symplectic alternating algebras of dimension 2r over F is
then equivalent to finding all the Sp(V) orbits of A*V, under the natural action,
where V is the symplectic vectorspace of dimension 2r with non-degenerate
alternating form.

The structure is determined by the values of x;x; and y;y; for 1 <i<j<r

There is only one (abelian) SAA of dimension 2 and apart from the
abelian SAA there is one other SAA of dimension 4:

L: xx=0 yiy2=—-y

Over the field Z; there are 31 algebras of dimension 6 (T, 2008).
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Let L be a symplectic alternating algebra of dimension 2r.
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Let L be a symplectic alternating algebra of dimension 2r.

Proposition 1. Let x,y € L then the subspace generated by
Yy YX, YXX, =

is isotropic.
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Let L be a symplectic alternating algebra of dimension 2r.

Proposition 1. Let x,y € L then the subspace generated by
Y, VX, XX, - - -

is isotropic.

Proposition 2. If I is an ideal of L then I is also an ideal of L.
Furthermore I - I+ = {0}.
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Let L be a symplectic alternating algebra of dimension 2r.

Proposition 1. Let x,y € L then the subspace generated by
Y, VX, XX, - - -

is isotropic.

Proposition 2. If I is an ideal of L then I is also an ideal of L.
Furthermore I - I+ = {0}.

Proposition 3. If M is an isotropic abelian subalgebra of dimension r
then M must be an ideal.
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Let L be a symplectic alternating algebra of dimension 2r.

Proposition 1. Let x,y € L then the subspace generated by
Yy YX, YXX, =

is isotropic.

Proposition 2. If I is an ideal of L then I is also an ideal of L.
Furthermore I - I+ = {0}.

Proposition 3. If M is an isotropic abelian subalgebra of dimension r
then M must be an ideal.

Theorem 4. Either L contains an abelian ideal or L is semisimple. In
the latter case the direct summands are uniquely determined as the
minimal ideals of L
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4. Nilpotence, solvability and nil-conditions

Gunnar Traustason Symplectic alternating algebras



4. Nilpotence, solvability and nil-conditions

Proposition 1. Z;(L) = (L™")*.
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4. Nilpotence, solvability and nil-conditions
Proposition 1. Z;(L) = (L'1)+.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then

rank(L) = dimZ(L).
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4. Nilpotence, solvability and nil-conditions
Proposition 1. Z;(L) = (L"+1)*.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then
rank(L) = dimZ(L).

Proof. We have rank(L) = dim L — dim L? = dim (L*)* = dim Z(L).
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4. Nilpotence, solvability and nil-conditions
Proposition 1. Z;(L) = (L"+1)*.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then
rank(L) = dimZ(L).

Proof. We have rank(L) = dim L — dim L? = dim (L*)* = dim Z(L).

In particular there is no nilpotent SAA where Z(L) is one dimensional.
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4. Nilpotence, solvability and nil-conditions
Proposition 1. Z;(L) = (L"+1)*.
Corollary 2. Let L be a nilpotent symplectic alternating algebra. Then
rank(L) = dimZ(L).

Proof. We have rank(L) = dim L — dim L? = dim (L*)* = dim Z(L).

In particular there is no nilpotent SAA where Z(L) is one dimensional.

Proposition 3.(Tota, Tortora, T) Let L be a symplectic alternating
algebra that is abelian-by-(class ¢). We then have that L is nilpotent of
class at most 2¢ + 1.
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Definition.

Symplectic alternating algebras



Definition. We say thatx € Lis a of nil-degree « if
ax* =0foralla € L.
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Definition. We say thatx € Lis a of nil-degree « if
ax* = 0foralla € L. We say that xis a of nil-degree k
if xa* =0 foralla € L.
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Definition. We say thatx € Lis a of nil-degree « if
ax* = 0foralla € L. We say that xis a of nil-degree k
if xa* = 0 for all @ € L. A symplectic alternating algebra is a

if every element in L is a left nil-element of nil-degree at most
k.

Gunnar Traustason Symplectic alternating algebras



Definition. We say thatx € Lis a of nil-degree « if
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Question. Is every symplectic alternating nil-algebra nilpotent?
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Definition. We say thatx € Lis a of nil-degree « if
ax* = 0foralla € L. We say that xis a of nil-degree k
if xa* = 0 for all @ € L. A symplectic alternating algebra is a

if every element in L is a left nil-element of nil-degree at most
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Question. Is every symplectic alternating nil-algebra nilpotent?
Notation. Suppose there are a, b, x € L such that ax* = bx* = 0 and

such that the subspace W(a, b) spanned by a,ax, - - ,ax*~',b,bx, - - ,
bx*~! satisfies
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Definition. We say thatx € Lis a of nil-degree « if
ax* = 0foralla € L. We say that xis a of nil-degree k
if xa* = 0 for all @ € L. A symplectic alternating algebra is a

if every element in L is a left nil-element of nil-degree at most
k.

Question. Is every symplectic alternating nil-algebra nilpotent?

Notation. Suppose there are a, b, x € L such that ax* = bx* = 0 and
such that the subspace W(a, b) spanned by a,ax, - - ,ax*~',b,bx, - - ,
bx*—1 satisfies

W(a,b) = (Fa + Fbxkil) @, (Fax+ Fbxkfz) DDy (Fax/“l + FD)

where (ax", bx*=17") = 1.
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Definition. We say thatx € Lis a of nil-degree « if
ax* = 0foralla € L. We say that xis a of nil-degree k
if xa* = 0 for all @ € L. A symplectic alternating algebra is a

if every element in L is a left nil-element of nil-degree at most
k.

Question. Is every symplectic alternating nil-algebra nilpotent?

Notation. Suppose there are a, b, x € L such that ax* = bx* = 0 and
such that the subspace W(a, b) spanned by a,ax, - - ,ax*~',b,bx, - - ,
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where (ax", bx*~'=") = 1. We call such a subspace of L a
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Definition. We say thatx € Lis a of nil-degree « if
ax* = 0foralla € L. We say that xis a of nil-degree k
if xa* = 0 for all @ € L. A symplectic alternating algebra is a

if every element in L is a left nil-element of nil-degree at most
k.

Question. Is every symplectic alternating nil-algebra nilpotent?

Notation. Suppose there are a, b, x € L such that ax* = bx* = 0 and
such that the subspace W(a, b) spanned by a,ax, - - ,ax*~',b,bx, - - ,
bx*~! satisfies

W(a,b) = (Fa+ Fbx*"') @, (Fax + Fbx*"?) @, --- ®, (Fax*~' 4 Fb)

where (ax", bx*~'=") = 1. We call such a subspace of L a

Proposition 4. (T°) Suppose x is a left nil-element in L. Then we get a
decompostion into a isotropic direct sum of standard x-invariant
subspaces

L=W(a,b) @, - ®1 W(an,by).
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Lemma 5.(T°) If x is a left nil-element then C; (x) is even dimensional.
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Lemma 5.(T°) If x is a left nil-element then C; (x) is even dimensional.
Theorem 6.(T°) Let L be a symplectic alternating nil-2 algebra of
dimension 2r.

(a) If char L # 2 then L is nilpotent of class at most 3.

(b) If char L = 2 then L is nilpotent of class at most [log, (r + 1)].

The bounds in Theorem 6 are sharp.
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Lemma 5.(T°) If x is a left nil-element then C; (x) is even dimensional.
Theorem 6.(T°) Let L be a symplectic alternating nil-2 algebra of
dimension 2r.

(a) If char L # 2 then L is nilpotent of class at most 3.

(b) If char L = 2 then L is nilpotent of class at most [log, (r + 1)].

The bounds in Theorem 6 are sharp.

Classification.(T?) Symplectic alternating nil-algebras of dimension up
to 8. (All nilpotent).
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