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Topic 1: [1],[8],[10] and [12] On finite groups
containing a CC-subgroup

Definition

A proper subgroup M of a group G is called a CC-subgroup of
G if the centralizer CG(m) of every m ∈ M# = M \ {1} is
contained in M.

In Ischia Group Theory 2004 we edited a proceedings of the
Conference in Honor of Marcel Herzog Volume 402 of
Contemporary Mathematics.
In this volume I published a paper (jointly with W. Herfort) on
"The History of the Classification of Finite Groups with a
CC-subgroup".



On finite groups containing a CC-subgroup

In this lecture we stated the full classification of finite groups
with a CC-subgroup. The proof was based on 40 papers
among them 4 joint papers of Arad and Chillag. The problem
was started by Frobenius around 100 years ago.
Many authors contributed to the final solution among them
David Chillag, Arad, Marcel Herzog, Wolfgang Herfort, Higman,
Feit, P. Hall, Kegel, Grunberg, Suzuki, Carter, Conway,
Passman, Wiliams, Lucido, Kondrateiv, Mazurov and others.
To state the classification cc-theorem in vol. 402 of
Contemporary Mathematics mentioned above, it took 7 pages
so one can find the full detailed information in this volume.



Topic 2: [4] Injectors of finite solvable groups of odd
order.

A well known theorem of Wielandt and Kegel state that if G is a
finite group and G = AB, where A and B are nilpotent
subgroups of G then G is solvable. The solvable non-nilpotent
group S3 is a product of two cyclic subgroups. In this example
the subgroup of order 3 is normal in S3. Therefore it is
interesting to find a criterion when G = AB is a product of two
nilpotent subgroups A and B of a finite group and G is nilpotent.
The first result of this type was proven by Arad and Glauberman
in 1975. For simplicity I will state a simple version of our result.



Injectors of finite solvable groups of odd order.

Theorem (Arad-Glauberman)

Let G be a finite group of odd order. Assume that G = AB,
where A is abelian subgroup of G of maximal order and B E G
is nilpotent. Then G is nilpotent.

Glauberman in 1975 based on this result proved that the
theorem holds if we assume that A is nilpotent of class at most
2 of maximal order.
Bialostocki in 1975 generalized the result and proved that the
Theorem holds if we assume that A is nilpotent of class at most
c of maximal order in G for every positive integer c ∈ N .



Injectors of finite solvable groups of odd order.

In 1979 Arad and Chillag [4] continued the research and proved
various results related to this topics.

Definition

Let G be a finite group. Define J(G) to be the subgroup of G
generated by all abelian subgroup of G of maximal order. J(G)
is called the Thompson subgroup of G.

Definition

Let G be a finite group. A nilpotent subgroup K of G is called an
N-injector of G if given any subnormal subgroup H of G, K ∩ H
is a maximal nilpotent subgroup of H.

This concept is due to B. Fischer who proved that if G is
solvable, the N-injectors of G exist and any two of them are
conjugate.



Injectors of finite solvable groups of odd order.

Let me mentioned the following results:

Proposition (Arad and Chillag).

Let G be a finite group of odd order. Let us denote by A∞(G)
the family of nilpotent subgroups of maximal order in G. Then

(i) The set A∞(G) is the set of N-injectors of G. In particular,
all elements of A∞(G) are conjugates.

(ii) 1 6= ZJ(A) = ZJ(G) for each A ∈ A∞(G).
(iii) F (G) ⊆ A for each A ∈ A∞(G). In particular,⋂

x∈G,A∈A∞(G) Ax = F (G).
(iv) If A,B ∈ A∞(G) and assume that Ap and Bq are Sylow

p-subgroup and Sylow q subgroup of A and B respectively,
where p,q | |A|,p,q are primes. Then [Ap,Bq] = 1.



Topic 3: [13] and [14] Products of conjugacy classes and irreduicble characters

in finite groups. Generalized to Table Algebras theory.

In 1985 Arad and Herzog published vol. 1112 of Lecture Notes
in Mathematic "Products of Conjugacy Classes in Groups". In
chapter 1 of this volume we proved:

Theorem [Arad-Herzog-Stavi] (The basic covering theorem)

Let G be a finite nonabelian simple group and let C 6= 1 be a
conjugacy class in G. Then there exists a positive integer m
such that Cm = G. Furthermore there exists a positive integer n
such that Cn = G for every nontrivial conjugacy class C in G.

We proved that if G has k conjugacy classes, then C
k(k−1)

2 = G
for each non-trivial conjugacy class C of G. We denoted by
cn(G) (covering number of G) the minimal values for n such
that Cn = G for every non-trivial conjugacy class C of G.



Products of conjugacy classes and irreduicble characters in finite groups.

Generalized to Table Algebras theory.

Stavi and Ziser independently proved that
cn(An) = [n/2],n ≥ 6.
Arie Lev proved that cn(PSL(n,q) = n for n > 3.
In [13] Arad-Chillag- Moran proved that cn(Sz(q)) = 3.
In [13] we proved the following:

Theorem (Arad-Chillag-Moran)

Let G be a finite nonabelian simple group. Then cn(G) = 2 iff
G ∼= J1 the Janko’s smallest group.

Today a lot of information is known about the covering numbers
of finite nonabelian simple groups. But this topic of research is
not the main goal of my lecture.



Products of conjugacy classes and irreduicble characters in finite groups.

Generalized to Table Algebras theory.

Let G be a finite nonabelial simple group and θ a complex
character of G. Define Irr(θ) to be the set of irreducible
constituents of θ and Irr(G) to be the set of all irreducible
characters of G. The character covering number ccn(G) of G is
defined as the smallest positive integer in such that
Irr(χm) = Irr(G) for all χ ∈ Irr(G)#.
In [14] we study bounds of ccn(G). In particular we proved:

Theorem (Arad-Chillag-Herzog)

Let G be a finite nonabelian simple group then ccn(G) = 2 iff
G ∼= J1.

This result illustrated that there exists an analogy between the
theory of products of conjugacy classes of G and the products
of irreducible character of G.



Products of conjugacy classes and irreduicble characters in finite groups.

Generalized to Table Algebras theory.

In fact Arad and Fisman published an article "An analogy
between products of two conjugacy classes and products of
two irreducible characters in finite groups " Proc. Of the
Edinburgh Math. Soc. 30 (1987), 7-22.
At this point our interest in research splited into two directions.
David generalized the analogy concept to Generalized
Circulants and semisimple algebras with positive bases.
My direction was to define (jointly with Harvey Blau) the
concept of Table Algebras. The Table Algebras Theory was a
generalization and unification of the concepts of products of
conjugacy classes and products of irreducible characters in a
finite group G. In my lecture I will focus on one classification
theorem of specific Table Algebras to illustrate the methods and
tools of Table Algebras theory.
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1. On finite groups containing a cc-subgroup (with D. Chillag),
Arch. der Math. 29 (1977), 225-234. 2. On finite groups with
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236-239.
4. Injectors of finite solvable groups (with D. Chillag), Comm. in
Algebra 7(2), (1979), 115-138.
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6. Finite groups with conditions on the centralizers of
p-elements (with D. Chillag), Comm. in Algebra 7 (14), (1979),
1447-1468.



Joint papers of Z. Arad and D. Chillag

7. π-solvability and nilpotent Hall subgroups (with D. Chillag),
Proc. of Symposia in Pure Math. 37 (1980), 197-199.
8. On a property like Sylows of some finite groups (with D.
Chillag), Arch. der Math. 35 (1980), 401-405.
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10. Finite groups containing a nilpotent Hall subgroup of even
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Joint papers of Z. Arad and D. Chillag

11. On a problem of Frobenius (with M. Herzog and D. Chillag),
J. of Algebra 74 (1982), 516-523.
12. A criterion for the existence of normal π-complements in
finite groups (with D. Chillag), J. of Algebra 87 (1984). 472-482.
13. Groups with a small covering number (with D. Chillag and
G. Moran), Lecture Notes in Math., Springer-Verlag 1112
(1985), 222-244.
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Herzog), J. of Algebra 103 (1986), 241-255.
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Table algebras

Definition

Let B = {b1 = 1, ...,bk} be a distinuished basis of an
associative commutative complex algebra A. A pair (A,B) is
called a table algebra if it satisfies the following conditions

1 bibj =
∑k

m=1 λijmbm with λijm being non-negative reals;
2 there exists a table algebra automorphism x 7→ x̄ of A

whose order divides two such that B = B (̄ defines a
permutation on [1, k ] via bi = bī );

3 there exists a coefficient function g : B × B → R+ such that
λijm = g(bi ,bm)λj̄mi

An element bi is called real if i = ī . For any x =
∑k

i=1 xibi we
set Irr(x) := {bi ∈ B | xi 6= 0}.



Table subsets

Definition

A non-empty subset T ≤ B is called a table subset if
Irr(T T ) ⊆ T . In this case a linear span S := 〈T 〉 of T is a
subalgebra of A. The pair (S,T ) is called table subalgebra of
(A,b).

Faithful elements

Since an intersection of table subsets is a table subset by itself,
one can define a table subset generated by an element b ∈ B,
notation Bb, as the intersection of all table subsets of B
containing b. An element b ∈ B with Bb = B is called faithful.



Isomorphism between table algebras

Rescaling

Given a table algebra (A,B) one can replace its table basis
B = {b1, ...,bk} by B′ = {β1b1, ..., βkbk} where βi ’s are positive
real numbers with β1 = 1. A table algebra (A,B′) is called a
rescaling of (A,B).

Isomorphisms between TA

Two table algebras (A,B) and (A′,B′) are called isomorphic,
notation (A,B) ∼= (A′,B′), if there exists an algebra
isomorphism f : A→ A′ such that f (B) is a rescaling of B′. In
the case of f (B) = B′, the algebras are called exactly
isomorphic, notation (A,B) ∼=x (A′,B′).



Degree homomorphism

Theorem (Arad, Blau)

Let (A,B) be a table algebra. Then there exists a unique
algebra homomorphism a 7→ |a|,a ∈ A onto C such that
|b| = |b̄| > 0 holds for all b ∈ B. The number |b| is called the
degree of b.

Normalized and standard TAs

An element bi ∈ B is called standard (normalized) if λi ī1 = |bi |
(λi ī1 = 1). A table algebra is called standard (normalized) if all
the elements of its table basis are standard (normalized).
Notice that any table algebra may be rescaled to a standard or
normalized one. If (A,B) is normalized, then g(bi ,bj) = 1. For
standard table algebras g(bi ,bj) = |bi |/|bj |.



The order of a TA

Definiion

The number

o(B) :=
k∑

i=1

|bi |2

λi ī1

does not depend on a rescaling of (A,B) and is called the order
of (A,B). If (A,B) is standard, then o(B) =

∑k
i=1 |bi |. If (A,B) is

normalized, then o(B) =
∑k

i=1 |bi |2.

Definition

A table algebra is called integral if all its degrees and structure
constants are non-negative integers.



Examples: character algebra of a finite group

Let G be a finite group and Ch(G) denote the algebra of all
complex valued class functions on G with pointwise
mutliplication. This algebra has a natural basis Irr(G)
consisting of irreducible characters of G. The pair
(Ch(G), Irr(G)) satisfies the axioms of a table algebra. In this
case χ̄, χ ∈ Irr(G) is a complex conjugate character and the
degree function of χ is a usual degree of an irreducible
character - χ(1). The algebra (Ch(G), Irr(G)) is a normalized
integral table algebra (NITA, for short).



Examples: the center of a finite group algebra

Let G be a finite group and Z (C[G]) denote the center of a
group algebra. Z (C[G]) is a subalgebra of C[G]. Let
C1 = {1},C2, ...,Ck be a complete set of conjugacy classes of
G. Denote bi :=

∑
g∈Ci

g, Cla(G) := {b1, ...,bk}. Then
Z ((C[G]),Cla(G)) satisfies the axioms of a table algebra with
bi =

∑
g∈Ci

g−1 and degree function |bi | = |Ci |. The algebra
Z ((C[G]),Cla(G)) is a standard integral table algebra (SITA, for
short).



Table algebras classification results

Minimal degree

A minimal degree m(B) of an ITA (A,B) is min{|bi | | i > 1}. ITAs
containing a faithful element of degree 2 with m(B) = 2 were
classified by Blau.

Homogeneous ITAs

HITAs of degrees 1,2,3 were completely classified in a series
of papers by Arad, Blau, Fisman, Miloslavsky and Muzychuk.

Standard ITAs

SITAs containing a faithful non-real element of minimal degree
3 and 4 were classified in a series of papers by Arad, Arisha,
Blau, Fisman and Muzychuk.



Normalized integral table algebras

Let (A,B) be a NITA containing a faithful element b of minimal
degree m. If m = 1, then (A,B) is exactly isomorphic to the
character algebra of a cyclic group.If m = 2, then the
classification of such algebras follows from Blau’s result. In this
talk we present the results obtained for m = 3 under additional
assumption that b is non-real.



Normalized integral table algebras

Theorem (Arad, Chen)

Let (A,B) be a NITA of minimal degree 3 containing a faithful
element b3 of minimal degree 3. Then b3b3 = 1 + b8 where
b8 ∈ B is real of degree 8 and one of the following holds.

1 (A,B) ∼=x ((Ch(G), Irr(G)),G ∼= PSL(2,7);
2 b2

3 = b4 + b5 where b4,b5 ∈ B;
3 b2

3 = c3 + b6 where c3,b6 ∈ B, c3 6= b3, b̄3;

4 b2
3 = b3 + b6,b6 ∈ B is non-real;

Theorem (Arad, Xu)

The second case cannot occur.



The third case

Theorem (Arad, Cohen, Arisha)

Assume that
b2

3 = c3 + b6, c3 6= b3, b̄3.

Then (b3b8,b3b8) = 3,4. If (b3b8,b3b8) = 3 and c3 is real, then
there exists a unique NITA of dimension 22. If c3 is not real,
then there exists a unique NITA of dimension 32 satisfying
these conditions. Both NITAs are not induced from character
tables of finite groups.

Problem

Classify the NITAs in the title with (b3b8,b3b8) = 4.



The fourth case

A representation graph

A representation graph of bi ∈ B is a weighted graph on B in
which two vertices bj and bk are connected by an edge of
weight λijk .

A representation graph of b3 at distance two
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Fourth case: b2
3 = b̄3 + b6

Definition

A NITA (A,B) in the title satisfies Cn -condition if the
representation graph at distance n is isomorphic to Cn. We say
that n is a stopping number for (A,B) if n is a maximal number
for which (A,B) satisfies Cn-condition. In the case when (A,B)
satisfies Cn-condition for each n, we say that its stopping
number is∞. In the latter case (A,B) is infinite dimensional
algebra with |B| = ℵ0,

Theorem (Arad, Cohen)

There exist only two algebras of fourth type with stopping
number at most three, namely (Ch(PSL(2,7)), Irr(PSL(2,7))
and (Ch(3 · A6), Irr(3 · A6))).



Fourth case: b2
3 = b̄3 + b6

Theorem (Arad, Cohen)

There exists no NITA of fourth type with stopping number at
least 43.

Theorem (Arad, Cohen, Muzychuk)

There exists a unique infinite dimensional NITA of fourth type
with stopping number∞. This is the NITA of polynomial
characters of SL3(C).

Open Problem

Classify all NITAs of fourth type with stopping number in the
range [4,42].


